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Abstract 

This article provides an empirical assessment of the effect of immigrant concentration on student 

learning in Italian primary and lower secondary schools, using the data of a standardized learning 

assessment administered in 2010 to the entire student population of selected grades at the national 

level. Identification is accomplished by exploiting the within-school random variability observed in 

the share of immigrant students across classes. I estimate peer effects allowing for heterogeneous 

effects between native and immigrant background children, and among natives, between children of 

different socio-economic status. The main finding is that the proportion of immigrant students has a 

weak effect on child learning outcomes, and that this effect is somewhat larger for children from 

disadvantaged backgrounds (immigrants and low socio-economic status).   
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1. Introduction  

The rapid growth of immigrant flows which has occurred over the last decade in Italy, much like in 

other European countries, has sparked a growing concern within large sectors of the public opinion 

over the assimilability of newcomers and the demographic and cultural transformations of the 

Italian society. A key element of the integration process is the educational system, which is now 

confronted with the challenge of the inclusion of numerous immigrant children of diverse origins. 

Overall, at the national level, the share of students from an immigrant background in primary and 

lower secondary school has increased from 3 to 9% in ten years (with peaks of 20% in some 

Northern cities). This growth has contributed to raise the fear that immigrant students are 

detrimental to the learning opportunities of native children. However, whether this is true or not, is 

still an open empirical question. 

Evidence of large performance gaps between native and immigrant students is provided by 

OECD (2006), Schnepf (2007) and Dustmann et al. (2011). Many reasons may be lying behind this 

disadvantage: the lower socio-economic background of immigrants, language problems, cultural 

factors, the features of origin and host countries’ educational systems (de Heus and Dronkers 2010). 

There is a considerable cross-country heterogeneity in the magnitude of these gaps: in traditional 

immigration countries like USA, Australia and Canada immigrant children perform much better 

relative to natives as compared to most European countries, where immigration is a recent 

phenomenon. Major differences are also observed within Europe, as in English-speaking countries 

the disadvantage is much smaller. Not surprisingly, native-immigrant differentials are attenuated 

once conditioning on parental background, but in most countries gaps do not disappear.  

Understanding how peer effects function is crucial to analyzing a variety of educational 

policies (Hoxby, 2006). The existing literature mainly focuses on socio-economic status, gender and 

ethnic differences, while little effort has been directed to the estimation of peer effects related to 

immigrant background. Findings from previous studies on ethnic composition of schools may not 

be relevant for the more recent immigrants. On the one hand, new immigrants have higher 

motivations and aspirations than ethnic minorities (Ogbu, 1991; Portes and Rumbaut, 2001); on the 

other hand, they have to adapt to a new (often hostile) environment, facing a new language, new 

social networks, different working conditions and living arrangements. The sociological literature 

offers a number of papers on selected European countries and different levels of schooling: Fekjaer 

and Birkelund (2007) on Norwegian upper secondary education, Cebolla-Boado (2007) on French 

lower secondary school, Cebolla-Boado and Medina (2011) on Spanish primary education, 

Brannstrom (2008) on Swedish upper secondary education. Lugo (2011), instead, focuses on 
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primary and secondary school in Argentina. Overall, they all report small negative peer effects 

related to immigrant background and substantive social background effects. Exploiting aggregate 

data at the country level, Brunello and Rocco (2011) use international PISA data to analyse how 

immigrant pupils affect the school performance of natives, finding evidence of small but significant 

negative effects, increasing with the level of segregation of immigrants.  

In this paper I provide an empirical assessment of the impact of immigrant concentration on 

student learning in Italian primary and lower secondary education. To date, there are no such 

studies on Italy. I contribute to the existing literature by investigating peer effects on a very recent 

immigration country, where the majority of immigrant children are born abroad and there is no  

institutionalized body of policies aimed at their integration. I estimate peer effects allowing for 

heterogeneous effects of immigrant concentration between native and immigrant background 

children, and among natives, between children of different socio-economic status.  

I assume that peer effects act at the class level. The main empirical issue is self-selection into 

schools, which makes the proportion of immigrant students highly endogenous. Schools with a high 

share of immigrant students often host low socio-economic status native children; for this reason I 

include social origin, native students’ repetitions and gender class composition variables as controls. 

Most importantly, if children from advantaged backgrounds, having higher aspirations and better 

access to information, choose better schools and/or school attendance rules select students with 

respect to ability related factors, the impact of class composition can be easily confounded with 

school-specific unobservable effects, leading to biased estimates of peer effects. However, if 

children are randomly assigned to classes, it is possible to exploit the within-school random 

variability observed between classes in the peer variables (Ammermueller, Pischke; 2009). Under 

class random assignment, school fixed-effect models provide consistent estimates of the causal 

effects of class composition.  

I use the data of the standardized learning assessment administered in 2010 by the Italian 

National Evaluation Institute (INVALSI) to the entire student population of 5
th

 (end of primary 

school) and 6
th

 graders (lower secondary school). Although the assumption of random allocation of 

students into classes with respect to immigrant background is rejected at the system-level, when 

performing school level χ2
 tests, random assignment is rejected only for a minority of institutions. 

Schools not passing this test are discarded.  

