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Abstract

In large economic systems the observed data are usually macro-data; an agent-based

model is a set of individual decision makers that influence the macro behavior of the system

both trough their direct actions and trough the influence they have on the other decision

makers. The complexity of the model impedes an explicit analytical relation between the

micro-parameters and the macro-behavior, and in turn the use of ”traditional” econometric

tools. This paper develops an estimation procedure that allows the estimation of the agents’

micromotives in an agent-based model using the emerging behavior of the system. Starting

from a simple stock market model, in which agents learn by interacting, the properties of

simulation-based estimations are investigated. As a first step in the direction of extending

and adapting the econometric literature to agent-based models, the paper is focused on the

consistency and on the bias of the estimates.

JEL classifications: C15, C53,C63
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1 Introduction

The economic system is composed by many different autonomous agents that interact with

each other and with the environment. The result is a system that exhibits emergent proper-

ties: the properties at the macro level cannot be explained directly by the properties at the

micro level (Gilbert 2001). Agent-based modeling is a tool used to overcome the limitations

of a purely mathematical analysis and it allows the construction of more realistic models;

unfortunately this happens at a cost. Agent-based models are more difficult to understand,
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to generalize and to explain. A model consisting of algebraically solved equations can easily

be interpreted and generalized using formal proofs. Despite the fact that it can be consid-

ered as a well-defined set of equations (Leombruni & Richiardi 2005), an agent-based model

suffers from the different (smaller) degree of knowledge about the functions that are at the

base of the model. While analytical results are conditional only in relation to the specific

hypothesis about the model, simulation results are conditional in relation to both the specific

hypothesis of the model and to the specific values of the parameters used in the simulation

runs: each run of an agent-based model yields a sufficiency theorem, but a single run does

not provide any information on the robustness of such theorems (Axtell 2000). To treat the

“sufficiency problem”, a sensitivity analysis over the parameter space has to be performed

in order to assess the robustness of the results (Axtell 2000). An estimation procedure in

agent-based models is crucial to compare the model with empirical data but also because it

can be used to reduce the sufficiency problem by reducing the space of the parameters to the

neighborhood of the ”empirical relevant” parameters. Estimation of agent-based models is

important in the interpretation of the model and possibly in the validation of it (Windrum

et al. 2007, Bianchi et al. 2007), but it is still largely missing in the literature (Alfarano

et al. 2005, Richiardi et al. 2006, Leombruni & Richiardi 2005). The interaction between

the agents in a stock market, for example, is largely accepted as fundamental in shaping the

properties of the markets. This led to building (e.g. Arthur et al. (1997), Kirman (1993),

Lux & Marchesi (1999), Brock & Hommes (1998), Cross et al. (2005)) and rarely to estimat-

ing complex financial models Boswijk et al. (2007), Alfarano et al. (2005), Gilli & Winker

(2003), for a survey see Chen et al. (2009).

This paper describes a method for using empirical data in agent-based models; by using

observed data about the system under analysis it is possible to select the values for the

parameters so that the artificial data and the observed data are as similar as possible, i.e.

minimizing an objective function. The results of such minimization will crucially depend on

the properties of the model. The starting point for the estimation of the parameters is the

simulation-based econometrics literature using the method of simulated moments 1. The

smaller degree of knowledge about the model is a problem also in the estimation procedure.

The properties of the model are not known a priori, this means that in order to know

how to interpret the parameters resulting from simulation-based econometrics methods, the

model has to be tested. In particular it is necessary to perform a sensitivity analysis to

understand the behavior of the moments of the model with changing parameters and to

choose the moments that allow a sufficient characterization of the model behavior with

1Other simulation-based econometrics techniques could also be useful such as the indirect inference and
simulated maximum likelihood.
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different parameters. The choice of the moment is crucial for the identification problem and

influences the efficiency of the estimator. Once the moments are chosen it is necessary to

understand whether they are stationary and ergodic, the test that will be used are described

in Grazzini (2012). The tests are performed on the artificial data, and using the well-

specification hypothesis, the results are extended to the real data. If the moments are well

behaved then it is possible to consistently estimate the agent-based model. The model used

to show the estimation procedure is a simple stock market model in which the agents learn

the equilibrium price trough the information provided by the actions of the other traders.

The behavior of the emergent price is used to estimate a behavioral parameter that governs

the learning process.

2 The model

The model used to show the estimation procedure is an agent-based stock market model

proposed in Cliff & Bruten (1997) to reproduce the experimental results obtained by Smith

(1962). In the experimental market the traders are divided into buyers and sellers. Each

subject receives a card containing an induced value for the fictitious commodity. The trade

is conducted through a continuous double auction over a sequence of periods. The agents

are free to bid and offer at any time and they withdraw from the market for the given period

when they successfully close a deal. The induced value for each trader is the same in all

periods. The aim in Smith (1962) was to study the behavior of the price in a controlled

situation where demand and supply schedule were well defined over a unit of time. Figure

1 shows the market environment, determining the supply and demand schedules and the

theoretical equilibrium. The experiment shows how a small number of inexperienced traders

converge rapidly to a competitive equilibrium under the double auction mechanism (Smith

1962, p.157). The result is interesting because it shows how the interaction between the

traders allows the emergence of the equilibrium price and how, in this simple environment,

the equilibrium price is predictable by the classical microeconomic theory (Cliff & Bruten

1997). The private profit-seeking incentives allow the market to reach the equilibrium and

even if the market environment (demand and supply schedule) is unknown the traders learn

it in a few periods 2.