In the main body of the paper I follow the common practice of estimating the impact of class 

composition effects without trying to separate the effects due to peer achievement from other effects 

related to peer characteristics. As demonstrated by Manski (1993), disentangling them is a very 

difficult task. Moreover, since both effects are due to social interaction, it is their joint action that is 
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of interest for public policy (Moffitt, 2001). In the last section however, building on the idea 

developed by Hoxby (2000) to exploit multiple peer variables, I attempt to investigate the different 

channels by which peer effects operate.      

The paper is structured as follows. In Section 2 I presents the model and the identification 

issues, review and discuss empirical strategies employed in the literature. Section 3 is dedicated to a 

brief description of the Italian schooling system and of the data. Sections 4 and 5 provide 

background descriptive evidence on the concentration of immigrant children in schools and 

achievement gaps. Section 6 is devoted to the empirical issue of random class allocation of 

immigrant children. Section 7 turns to the analysis of data and to the presentation of the results. 

Conclusions follow. 

2. Theoretical background 

2.1 Structural and reduced form model 

Since learning in schools takes place in a group setting, the composition of the group may affect 

individual outcomes. First, achievement effects could operate. Students performing poorly might 

influence others’ learning because teachers adjust performance targets and keep the level of the 

instruction low. Individuals’ achievement could also be directly influenced by the achievement of 

peers: good students may contribute to establish positive competition, while low motivated children 

may negatively influence others, to the detriment of everybody’s learning. Children with an 

immigrant background are on average lower performing than native students: peer achievement 

effects operate if they affect the learning of natives (and possibly that of other immigrants) because 

they perform more poorly.  

Second, learning could be affected by predetermined characteristics of peers. If children from 

disadvantaged backgrounds receive lower family support as compared to better off children, they 

may develop negative feelings about schooling, influencing the overall class climate; on the other 

hand, if recently arrived immigrant families have high aspirations for their children’s future, their 

presence may even be beneficial. In this sense, we could regard parental socio-economic, ethnic and 

immigrant background composition of classmates as possible proxies for attitudes and behavioral 

patterns influencing learning that are not captured by performance scores (Hanushek et al. 2003). 

Assume that peer effects act at the class level. Since individuals are nested into classes and 

classes are nested into schools, the typical theoretical model for individual achievement is: 

 ���� = � + ��	
����� + 
��
����� + ����� + �� + ��� + ����                                                          (1) 
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where z denotes individual characteristics. Subscript i represents the individual, c the class and s the 

school, �	
����� denotes class average achievement and ��
����� class average characteristics, all taken 

excluding individual i. The error term includes a component ���� capturing individual shocks and 

components representing unobservables at the class and school levels. Unobserved school-specific 

effects µs are related to organizational features, effectiveness of the principal, school resources. 

Class-specific effects µcs capture class teachers’ quality.  

In the language of the seminal work of Manski (1993), the influence of peer achievement β is 

the endogenous effect; the influence of peer characteristics 
  are exogenous effects; the effect of 

being exposed to the same environment, captured by µs and µcs, are correlated effects. These 

mechanisms are depicted in Figure 1.  

 

Figure 1. The structural model 
 

                                 

                                                                    

                         
 

                                    

                                                                                       

                                                                                         

                                

                                                                              

 

 

Τhe effect of peer achievement is endogenous because peer achievement influences the 

achievement of individual i, but is itself influenced by i’s achievement. The existence of feedback 

effects implies that a change in individual achievement generates a social multiplier, thereby group 

average achievement changes by a larger amount than that corresponding to the original change. 

Due to this simultaneity that cannot be solved in standard ways (the “reflection problem”), unless 

strong restrictions are posited, model (1) is unidentified (Manski, 1993). Thus, disentangling 

endogenous and exogenous effects is very difficult: however, their joint effect still retains an 

intrinsic interest because they are both induced by social interaction. Correlated effects, on the other 

hand, are spurious. In this perspective, empirical work is often based on “reduced form models”, 

where peer characteristics – but not peer achievement – are included as explanatory variables:  

���� = � + �∗���� + 
∗��
����� + �� + ��� + ����                                              (2) 
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others 
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The parameter of interest is 
∗, which measures class composition effects and captures both 

endogenous and exogenous effects.
1
 Richer versions of the model would include available school 

characteristics. 

2.2 Multilevel modeling  

Multilevel analyses are recommended for models that aim at exploring how micro-level variables 

are affected by micro-level and macro-level variables (Goldstein, 1997; Snijders and Bosker, 1999). 

Allowing to handle explanatory variables at the student, class and school levels, they are now 

widely employed in educational research. The effect of immigrant concentration in schools has been 

the object of a number of recent papers from the sociological literature using multilevel models 

(Fekjaer, Birkelund, 2007; Brannstrom, 2008; Cebolla-Boado, Medina, 2011). However, multilevel 

models by themselves do not address the main empirical problem in the estimation of the effect of 

school characteristics, including peer effects: how children are allocated to schools. 

The error term in model (2) has a school-specific component, a class-specific component and 

an individual component. This complex structure implies that errors of children in the same class or 

school are not completely independent. Standard statistical tests leaning on the assumption of 

independence lead to the underestimation of standard errors; as a consequence many significant 

results are spurious. Multilevel models tackle this problem by allowing multiple error components 

embedded in a hierarchical structure. However, these models assume that each component is 

uncorrelated to explanatory variables. But when the allocation of children to schools and classes is 

not random they yield – just like OLS – to biased estimates. Let us discuss the issue of school 

allocation (which is more severe), postponing that of class assignment for a later section.  