The model proposed by Cliff & Bruten (1997) reproduces explicitly the continuous double

auction, therefore there is a book where the ”active” traders can ask or bid. The behavior of

the traders is very simple, they use the observed orders in the book to improve their trading

strategy. In particular the bid or ask depends on their predefined role and they adapt the

2In Smith (1962), note 5: “It is only through some learning mechanism of this kind that I can imagine the
possibility of equilibrium being approached in any real market.”
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Figure 1: Supply and demand functions, defined by the private values of the traders.

price through a simple learning mechanism. The price proposed by the agent i is

pi(t) = vi(1 + µi(t)) (1)

where vi is the certain induced value and µi(t) is the profit margin, positive for sellers

and negative for buyers. Note that a budget constrain is imposed: no bid or offer can be

made with a loss. The profit margin evolves over time following a very simple heuristic.

The pseudo algorithms for a seller and a buyer are Algorithm 1 and Algorithm 2 3. The

agents observe the book and use the information about the last proposal to understand the

market.

Algorithm 1 The basic behavior of a Seller: adapting the profit margin

Seller
if the last shout was accepted at price q then

1. any seller si for whom pi ≤ q should raise the profit margin
2. if last shout was a bid and pi ≥ q, any active seller si should lower the margin

else
if the last shout was an offer and pi ≥ q any active seller si should lower the margin

end if

Algorithm 2 The basic behavior of a Buyer: adapting the profit margin

Buyer
if the last shout was accepted at price q then

1. any buyer bi for whom pi ≥ q should raise the profit margin
2. if last shout was an offer and pi ≤ q, any active buyer bi should lower the margin

else
if the last shout was a bid and pi ≤ q any active buyer bi should lower the margin

end if

3On http://www.jakob.altervista.org/Python-model1.rar it is possible to download the python files of the
model
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The algorithm is well explained in Cliff & Bruten (1997). In the Smith (1962) experiment

the time was divided into periods and each trader had the opportunity to trade only once 4

during each period. The traders start the period as active traders and become “non-active”

after having agreed on a contract. The aim of the traders is to trade at the best possible

condition, i.e. with the maximum possible profit margin. The seller si might for example

start offering at a given price p̄i(t). From equation 1 we know that the offered price depends

on the private (constant) value and on the profit margin. If si observes that the last order

was accepted at a price q greater than p̄i(t), the incentive to maximize the profits will induce

the seller to increase the profit margin. The observed order tells seller i that there are buyers

willing to buy at a higher price. If on the contrary the last accepted order was an offer with

a price q lower than p̄i(t), the incentive to trade induces si to lower the profit margin (if it

is greater than zero). The seller si will use the information contained in the last order to

infer on the behavior of the other sellers. To be able to trade she must reduce the selling

price (reducing the profit margin) to undercut the competition. It is important to note

that the reduction of the profit margin by a seller is triggered only by offers: the traders

undercut their competitors. If on the other hand the sellers react also to very low bids, the

buyers could coordinate and artificially reduce the price. For the buyers the algorithm works

symmetrically. The crucial point is to understand how the traders adapt and that only some

bids and offers influence the market. Extra-marginal traders and exceptional bids and offers

(very low bids and very high offers) have no effect on the market. This simple algorithm

allows the traders to understand the optimal pricing strategy by adapting the profit margin.

In order to adapt there is the need for some form of updating rule. Cliff & Bruten (1997)

propose the Windrow-Hoff “delta rule”:

At+1 = At + ∆t (2)

where At+1 is the output after the update, At is the current output and ∆t is the change

in output in time t and depends on the difference between actual At and the desired output

Dt and a learning rate coefficient β:

∆t = β(Dt −At) (3)

The traders want to update the proposed price by updating the profit margin. Given

pi(t) and a target price τi(t) it is possible to compute ∆(t) from equation 3,

4In some experimental sessions the traders were able to trade more than once, but always for a given number
of times. This procedure is useful as it provides a definition of demand and supply schedule.
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∆i(t) = βi(τi(t)− pi(t)) (4)

and the new profit margin rearranging equation 1:

µi(t+ 1) =
pi(t) + ∆i(t)

vi
− 1 (5)

The target price is defined using the price of the last shout q(t) in the following way:

τi(t) = Ri(t)q(t) + ei(t) (6)

where Ri is a random coefficient and ei is a random perturbation. If the aim is to increase

the last shout, Ri > 1 and ei > 0, if the aim is to decrease the last shout 0 < Ri < 1 and

ei < 0. The agents learn about their environment using the orders observed in the market

5. During each simulated period every agent will issue an order - if active - on average every

20 seconds. One period lasts 500 seconds and trading normally takes place in the first part

of the period 6. The timing has some relevance, as the traders use the last proposal to gain

information about the market; if the agents acted simultaneously they would use less orders

and the learning mechanism would be more instable and slow. This is one example of how

important it is to explicitly model the price formation mechanism since it shapes the market

behavior. The asynchronicity of actions is crucial as it allows the traders to understand

the market environment. The timing parameter is assumed known and constant, therefore

the interesting parameter is βi, the parameter that formalizes how the traders are learning.