Allocation of children to schools is hardly ever random. In some countries children are 

required to enroll into the school of the area of residence; in others there is freedom of choice. In the 

former case, neighborhoods generally differ with respect to residents’ social background, immigrant 

status and so on. If parents are allowed to choose their offspring’s school, other effects may add on. 

Children of the most advantaged backgrounds, having higher aspirations, might favor institutions 

that ensure better peers (natives, high socio-economic status), and having access to more 

information, might select higher quality institutions. Hence, school choices are driven by families’ 

                                                           
1
 Some technical and rather tedious issues regarding the derivation of the reduced form (2) from the structural model (1) 

which are apparently neglected in the literature, are discussed in the Appendix. I will make the following points: a) 
∗ 

and �∗ are function of class size, so the reduced form (2) is only an approximation of true reduced form if classes have 

different numerosity; b) a given structural model yields to different reduced form parameters 
∗ and �∗ depending on 

the number of children in the class; c) reduced form coefficients 
∗ and �∗ are function of all structural coefficients: 


∗captures exogenous and endogenous peer effects, but its magnitude depends also on individual effects;  �∗ also differs 

from the corresponding structural parameter and if endogenous effects are large, the difference between �∗ and τ can be 

substantial.        
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observable features (socio-economic status, native or immigrant background) and by unobservable 

factors (aspirations, attitudes towards immigrants, child innate ability). In addition, especially in 

those countries with a well developed private sector, school boards may sort students by applying 

enrolment fees and setting ability related attendance rules. 

Multilevel estimation of (2) yields to consistent estimates of peer effects if only features that 

are observed by the analyst drive the selection process (i.e. only observed characteristics of children 

and observed characteristics of schools matter). The following conditions must hold:  

(a) There is no relation between the unobserved components of school quality and 

observable features of the student-body (µs is independent of z and ��)  

This condition applies if, regardless of their background, families have no information on school 

quality or if preferences for school quality do not vary with family background. Note that even if 

researchers had access to data on organizational aspects of schools, they would generally have no 

information on teacher quality; instead, this information is usually available to (well informed) 

parents. Information on school quality is likely to matter even with no freedom of school choice, 

because families choose the neighborhood to live. Another restriction is that high quality teachers 

and resources should have no incentive to move towards schools attended by more advantaged (or 

disadvantaged) children.  

(b) Parents of high innate ability children have the same preferences for peer 

characteristics of parents of low innate ability children (ε independent of ��)  

If high social origin parents might prefer peers with similar family background no matter how their 

children perform, disadvantaged origin parents of high innate ability children may be more selective 

that those of low innate ability: if this is the case, the assumption is not valid. 

Summing up, multilevel models tackle the issue of correlated errors (which lead to biased 

estimates of standard errors), but assuming that school-quality is exogenous, do not help solving the 

school-selection problem, which leads to biased estimates of peer effects and of the coefficients of 

the other explanatory variables.  

2.3 Accounting for school endogeneity 

If children are not randomly allocated to schools, school (and class) characteristics – including the 

characteristics of peers – cannot be considered exogenous. In the peer effects literature, Rangvid 

(2007) assumes that only observables enter the selection process and includes several individual and 

school variables, while Cebolla-Boado (2007) employs instrumental variables estimation. To 

remove school selection issues, Brunello, Rocco (2011) exploit PISA data aggregated at the country 
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level: since immigrants sort across countries and the more developed countries usually host a higher 

share, they control for between-country immigration flows by conditioning on country fixed effects 

and on the stock of immigrants in a given country at a given time. Schneeweis, Winter-Ebmer 

(2005) examining Austrian upper secondary school students, argue that self-selection is mainly 

driven by the segregation of students in different school-types and employ a school-type fixed 

effects model.  

Other scholars attempt to render school composition an exogenous effect with different 

identification strategies. Hoxby (2000) controls for selection by exploiting idiosyncratic within-

school variation in peer characteristics between adjacent cohorts in given grades. Ammermueller, 

Pischke (2009) and Lugo (2011) rely instead on differences in the compositions of individual 

classes within a school. Gould et al. (2009) and Black et al. (2010) investigate long-term effects of 

school peers. Gould et al. (2009) focus on the immigrant concentration in grade 5 on later 

educational outcomes in Israel, and account for the endogenous sorting of immigrants across 

schools by exploiting random variation in the number of immigrants in grade 5, conditional on the 

total number of immigrants in grades 4-6. Black et al. (2010) study post-school and labor-market 

outcomes, exploiting random variation in cohort composition within schools. Their analyses are not 

affected by simultaneity issues because the dependent variables are later outcomes and not 

contemporaneous performance, allowing a clear-cut identification of peer achievement effects.       

Hanushek et al. (2003) use panel data to estimate peer effects on test score gains over time 

using student and school-by-grade fixed effects in a value-added specification. Identification is 

achieved by exploiting the fact that students move from one school to another. They aim to control 

for endogenous school selection, but also to account for omitted past school and family inputs, 

which, if neglected, are likely to lead to upward biased estimates of peer effects. The analyses also 

address the reflection problem, by using past performance as the measure of peer achievement.  

In this paper I follow the identification strategy suggested by Ammermueller and Pischke 

(2009). If children are randomly assigned to classes, it is possible to exploit the within-school 

random variability observed across classes in the peer characteristics variables.
2
 Within-school 

differences are given by: 

 ���� − �	� = �∗
���� − ���� + 
∗���
����� − ���� + ���� − ����
��� + ����� − �����
���                             (3) 

Model (3) has the advantage that (observed and unobserved) school variables are removed, 

overcoming the issue of school-selection. Random assignment ensures that class-specific effects are 

                                                           
2
 I can estimate school fixed-effect models because, with the exception of few very small schools, the majority of 

institutions host multiple classes per grade. Note that from this perspective this paper relies on better data than 

Ammermueller, Pischke (2009) who use PIRLS, where one, maximum two classes per school are sampled. Since only 

schools with at least two classes are needed to estimate model (3), this significantly limits their sample size. 
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independent of the characteristics of children and their families. Moreover, this assumption ensures 

that also the individual error component is independent of peer characteristics, in that even if school 

choices were related to innate ability, class assignment is not. Unfortunately, as described in section 

5, I reject the assumption that random assignment is applied at the system-level, i.e. by all schools. 

However, when carrying out school-level tests, the random assignment hypothesis with respect to 

immigrant background is accepted for the majority of the institutions; for this reason the analyses 

are carried out on this subset of schools (see section 6 for a discussion on this strategy).  

The class-specific error term is assumed to be a random effect, normally distributed and 

independent of individual error terms. I also include peer effect related to other variables and allow 

for heterogeneous immigrant origin peer effects across children of different backgrounds: 

immigrant or natives and of different socio-economic status.  

3. Italian school system and data 

3.1 The school system  

Formal education starts at age 6. Children follow eight years of comprehensive schooling, divided in 

two cycles: five years of primary education and three years of lower secondary education. Excluding 

grade failures and a limited mobility of children across schools, children remain with the same 

classmates and often with the same teachers for each entire cycle. In primary school one to three main 

teachers are usually in charge of the class. More teachers are involved in lower secondary education. 

Lower secondary school ends with a nationally-based examination at age 14, after which students 

choose between a variety of upper secondary educational programs, broadly classified into 

academic, technical and vocational tracks. There are no ability-related admission restrictions. 

Education is compulsory up to age 16.  

The Italian schooling system is mainly public: in primary and lower secondary school, private 

institutions host only about 7 and 4% of the student body respectively (MIUR, 2008). There is 

freedom of school choice; children have the right to attend the neighbourhood’s public school, but 

they may also apply to a different public or private institution. Admission in public schools is 

normally conditional on the availability of places, and ability restrictions are uncommon, even in 

private institutions. In practice, the majority of students attend their neighborhood public school; 

due to urban segregation, schools located in disadvantaged areas mainly recruit students from the 

lowest family backgrounds, thereby the ethnic and socio-economic composition varies considerably 

across schools. Classes are formed by school-boards; there are broad national recommendations to 

ensure within class heterogeneity with respect to students’ characteristics and to distribute 

disadvantaged children evenly across classes, but these recommendations are not binding.   
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The Italian educational system is inclusive: immigrant students are always placed in regular 

classes (and not in special classes, as occurs in some countries). However, first generation 

immigrants are frequently held back to the previous grade, and repetitions are much more common 

among immigrants that among natives. Italy lacks of an institutionalized body of policies aimed at 

the integration of migrant background children. Interventions – tackling the reduction of 

achievement gaps between native and immigrant children, programs of language support addressed to 

first generation immigrants, training for second language teaching, measures promoting parental and 

community involvement in schools – are fragmented, and conducted on a voluntary basis by 

schools and teachers searching for private or local government funds. Notwithstanding the lack of 

active interventions designed at the national level, the Migrant Integration Policy Index
3
 for 

education for Italy is considered “halfway favorable”, and ranks near the European average. 

3.2 Immigrant population  

Italy has witnessed a sharp rise of the number of immigrants over the last decade. About 2.7% in 

2002, at the end of 2010 immigrants represented 7.5% of the resident population. The large majority 

of them (87%) lives in the North and in the Centre, and the main countries of origin are Romania, 

Albania, Morocco, China and Philippines. Despite this increasing trend, the share of immigrant 

background people is still considerably lower than that of Central European and Anglo-Saxon 

countries, which have a longer history of immigration. Immigrants living in Italy are on average 

less qualified than in the rest of Europe; however, their formal educational level is similar to that of 

natives (Dustmann et al, 2011).
4
 In the same period, the share of immigrant background children 

has also more than tripled, reaching in 2010 8.7% in primary school, 8.5% in lower secondary 

education and 5.3% in upper secondary education. The lower share of students in upper secondary 

school is one of the indicators of their relative disadvantage: drop-out and non-continuation rates 

among immigrants are much higher than among natives, and a much larger percentage of children 

entering upper secondary education opt for academically less demanding vocational schools.    

3.3 Data 

The survey Indagine sugli Apprendimenti is a standardized learning assessment conducted by the 

National Evaluation Institute (INVALSI) on children attending 2
nd

, 5
th

 and 6
th

 grade.
5
 For the first 

time in 2010 the assessment was administered to the entire populations of children, consisting of 

                                                           
3
  www.mipex.eu, produced by the British Council and the Migration Policy Group. 