The aim of the paper is to check whether it is possible to estimate the learning parameter

and in particular define a set of procedures that tell whether it is possible. Note that in

the model the βi parameter is heterogeneous, it means that in a market with 22 traders

there would be the need to estimate 22 parameters. Since the number of parameters do

not change the overall procedure, to simplify the problem the traders are assumed to learn

using the same parameter, i.e. βi = β. This is a huge simplification if we consider the

model as a representation of reality, but it is a non-crucial simplification in the light of

estimation techniques. The aim here is to show that estimation of micro-parameters using

macro-observations is possible when a set of conditions is satisfied. The conditions do not

change with more parameters, the only difference is that it might be more difficult to satisfy

them.

5In Cliff & Bruten (1997) a further learning procedure was implemented taking into account past ∆i; since
it has a minimal effect on the results it has been eliminated

6In Smith’s experiment the traders could freely offer and bid; within the time limit of a trading period this
procedure was continued until bids and offers were no longer leading to contracts.
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2.1 Simulations

The supply and demand curve are shown in figure 1. The initial profit margin are set to

µ0 = 0.25 for the sellers and µ0 = −0.25 for the buyers. The number of traders is 22, 11

buyers and 11 sellers.

(a) β = 0 (b) β = 0.5 (c) β = 1

Figure 2: Artificial stock market behavior with different values of the learning parameter.

The theoretical equilibrium is 150. In figure 2 three runs of the model are shown with

different values for β. The model has an initial converging phase where the agents learn

the environment watching the actions of the other agent, the price converges toward the

theoretical equilibrium due to the double incentive acting on the agents: increasing their

profit margin and at the same time increasing the probability of trade. The length of the

converging phase and the behavior around the equilibrium price depends on β. Note that

β = 0 means no learning and has a very different behavior from a learning situation with

β > 0. In the next section the simulation-based econometrics is introduced as a starting

point for the estimation of the agents based model.

3 Simulation Based Econometrics

Agent-based modeling is an instrument used to model complex phenomena that involve

interactions between the elements of the system under analysis, interaction between the

elements and the environments, heterogeneity and so on. Agent-based models are thus used

in situations in which the analytical approach is too restrictive to have a good representation

of the system. From the previous statement it follows that it is not possible to use standard

econometric tools to compare artificial data and real data. Indeed, the complexity of an

agent-based model impedes the writing of an analytical condition to find the parameters

that minimize a given distance between real data and the model. To overcome this difficulty

it is possible to refer to the literature on simulation-based econometric methods. A good

reference in this framework is Gourieroux & Monfort (1996) where the most important
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methods are described: Methods of Simulated Moments (MSM), Indirect Inference and

Simulated Maximum Likelihood. In the following, the method of simulated moments will

be used; it is an intuitive way to extend simulated econometrics to agent-based models.

The simulated methods of moments was introduced by Fadden (1989) and Pakes & Pollard

(1989). Duffie & Singleton (1993) apply the method of simulated moments to a markovian

process, Lee & Ingram (1991) apply it to time series models.

Suppose that we have a set of observations yt , a vector of B explanatory variables {zt}

and a vector of K instruments {xt}. Supposing that a well specified model is available,

that the data generator process is well behaved, i.e. that (yt, zt,xt) are jointly ergodic and

jointly stationary and that the orthogonality conditions are satisfied, the generalized method

of moments estimates the parameters by minimizing J(β,W ); J(.) is the quadratic form that

represents the distance between the theoretical moments and the observed moments (that

is between the orthogonality conditions and the sample counterparts), β is the vector of

parameters and W is a weighting matrix (see Hayashi (2000)). The method of moments

or the general method of moments requires the possibility of computing analytically the

theoretical moments; unfortunately such a condition significantly limits the applicability. If

the model is complex, it may be impossible to find an analytical form of the conditional

moments and thus it may be impossible to find an analytical expression of the quadratic

form and of its derivatives. This means that it may be impossible to minimize analytically

the objective function. The solution is to simulate the model: if the analytical theoretical

moments conditional to the parameters cannot be found, it is possible to simulate the model

and compute the moments from the artificial data. The method of simulated moments thus

extends the method of moments by replacing the theoretical moments with its simulated

counterpart calculated with simulated data (Duffie & Singleton 1993). To estimate the

parameters it is sufficient to choose the value of the parameters that minimizes the distance

between the simulated moments and the observed moments. The general expression of the

objective function to be minimized can be found in Gourieroux & Monfort (1996, p.27),

where also the asymptotic properties of the estimator are shown. In particular when the

number of observations (n) tends to infinity and the number of simulations (S) is fixed, the

estimator is strongly consistent and its distribution tends towards a Normal under regularity

conditions in Hansen (1982). The variance of the simulated moments estimator (given the

weighting matrix W) decreases when S increases, and tends to be equal to the variance of the

GMM estimator when S →∞ (Gourieroux & Monfort 1996). The extension to agent-based

models is straightforward: the artificial data produced by the simulation model are used to

compute the simulated moments to be compared with the observed moments.

The aim is to evaluate the estimation procedure applied to a simple agent-based model.
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The model used is the one described in the previous section, where the agents are traders that

trade for a profit in a continuous double auction. The behavior of the traders is essentially

described with the proposed price, that is the maximum price they are willing to pay to buy

one asset or the minimum price the are willing to accept to sell one asset. The proposed

price changes depending on the behavior of the other agents and the learning mechanism is

governed by one parameter. There are no exogenous variables. Despite the simplicity, there

is no way of writing any analytical expression of the emergent data (the price) as a function

of the behavioral parameter. The objective function to be minimized is:

J(β,W ) = (µR(β0, ε)− µS(β))′W (µR(β0, ε)− µS(β)) (7)

where µR is the vector of dimension M containing the chosen M moments computed over

the observed data, µS is the vector of dimension M containing the M moments computed

over the simulated data. The observed moments depend on the ”true parameters” β0 and

on a random error due to the sample. The simulated moments depend on the parameters β

used in the simulation. The simulated moment is:

µSm =
1

S

S∑
s=1

m({yt}n)s (8)

wherem(.) is the moment estimator using {yt}n observations, n is the number of observed

data and S is the number of simulations. Equation 8 can be used also with biased moment

estimators and when the model is non-ergodic it gives information about the ensemble

moments of the model. If S →∞, the simulated moments tend to the theoretical moments

and the MSM estimator tends to the GMM estimator. The variance of the estimator is thus

reduced if the number of simulations increases.

The estimated set of parameters is the solution of the minimization of J(β,W ). Under the

regularity conditions defined in Hansen (1982), the values of the parameters resulting from

the minimization of equation 7, β̂, are consistent (Gourieroux & Monfort 1996). The crucial

issue for agent-based estimation is to know whether the regularity conditions are actually

met. In particular this paper will focus on the consistency and bias of the estimator and

thus on the identification problem 7 and on stationarity and ergodicity properties.

4 Properties of the model

As noted in the previous section the crucial part in agent-based models estimation is to

analyze the properties of the model itself. The lack of any analytical expression that links

7The number of moments has to be greater than the number of parameter, and the chosen moments have to
characterize the model using different parameters.
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the parameters of the model to the behavior of the emergent property of the system implies

the lack of knowledge about the fundamental properties of the model. The tools to be used

to increase our knowledge about the behavior of the model are the sensitivity analysis, often

used in agent-based modeling literature and statistical tests for stationarity and ergodicity.

To show the consistency properties, the sensitivity analysis and the estimation will be made

for the case in which 200 days and 1000 days are observed.

4.1 Sensitivity Analysis

The sensitivity analysis is a crucial step in understanding agent-based models. As noted in

the introduction, the lack of any analytical representation of the model hides the properties

of the system in the system. The sensitivity analysis allows to increase the knowledge about

a selected set of properties of the model in response to the change of a set of parameters in

the model. The price behavior has to characterize the system using different parameters.

The aim of the sensitivity analysis is thus to search for the moments to be used in the

objective function. The problems to be faced are the identification problem and the efficiency

problem. The moments have to be monotonic in the change of the parameter, i.e. they have

to be different for different parameters values. Given this property, the more the moment

changes when the parameter changes the more efficient is the estimation, the more different

parameters are distinguishable.

To simplify the problem the parameter is considered discrete, the learning parameter β

is assumed to be between 0 and 1 and to take only discrete values with 0.05 steps. This

is a simplifying hypothesis to reduce the computational burden and it does not change

the main properties of the estimator. The resolution of the parameter to be estimated is

a choice of the modeler depending on the type of model. Higher resolution needs more

computation. The sensitivity analysis has been done by running the model for 100 times

for every possible value of the parameter. The tested moments are the mean, the variance,

the skewness and the kurtosis. In figure 3 the four moments for the model run over 200

trading days (corresponding to about 1000 transactions). To compute meaningful moments

it is necessary to select the stationary part of the process, this can be done using both a

qualitative judgmental procedure, looking at the output of the model and selecting the part

of it which is stationary and by using the stationarity and ergodicity tests described below.

The important role of the moment is to characterize unambiguously the model with a given

set of parameters. Thus the moment conditional on the parameters has to be stationary and

ergodic, i.e. it has to come always from the same distribution. The moments in the figures

are computed taking the observations from 200 onward to allow the process to converge

toward its stationary part.
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Figure 3: Sensitivity analysis, the effect of changing β on the moments.

The first important information about the model is that when learning is present, i.e.

β > 0, the equilibrium value toward which the model converges is always the same. The

stationarity and ergodicity test in the next section will indeed confirm that for every possible

value of β the model produces a stationary and ergodic mean value (i.e. the model has a

unique equilibrium). Evidently the mean value of the model cannot characterize the behavior

with different values of the parameters. The same argument can be made on skewness and

kurtosis. The model is quite symmetric for any value of β and has a slightly decreasing

kurtosis from slowest learning, β = 0.05, to fastest learning, β = 1. The case of no learning

is very different from the rest of the results. The only moment that seems to actually

discriminate between different learning parameters is the variance; this will be the moment

used in the objective function.

A problem arise regarding the functional form of the chosen moment with respect to the

parameter: the variance is non-linear in the parameter and this might create a bias in the

estimates.