4
 Italy is a country with a very low share of individual with tertiary education. 

5
 A standardized assessment is administered also to eighth grade students, as part of the final lower secondary  

examination. However, family background information is not collected, so these data cannot be exploited to estimate 

peer effects.     
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approximately 500.000 individuals per grade. Tests cover the domains of Italian (reading 

comprehension, knowledge of the language, grammar) and math, and have been designed following 

the experience of international assessments. Similarly to TIMSS and PISA, INVALSI submits to  

5
th

 and 6
th

 grade students a questionnaire recording information on living customs, main activities 

and time use, attitudes towards school and learning, persons living with the child, home 

possessions. School administrations provide information on parental background characteristics 

(migrant background, working condition, educational level). School teachers are normally in charge 

of test administration. However, in order to keep cheating behavior under control, a random sample 

of classes (consisting of about 30,000 students) have taken the tests under the supervision of 

personnel external to the school. These results represent a benchmark to evaluate and correct 

potential bias in performance scores. Scores are measured by the proportion of correct answers, 

hence they vary between 0 and 1.
6
 In line with many other papers in the research field, I use the 

number of books as a measure of socio-economic status (SES). This information is recorded in the 

student questionnaire, which is not submitted to children attending 2
nd

 grade; for this reason, in this 

paper I focus on 5
th

 and 6
th

 grade. 

4. Immigrant children in schools 

Table 1 reports the percentages of first and second generation immigrants in 5
th

 and 6
th

 grades, 

according to the INVALSI survey data. The country average share is 9-10%, although immigrants 

are mainly concentrated in the North and Centre, where they represent 11-15% of the student 

population, more than half of which are of first generation.
7
 

Table 1. Student migrant background, by macro-area.  

 5
TH

 GRADE  

(PRIMARY SCHOOL) 

6
TH

 GRADE  

(LOWER SECONDARY SCHOOL) 

AREA Natives Mig 2° Mig 1° Mis Natives Mig 2° Mig 1° Mis 

North_West 86.8 5.9 7.3 1.5 85.6 5.1 9.3 1.1 

North_East 86.2 5.9 7.9 1.4 84.6 5.3 10.1 1.2 

Centre 88.8 4.7 6.5 2.2 87.5 4.2 8.3 1.7 

South 97.0 1.4 1.6 2.7 96.7 1.3 2.0 1.9 

Islands 96.7 1.6 1.7 3.4 96.3 1.6 2.1 2.8 

Total 91.0 4.0 5.0 2.2 90.0 3.5 6.5 1.7 

* The “Mis” column refers to students who have taken the tests, but whose migrant status is not available.  

                                                           
6
 INVALSI also supplies performance scores computed with Rash analysis, thereby taking into consideration the 

difficulty of each item (correlation with raw scores 0.99). Moreover, for 5
th

 grade computes scores adjusted to account 

for cheating, not for 6
th

 grade because cheating was limited (Quintano et al, 2009). I use raw scores because their 

significance is clearer and analyses with adjusted scores yield to odd results on peer effects. See also footnote 14. 
7
 These shares are close to the official figures reported by the National Statistical Institute for 2010, according to which 

the percentage of immigrant origin students is 13.6/13.8 in the North-West (all grades together in primary/lower 

secondary school), 13.8/13.8 in the North-West, 11.4/11.4 in the Centre, 2.5-2.7 in the South, 2.4-2.6 in the Islands.  
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Immigrant children are not evenly distributed across schools (Table 2). In the majority of the 

schools they represent less than 25% of the student body. Yet, in some institutions the percentage of 

immigrants is below 10%; in others, most of which located in the North-West, the share goes 

beyond 40%. This situation reflects the territorial distribution of immigrant background families, 

housing choices, explicit school preferences on part of the families, but may also involve school 

board practices. For example, Luciano et al. (2009) report that some institutions set significant 

barriers to entry to immigrant background students by denying proper information to parents and 

any form of support to children. 

Table 2. School concentration of migrant background students, by macro-area  

 
5

TH
 GRADE 

% migrants per school North-West North-East Centre South Islands 

0 10.7 9.2 13.3 37.3 37.3 

<10 42.7 34.7 44.9 56.1 56.2 

10-25 40.7 50.5 38.1 6.1 5.7 

25-40 4.8 5.3 3.2 0.3 0.8 

>40 1.1 0.3 0.4 0.1 0.1 

school mean % 10.8 11.5 9.4 3.0 3.1 

st. dev. of school % 8.7 7.6 7.4 4.8 4.4 

overall % migrants 13.1 13.7 11.1 3.0 3.3 

n° schools 1697 1136 1400 1774 1535 

 
6

TH
 GRADE 

% migrants per school North-West North-East Centre South Islands 

0 7.3 4.7 5.1 23.3 27.9 

<10 38.8 31.8 41.7 70.2 66.5 

10-25 44.8 53.6 48.5 6.1 5.2 

25-40 7.5 9.3 4.3 0.4 0.3 

>40 1.6 0.7 0.4 0.1 0.1 

school mean % 12.3 13.6 11.4 3.5 3.3 

st. dev. of school % 9.6 8.4 7.4 4.3 3.9 

overall % migrants 14.4 15.4 12.5 3.2 3.7 

n° schools 1416 982 1031 1221 1175 

 

Tables 3 and 4 report mean performance scores of native and migrant background students. 