4.2 Small sample bias

The non linearity of the relation between the moments used for the estimation and the value

of the parameters, the ”moment function”, can create biased estimations. Suppose that γ(θ)

is the moment function of the model. It represents the relation between a given moment

(chosen for the estimation procedure) and the value of the structural parameter θ in the

model. Suppose that the true parameter is θ0. The observed moment will thus be

γ(θ0, ε)
obs = γ(θ0) + ε (9)
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(a) Sensitivity on variance (b) Sensitivity on standard deviation

Figure 4: The variance conditional on the parameter value (a) and the standard deviation conditional on the
parameter value (b).

The observed moment is the ”true moment” plus an error ε depending on the sample.

Supposing that the underlying process is ergodic and stationary and that the moment esti-

mator is unbiased (E(ε) = 0), by applying the ergodic theorem we know that the expected

value of the observed moment is equal to the true value, E[γ(θ)obs] = m(θ0). It is possible

to express the variance of the error term σ2
ε as a function of the number of observations,

with limn→∞σ
2
ε (n) = 0. The moment estimator, given the assumptions, is unbiased and

consistent. The method of simulated moments minimizes the distance between the observed

moment and the simulated moment with respect to the parameter:

θ̂ = argminJ(θ) = (γ(θ0, ε)
obs − γ(θ))2 (10)

where θ̂ is the estimated parameter and γ(θ) is the theoretical moment computed from

the model 8. Supposing that the moment function and the parameter are continuous, the

method of simulated moments set θ̂ such that9:

γ(θ0, ε)
obs − γ(θ̂) = 0 (12)

using equation 9:

8In the simulation based econometric framework, γ(θ) is simulated and might contain an error, this is omitted
for simplicity.

9In a traditional setting, supposing differentiability of the moment function, θ̂ is selected by setting the first
derivative of the objective function to zero:

dJ(θ)

dθ
= 2(γ(θ0, ε)

obs − γ(θ))
dγ(θ)

dθ
(11)

Since the moment function has to be monotonic to be able to identify the parameters, it is supposed that
dγ(θ)
dθ
6= 0 for all θ, the minimization condition thus is equal to equation 12

12



γ(θ0) + ε− γ(θ̂) = 0 (13)

and

γ(θ̂) = γ(θ0) + ε (14)

By assumption the moment estimator is unbiased (E(ε) = 0), therefore

E(γ(θ̂)) = γ(θ0) (15)

The moment estimator is unbiased and consistent. The estimation procedure select the

estimated parameters such that the expected value of the theoretical/simulated moment is

equal to the true moment (given the assumptions above). If the moment function is non-

linear, this condition does not imply that the expected value of the estimates is equal to the

true parameter. If the moment function is convex:

γ(E(θ̂)) ≤ E(γ(θ̂)) = γ(θ0) (16)

which implies that E(θ̂) 6= θ0. The direction of the bias depends on the first derivative

of the moment function. If γ′(θ) > 0, equation 16 implies that E(θ̂) ≤ θ0, i.e. a downward

bias. On the contrary if γ′(θ) < 0, the equation 16 implies that E(θ̂) ≥ θ0, i.e. an upward

bias. In the same way it is possible to show that if the moment function is concave, the

estimated parameter is upward bias if the moment function is increasing and downward bias

if the moment function is decreasing.

The bias can be can be solved by knowing the moment function (which is not the case

here, since we are dealing with an agent-based model) or reduced either by applying a

monotonic transformation or by increasing the number of observations (i.e. by reducing the

variance of the error). To prove the possible presence of a bias, the error has been assumed

with zero mean and symmetric. The former assumption is verified when the observed sample

moment is not biased with respect to the simulated moment. The latter depends on the

observed moment distribution and is not guaranteed. If the the error is non-symmetric

the bias can be reduced or increased depending on the direction of the asymmetry. The

symmetry of the moment can be tested with the sensitivity analysis.

As evident from figure 4, the moment function is convex, from the sensitivity analysis

the skewness is slightly positive. As it will be shown below, taking the square root of the

variance (i.e. the standard deviation, see figure 4b) reduces the convexity of the moment

function, and this will reduce the bias in the estimates. To define the convexity and to
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compute the reduction of it after the transformation, a convexity measure is defined. The

aim is only to check whether the transformation did actually reduce the non linearity of the

moment function.

A function is convex on an interval if for any x and y in the interval and for any λ ∈ [0, 1]:

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y) (17)

For a concave function the inequality is reversed10. Supposing that the chosen interval

is [x1, x2], a convexity index can be defined as the ratio between the area below the straight

line joining f(x1) and f(x2) (denoting it g(x)) and the area below the function f(x) in the

in the interval [x1, x2]. If f(x) is discrete (as the moment function), the convexity index can

be computed as:

I =

∑x2

x1
g(x)∑x2

x1
f(x)

(18)

Given the definition in equation 17, the index is I < 1 if the function is strictly convex,

I > 1 if the function is strictly concave and I = 1 if the function is linear. Since the average

moment for every parameter is a random variable, to rule out the linearity it is possible to use

the non-parametric fitness test used in Chapter 2 (Grazzini 2012, Wald & Wolfowitz 1940,

Gibbons 1985). The null hypothesis is that the moment function is randomly distributed

around the straight line, i.e. that I 6= 1 is random. If the null is rejected than it is possible

to consider the I < 1 or I > 1 as a systematic deviation that denotes the shape of the

moment function.

In figure 5 the moment function is shown in the interval β ∈ [0.05, 1.0] for variance and

standard deviation. The index is I = 1.615 for the variance and I = 1.106 for standard

deviation. Both moment functions are convex but with a significant reduction using the

standard deviation. As it will be seen in the next section the concave transformation allows

to reduce the bias by a significant amount. The magnitude of the bias depends on the local

behavior of the moment function in the neighborhood of the true parameter, where the

actual definition of ”neighborhood” depends on the variance of the observed moment. In a

realistic setting the real parameter is unknown, the sensitivity analysis on the moments is

crucial for understanding the results. Once an estimate of the parameter is available it is

possible to try to understand the local properties in the neighborhood of the estimate.

10Another method to check for the concavity, convexity or linearity of the moment function is to compute the
numerical second difference (second derivative).
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(a) Variance (b) Standard deviation

Figure 5: The properties of the estimates depend on the behavior of the moment function in the neighborhood of
the moment function. On the left the behavior of the variance in the interval β ∈ [0.05, 1.0] and the straight line
joining the 0.05 and 1.0. On the right the behavior of the standard deviation in the same interval. The function
is consistently below the straight line denoting convexity.

4.3 Tests

The stationarity test and the ergodicity test are fundamental to have a better understanding

of the model and to make a statistical statement about the behavior of the moments chosen

for the objective function. It possible for example to test the stationarity and ergodicity of

the mean of the model to know whether the model has an equilibrium price (stationarity) and

whether it is unique (given the value of the parameters) using the ergodicity test Grazzini

(2012). During the estimation procedure it is crucial to know whether the moment chosen

to estimate the model are ergodic and stationary. The parameter to be estimated is one,

therefore there is the need for at least one moment. The sensitivity analysis made in section

4.1 has shown that among the tested moments only the variance is discriminating between

different values of the parameters. The test will therefore be carried out on the variance to

understand whether it is stationary and ergodic, thus if it possible to use the variance to

obtain consistent estimates. The tests are described in (Grazzini 2012) and are essentially

an application of the Wald-Wolfowitz non-parametric runs test to test whether the moments

are constant in time for stationarity and constant between different runs of the same process

for ergodicity. The aim is to test whether the observed moment is a good estimator of the

true moment characterizing the model.

The stationarity test tests whether the given moment is constant in time, the test has

been done on the variance, but given the nature of the tests the results can be extended

also to the standard deviation. Suppose that a time series with n observations has been
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created from the stock market model and that observations from transaction 200 have been

selected to eliminate the convergence part of the series. The first stationarity test to be

done is on the first moment. The time series is divided in w windows, on each windows

the first moment is computed. If the time series is stationary in the first moment then

the overall mean is a good estimator of the series of windows’ first moments. The test

is made using the Wald-Wolfowitz non-parametric test that tests whether a given set of

observations (the windows moments) are randomly distributed around the fitness function

(in this case the overall mean). If the process is strictly stationary then the test cannot reject

the stationarity null-hypothesis even if each window have just one observation (if the process

is strictly stationary then each observation comes exactly from the same distribution). If

the process is not strictly stationary (but still stationary), the windows need to be longer

to have a good estimate of the windows moments. The test thus gives also an indication of

the type of stationarity. In order to carry out a powerful test the number of windows should

be higher than 50 (Grazzini 2012). In the artificial stock market model, the time series are

stationary for all possible values of the parameters, but not strictly stationary; this is due

to the presence of learning by using the last transaction price. The test has to be done for

each value of the parameters since the agent-based model might change its properties when

the value of the parameters change. In the case in which the number of parameters is high

and/or the parameters have too many possible values, the same test can be done using the

estimated value of the parameters and possibly in the neighborhood of it.

The test on the mean is useful to understand the model but not for the estimation pro-

cedure, since the moment used in the objective function is the variance 11. The stationarity

test for the variance is done exactly in the same way. Using a type I error α = 0.05, the

results for all possible values of β are shown in figure 6a. The test is not rejecting the null

hypothesis of stationarity. The results were obtained using a time series produced with 3500

trading days (eliminating the first 200 transactions), 55 windows with 400 observations each.

The fact that the stationarity test was not rejected using 400 observations tells us that 400

observations are actually enough to compute a good estimation of the true moment. If the

observed time series has more than 400 observations it is possible to use it for estimation.

The non-parametric test is complementary to the parametric stationarity test Augmented

Dickey Fuller. The idea of the non-parametric test is to acknowledge the fact that the un-

derstanding of the model is limited due to its complexity. The non-parametric tests have

lower power than parametric tests and are therefore difficult to use on the observed time

series (that are usually not long enough to ensure full power) and the test is therefore carried

11Since the variance estimator is biased for non strictly stationary series, the overall moment has be computed
as the mean of the windows moments for theoretical consistency. The result in the particular case analyzed was
the same.
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(a) Stationarity test results (b) Ergodicity test results

Figure 6: Stationarity and Ergodicity test for the variance. The test was made on every possible value of β. The
dashed line is the theoretical rejection probability (α = 0.05). The results are showed as percentage of rejected
null hypothesis over 100 experiments.

out on artificial data. The aim is to increase the knowledge about the model, and at the

same time, supposing that the model is well specified, the knowledge about the real system.