Sample statistics can be thought as ‘true’ values, while differences between sample and population 

means reflect cheating. Populations means are generally higher than their sample counterparts: 

differences are marked in 5
th

 grade, in particular in the southern part of the country (but also in the 

North for first generation migrants), suggesting that teachers help disadvantage students. Only small 

discrepancies between sample and population scores are observed instead in 6
th

 grade. Standard 

deviations (not reported here) vary between 0.15 and 0.20, depending on the test, the grade, and the 

area (instead, they do not vary between sample and population). 
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Table 3. Mean scores by migrant background and macro-area. 5
th

 grade 

ITALIAN 

 SAMPLE POPULATION 

AREA Natives  Mig 2°  Mig 1° Natives  Mig 2°  Mig 1° 

North_West 0.72 0.61 0.52 0.72 0.61 0.56 

North_East 0.71 0.59 0.54 0.72 0.61 0.56 

Centre 0.69 0.62 0.54 0.71 0.63 0.58 

South 0.63 0.55 0.55 0.71 0.67 0.62 

Islands 0.63 0.57 0.51 0.69 0.65 0.61 

MATHEMATICS 

 SAMPLE POPULATION 

AREA Natives  Mig 2°  Mig 1° Natives  Mig 2°  Mig 1° 

North_West 0.65 0.57 0.51 0.65 0.58 0.54 

North_East 0.63 0.55 0.52 0.65 0.57 0.54 

Centre 0.63 0.58 0.53 0.65 0.60 0.56 

South 0.61 0.51 0.58 0.67 0.64 0.61 

Islands 0.58 0.56 0.50 0.66 0.64 0.62 

 

Table 4. Mean scores by migrant background and macro-area. 6
th

 grade 

ITALIAN 

 SAMPLE POPULATION 

AREA Natives  Mig 2°  Mig 1° Natives  Mig 2°  Mig 1° 

North_West 0.65 0.56 0.49 0.65 0.57 0.50 

North_East 0.66 0.56 0.50 0.66 0.57 0.50 

Centre 0.64 0.57 0.50 0.64 0.57 0.51 

South 0.59 0.55 0.48 0.60 0.56 0.49 

Islands 0.55 0.50 0.48 0.57 0.53 0.47 

MATHEMATICS 

 SAMPLE POPULATION 

AREA Natives  Mig 2°  Mig 1° Natives  Mig 2° Mig 1° 

North_West 0.55 0.46 0.45 0.55 0.48 0.44 

North_East 0.57 0.48 0.45 0.56 0.48 0.44 

Centre 0.53 0.48 0.44 0.54 0.49 0.45 

South 0.49 0.44 0.43 0.50 0.47 0.44 

Islands 0.45 0.41 0.42 0.48 0.45 0.42 

 

Average sample scores of natives and immigrants differ substantially, in particular for first 

generation migrants on Italian tests; however, differences are also marked on math tests. Second 

generation migrants perform better than first generation ones. Among natives, the scores of students 

from the South and Islands are substantially lower than the scores of children from the North and 

Centre, confirming the serious North-South divide in children’s learning already observed in 

international assessments.  

Due to the small number of immigrants living in the South and Islands, I restrict the empirical 

analyses of the effect of immigrant background class composition to the North and the Centre of the 

country. This choice is also related to the lower quality of test scores data observed in the South: 

while cheating is a minor problem in the North (although some adjustments will still be made in the 
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empirical analyses), it is a very relevant issue in the South. Note that it is not possible to rely only 

on the data of the benchmark sample, of better quality, because the sample does not include more 

than one class per school, so within-school estimates cannot be obtained. 

5. Achievement and immigrant concentration: prima facie evidence  

On average, children attending schools with many immigrants perform more poorly. The correlation 

coefficients between the percentage of immigrant children and the mean scores of natives, first 

generation and second generation immigrants are negative and quite large in size (Table 5). These 

relations are stronger for Italian tests and in 6
th

 grade; stronger for natives than immigrants in the 

North-West and in the Centre for Italian scores, weaker in the North-East and in the Centre for math 

scores.  

Table 5. School-level correlations between the % of migrants and mean scores  

  5
TH

 GRADE 6
TH

 GRADE 

AREA MEAN 

SCORES OF 

ITALIAN   MATH ITALIAN  MATH 

 

North_West 

Natives -0.14 -0.08 -0.32 -0.26 

mig 2° -0.11 -0.06 -0.20 -0.15 

mig 1° -0.12 -0.06 -0.21 -0.13 

 

North_East 

Natives -0.14 -0.08 -0.15 -0.13 

mig 2° -0.08 -0.05 -0.20 -0.15 

mig 1° -0.15 -0.11 -0.20 -0.20 

 

Centre 

Natives -0.15 -0.16 -0.04 -0.00 

mig 2° -0.09 -0.08 -0.13 -0.05 

mig 1° -0.11 -0.07 -0.20 -0.13 

 

This prima facie evidence is consistent with the hypothesis that high concentrations of 

immigrants are detrimental to the learning of both natives and immigrant children. However, this is 

not the only possible story. Institutions hosting many immigrant children on average attract lower 

social background students, and also social background affects performance. School-level 

correlations between the share of immigrants and average SES of both native and immigrant 

students are large and negative (Table 6)
8
. These negative associations could be due to the 

segregation of disadvantaged segments of the society in particular neighborhoods or/and to explicit 

school choices on part of the families. Distinguishing between these two explanations is not the 

object of this paper; moreover, this distinction could be meaningless if families made their 

residential choices by taking school locations into account. Note, however, that for immigrants the 

correlations are considerably higher in 6
th

 grade, approaching the values of natives. Since a strong 

                                                           
8
 Having computed correlations separately for native and migrant students rules out that the negative figures are  merely 

the result of compositional effects entailed by the lower average SES of immigrants. 
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residential mobility between 5
th

 and 6
th

 grade is highly unlikely, this result suggests that at least in 

lower secondary school better off immigrant families, like natives, prefer institutions with lower 

concentrations of foreign students.  