The stationarity test is needed to test whether the process shows the same behavior

within the series, while the ergodicity test is done to test whether the model shows the same

behavior between different series. Given different initial condition and the same parameters,

the ergodicity property implies that the time series do not change their properties depending

on the initial condition. Taking for example the ergodicity test on the mean, the test tells

whether it is possible to reject the null hypothesis that the time series converge always to

the same average transaction price, regardless the of initial conditions. The stock market

under examination is ergodic in the mean. Ergodicity is thus important to understand

the equilibrium properties of the model (whether, given the parameters, the equilibrium is

unique) and, like the stationarity test, it is fundamental to understand the behavior of the

moment used to estimate, thus to understand the basic properties of the estimate. The

results of the ergodicity test in variance are shown in figure 6b; the test is not rejecting the

null hypothesis of ergodicity. For details about the tests see Grazzini (2012).

The tests performed on the moment used for estimation is needed to understand the

properties of the resulting estimates. If the moment is stationary and ergodic and if the

moment is able to identify the parameters then the estimates are consistent; by increasing

the number of observations the variance of the simulated moment estimator will decrease.

This is the consequence of the ergodic theorem, if a process is stationary and ergodic and if

its moments exist then the sample moments will converge toward the true moments as the
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observations increase.

The preliminary tests in this section and in section 4.2 have shown that biased and

consistent estimates have to be expected from the simulation based estimator. The bias

might be a problem, but it has been argued that it is possible to reduce it. Moreover the

direction of the bias is known despite the limited analytical knowledge available about the

model. In the next section these results are confirmed using the model described in section

2 by estimating the behavioral parameter. The Monte Carlo experiments will show that

the bias can be reduced using an appropriate transformation of the moment and that the

estimates are consistent.

5 Estimates

Given the analysis made in the previous section on the properties of the model it is possible

to start the estimation. The estimation will be done as a Monte Carlo experiment to check

the properties of the estimates. The simulated moments are computed using the results of

the sensitivity analysis. To check the performance of the estimation method a set of runs

of the model with β = 0.55 will be used as ”pseudo-real” observations. For every run,

the estimation method will produce an estimate of the behavioral parameter. Using the

Monte Carlo experiments it is possible to asses the expected value of the estimator and its

variance. The aim is to show that the estimation of the micromotives of a system using the

macrobehavior of the system is possible, that the estimates are consistent and that using the

information about the model it is possible also to build non-parametric confidence interval

for the estimated parameters.

A crucial technical point is how to minimize the objective function. The objective func-

tion is defined in equation 7, the vector of moments is composed by only one moment and

the weighting matrix is simply equal to 1. The lack of an analytical form for the condi-

tional theoretical moment impedes an analytical minimization. One alternative is to use a

genetic algorithm, which is efficient and simple to understand. The genetic algorithm was

introduced by Holland (1975) and has been widely used in economics in Axelrod (1987),

Arifovic et al. (1997), Arifovic (1995), Vriend (2000) as a learning algorithm and in Grazzini

(2011) as an optimization heuristic. For details about genetic algorithms see Holland (1975),

Goldberg & Holland (1988), Gilber & Troitzsch (2005). Another option is described in Gilli

& Winker (2003), who use a combination of the Nelder-Mead simplex direct search method

and the threshold accepting optimization heuristic. The advantage of using an optimization

heuristic is that it does not need strong hypotheses about the optimization problem, apart

from the assumption that a global minimum actually exists and helps in saving computation
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(a) Objective function with variance (b) Objective function with standard deviation

Figure 7: Brute force minimization allows to draw the objective function. In panel (a) the objective function
using the variance. In panel (b) the objective function using the standard deviation. Both objective functions
are drawn using the same observed moment.

time. On the other side heuristics cannot produce high-quality solutions with certainty (Gilli

& Winker 2008).In the following the brute force approach is used in order to obtain a good

evaluation of the estimation procedure. The brute force method simply means to compute

the simulated moments for any possible value of the parameters (note that the parameters

are discrete by definition in a computer) and then select the parameters that minimize the

defined distance between observed and simulated moments. The (not small) disadvantage

is that the computational time increases with the increase of the number of parameters (all

the combinations are needed) and with the resolution of the parameter. The advantage is

that the objective function can be drawn since its value is known for any combination of the

parameters. This is useful in order to avoid local minima, check for uniqueness of the global

minimum and to be certain that the selected values for the parameters actually globally

minimize the objective function. When the computational time is reasonable, the brute

force is the best minimization method. In figure 7 examples of an objective function drawn

using the variance (on the left) and the standard deviation (on the right) using a random run

of the model with β = 0.55 and using as simulated moments the average moments computed

during the sensitivity analysis.

The base assumption, which makes the estimation meaningful, is that the model is well-

specified. During the following experiments this assumption will be true by construction

since a run of the model is used to produce the pseudo-real observations. Once the hypothesis

of well specification is satisfied, the analysis in the previous sections allows an interpretation

of the results as consistent and possibly unbiased estimations. The pseudo real parameter
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used is β = 0.55, the experiments show the behavior of a set of estimates. Given the

sensitivity analysis the simulated moments can be computed. The Monte Carlo experiments

consist in creating a number of time series using the model and the pseudo-real parameter,

computing the pseudo-real moment chosen in the objective function, and estimating the

parameter by choosing the value that minimizes the objective function. Since the parameter

is known it is possible to analyze the properties of the method, weaknesses and strengths.

Figure 8b shows the result of the Monte Carlo experiments with a pseudo real time series

of 200 days (the number of observations is about 1000 transactions). The transformation

of the moment discussed in the previous section actually reduces the bias. The average

value of 4000 estimations is 0.5455 (the variance of the estimates is 0.00291) using the

variance in the objective function, and 0.5485 (the variance is 0.00292) using the standard

deviation. The difference between the estimations using the different moment is entirely due

to the different objective function. In each experiment the same time series is used both

to estimate the parameter with the variance and with the standard deviation, therefore the

difference between the results has no noise. In figure 8a the empirical distribution of the

estimates using the standard deviation is shown. The mode of the distribution corresponds

to the ”pseudo-real” parameter, the distribution is slightly skewed to the left. The empirical

distribution can be used to build a confidence interval that exclude the 5% tail-observations

without the need to know the exact distribution of the estimates. With 4000 estimates the

confidence interval is built by excluding 100 observations on the left and 100 observations

on the right leaving βint = [0.45, 0.65]. In this particular case the true parameter is known

and the Monte Carlo experiments are performed by using the true parameter to generate

the observed data. In a realistic setting it is possible to estimate the parameter of interest

and build the empirical distribution by performing the estimation Monte Carlo running the

model with the estimated parameter.

The consistency of the estimator can be seen from figure 9, where the Monte Carlo

experiments have been performed using a pseudo-real time series with 1000 trading days,

which in the model correspond to about 6000 transactions. The average estimation over 3000

estimates is 0.5481 (the variance is 0.00067) using the variance in the objective function,

and 0.5492 (0.00066) using the standard deviation in the objective function. The bias is

reduced both by transforming the moments reducing the convexity and by increasing the

number of observations. The estimates are consistent, by observing longer time series it is

possible to estimate the observed moment with smaller noise, thus reducing the variance of

the estimates. The empirical distribution of the estimates is shown in figure 9a
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(a) Empirical distribution of the estimates (b) Cumulative mean of the estimates

Figure 8: The estimation properties with 200 observed trading days. In figure (a) the empirical distribution
of 4000 estimations exercise, the true parameter is β = 0.55. In figure (b) the cumulative mean after each
experiment is shown. The average estimated value converges quickly toward its mean. The estimates are biased.

(a) Empirical distribution of the estimates (b) Cumulative mean of the estimates

Figure 9: The estimation properties with 1000 observed trading days. In figure (a) the empirical distribution
of 3000 estimations exercise, the true parameter is β = 0.55. In figure (b) the cumulative mean after each
experiment is shown. The average estimated value converges quickly toward its mean. The estimates have a
smaller bias and variance.
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6 Conclusions

The paper shows that provided that a set of properties are satisfied by the model (and in

turn by the real system supposing well specification) it is possible to consistently estimate

parameters at the micro level of the system using the information from the macro-behavior.

Agent-based models are built imposing a set of behavioral hypotheses on the agents and

a set of institutional hypotheses that govern the way the agents interact. Given such a

structure by running the model it is possible to observe how the system behaves and how

the emergent properties emerge. The crucial point is that given the series of tests it is known

whether the estimates are consistent, biased and even the direction of the bias. Agent-based

models are used to relax at least some of the many hypotheses needed to build analytically

solvable models, allowing for more realistic models. Unfortunately more realistic models

often share with reality non-ergodic (and/or non stationary) behaviors. This would impede

the estimation of the model, not due to a flaw in the model itself but to the ontology of the

system under analysis. Even in such a case it might be useful to bring the model to the

data using the method of simulated moments as a calibration method. The minimization

of an objective function is always possible, the tests are important in order to obtain a

correct interpretation of the resulting parameters and of the model itself. In this paper

the method of simulated moments has been investigated. One interesting alternative is the

Indirect Inference method (Gourieroux & Monfort 1996), especially in the view of comparing

computational models with analytical models. Supposing that a model reasonably explains

the real system, it is possible to define a meta-model and estimate the meta model using

both the artificial data and the real data 12. The results of the estimation of the meta model

on the artificial data will depend on some structural parameters in the computational model.

By minimizing the distance between the meta model estimates on artificial and observed

data by systematically change the structural parameters in the computational model, it

is possible to have consistent estimates of the structural parameters. The meta model is

not well specified by definition, and the efficiency depends on the chosen meta model; the

method of the simulated moment was therefore chosen in this paper. The indirect inference

method can be very useful when a data set is not available (e.g for propriety reasons), but

other studies using that data set are available in the literature. It is possible to use the model

estimated in the literature as a meta model and try to estimate the computational model

using indirect inference. This method can be very useful also to compare the computational

model with other analytical models and to create stronger links with the literature.

For future research it is essential to keep extending tests, methods and theories from

12To be clear: it is possible to use the same (for example) linear model both on the artificial data and on the
observed data.
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the vast econometric literature to computational econometrics. The empirical foundation

of agent-based models is an important step for building new and more complex/ realistic

models. The econometric literature is an immense source of ideas that can be carefully

adapted to the new more complex environment.
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