Table 6. School level correlations between the % of migrants and SES 

 5
TH

 GRADE 6
TH

 GRADE 

Area Natives’  

Books 

 Migrants’ 

books 

Natives’  

Books 

 Migrants’ 

books 

North_West -0.17 -0.11 -0.25 -0.17 

North_East -0.24 -0.11 -0.24 -0.20 

Centre -0.18 -0.11 -0.16 -0.16 

 

6. Class allocation 

Although families are sometimes allowed to express preferences for a particular class, leeway for 

parental choice is limited. In this sense, we should not expect family choices to represent too much 

of an issue at this stage. However, despite broad indications to form classes by maximizing within-

class heterogeneity and minimizing between-class differences, there are no binding rules, so some 

school-boards may allocate children differently.  

The assumption of random assignment with respect to immigrant background was tested both 

at the school-level and at the system-level. School-level tests evaluate random assignment in a 

given school and show that only a minority of schools deviate from it. The null hypothesis is: 

��: ����,�|� = ����|� ∙ ��|� 

where pmig,c|s is the joint probability that a randomly chosen child from a given school s has a 

migrant background and is assigned to class c, pmig|s is the overall proportion of migrants in the 

school, and pc|s is the proportion of children in class c. Using a classical Pearson X
2
 test and 

considering a prudential significance level α=0.10, the null hypothesis is rejected in 23% of the 

schools for 5
th

 grade and in 20% of the schools for 6
th

 grade. These institutions do not differ with 

respect to mean SES, but host on average more immigrants than those for which random assignment 

is accepted.
9
 

The null hypothesis of the system-level test is that random assignment regulates class 

allocation of immigrant children in all schools; due to sampling variability some institutions may 

exhibit substantial deviations from random allocation. The test-statistics is the sum of each school 

X
2 

over all schools; under the null hypothesis it follows a χ2
 distribution with ∑ 
!� − 1��  degrees of 

                                                           
9
 The average percentage of immigrants in 5

th
 grade is 16.1% in non-random allocating schools and 12.1% in the 

random-allocating ones;  16.7% vs 13.7% in 6
th

 grade.  
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freedom, where ks is the number of classes in school s. Random assignment is rejected at the 

significance level α=0.001, suggesting that at least some schools actually distribute children to 

classes according to different criteria.
10

  

Identification of peer effects rests on the assumption of class random assignment, therefore, 

similarly to Hoxby (2000) and Lugo (2011), I discard non-random allocating institutions and 

estimate model (3) only on the schools passing the single school test. The underlying hypothesis is 

that peer effects are independent of how children are sorted into groups (the effects should be the 

same no matter whether a particular class composition was generated by randomness or by 

somebody’s decisions). Moreover, the allocation criterion should not depend on the predictions of 

how peer effects would operate within the specific group of children enrolled in the school.
11

  

Let us go back to the single school tests. A significant level α=0.10 means that we have a 

10% probability to reject the null hypothesis when it is true, but the probability of accepting the null 

hypothesis under near alternatives could be large. In other words, the consequence of adopting 

commonly used low thresholds is to keep in schools that are not really adopting a random allocation 

criterion, but that deviate mildly from it. As a robustness check, I run regressions on the set of 

schools who pass the test at different significance levels, up to α=0.40, but results do not change 

substantially and no clear pattern is appreciable.    

What if, despite this strategy, I did not totally accomplish the aim of eliminating non-random 

allocating schools? In principle, neglecting the departure from random assignment could affect peer 

estimates in any direction: (i) there would be no bias if despite the sorting, teachers were randomly 

assigned to classes; (ii) we would overestimate peer effects if higher quality teachers were allocated 

to the “better” classes (in this case we would erroneously ascribe the effect of better teachers to 

peers); (iii) we would underestimate peer effects if higher quality teachers were allocated to the 

“worse” classes, under the belief that ability streaming is beneficial to all and better resources 

should be assigned to those more in need. The way students and teachers are actually allocated into 

classes should be a topic of empirical educational research, because little is known about it and it is 

a relevant issue from the perspective of ensuring equality of opportunity to all children. 

Notwithstanding the absence of empirical studies for Italy, my feeling is that case (ii) would be by 

far more common than case (iii). This is because in some cases parents of advantaged backgrounds 

do manage to put their children with better teachers, and better teachers often prefer better 

                                                           
10

 The value of the test-statistic is 28.072 and the corresponding chi-square has 19.783 degrees of freedom. Note that, on 

the contrary, the hypothesis of random assignment with respect to gender is not rejected (test-statistics=16.941). 
11

 Assume that there are two sets of immigrant children: the “good” and the “bad”, and that if a school is attended 

mainly by the “good” ones, children are allocated randomly in the classes, while if they are attended mainly by the 

“bad” ones the sorting is non-random. If the “good” immigrant children do not influence natives’ performance while the 

“bad” ones do, by discarding the latter we would end up underestimating average peer effects.  
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students.
12

 In this light, if some residual non-randomness was left, it would probably operate in the 

direction of overestimating peer effects.       

7. Peer effects estimation  

7.1 Variables 

Following the literature, I consider gender, SES and immigrant background as individual 

determinants of school performance. Gender is included in order to account for the well-established 

international evidence reporting significant differentials between girls and boys, that vary between 

mathematics (more favorable for boys) and reading comprehension (more favorable for girls). I use 

number of books at home as an indicator of the family socio-economic status (SES), which is 

regarded in the literature to be a better predictor of student performance than other indicators of 

family background such as parental education or occupational status (Hanushek, Woessmann, 

2011). I differentiate between first generation immigrants (children born abroad from two foreign-

born parents) and second generation immigrants (children born in Italy from two foreign-born 

parents); as we have seen in Tables 3 and 4 and in line with the international literature, scores differ 

substantially between them.  

I add a variable indicating children repeating a grade (identified as those who are older than 

the regular age), as these children are usually particularly low performing. This variable includes 

only natives; immigrant children are not considered here because many of them are older than their 

classmates – first generation migrants are often held back in earlier grades (Gavosto, 2010) and the 

share of immigrant background students failing to pass to the school-year is larger than that of 

natives – and since the focus of the empirical analysis is to estimate the effect of immigrant 

concentration, their inclusion would capture part of the effect of interest. 

To control for cheating, I include a binary variable that distinguishes children in the 

benchmark sample (who took the tests under the supervision of personnel external to the school) 

from those who did not. This variable has also been interacted with dummy variables indicating first 

and second generation migrant children, to account for the evidence that immigrant children could 

be given more help than the others.
13

 

                                                           
12

 This belief is not supported by scientific evidence (as I said, to my knowledge there is no scientific evidence on this 

topic), but is based on my personal experience as a mother and teacher and on informal talks with other stakeholders.  
13

 For 5
th

 grade INVALSI provides adjusted test scores, corrected from cheating with various statistical techniques. I run 

regressions using these adjusted scores; however, the results on peer effects were quite odd and not consistent with 

those obtained for 6
th

 grade, for which adjustments were applied. In this light, I find it safer not to use them and to take 

cheating under control with the simpler and more transparent way of including dummy variables distinguishing sample 

and population children.    
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As regards peer variables, I consider variables accounting for gender, SES, repeating grade 

and immigrant background class composition. Peer gender effects have been addressed by Lavy and 

Schlosser (2007), who find that an increase in the proportion of girls leads to a significant 

improvement in students’ cognitive outcomes. Similar results are reported by Hoxby (2000). The 

importance of peer effects related to the socio-economic background has been documented by most  

of the research in the peer effects literature; consistently with the individual variables, I take a 

measure of the average number of books (considered as an ordinal variable with 5 categories).  

To account for the effect of immigrant students I consider the proportion of first and second 

immigrants. Since first generation immigrants have on average more language problems and get 

consistently lower scores than those of second generation, I allow these two groups to have different 

effects. In addition, I test the assumption of heterogeneous effects of immigrant concentration on 

children of different backgrounds, by including variables that interact each of the immigrant 

background peer variables with native status (to distinguish between the effect of immigrant 

concentration on immigrants and natives), and with both native status and individual SES (to allow 

for different effects on natives, according to their SES). The list of individual and peer variables 

included in the regressions is summarized in Table 7. 

Table 7. Explanatory variables  

Individual variables 

LABEL DESCRIPTION  VALUES  

Female Gender  {0,1} 

SES N° of books at home* 0-4 

Repeat Native repeating grade  {0,1} 

1 gen mig First generation migrant {0,1} 

2 gen mig Second generation migrant {0,1} 

Sample Child in sampled class {0,1} 

1 gen*sample First generation migrant child in sampled class {0,1} 

2 gen*sample Second generation migrant child in sampled class {0,1} 

Peer variables 

LABEL DESCRIPTION  RANGE 

% Female Proportion of females 0-1 

Mean SES Mean of n° of books at home* 0-4 

% Repeating Proportion of natives-repeating grade 0-1 

% 1 gen mig Proportion of first gen. migrants  0-1 

% 2 gen mig Proportion of first gen. migrants 0-1 

%1 gen mig*native Interaction: native child * % first generation migrants 0-1 

%2 gen mig*native Interaction: native child * % second generation migrants 0-1 

% 1gen mig*native*SES Interaction: native child * % first generation migrants * n° books 0-4 

% 2 gen mig*native*SES Interaction: native child * % second generation migrants * n° books 0-4 

*0=0-10 books; 1=11-25 books; 2=26-100 books; 3=101-200 books;4=>200 books 
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7.2  Results 

Maximum likelihood estimates of within-school models (3) including schools passing the test for 

random class allocation of immigrant background students at the level α=0.10 are reported in Table 

8. As mentioned above, results change little when a larger significance threshold is used.  

Table 8. Determinants of individual performance 

 5
th

 grade 

Italian 

5
th

 grade 

Math 

6
th

 grade 

Italian 

6
th

 grade 

Math 

Individual variables     

Female 0.0117*** 

(0.0007) 

-0.0383*** 

(0.0007) 

0.0106*** 

(0.0006) 

-0.0270*** 

(0.0007) 

SES 0.0308*** 

(0.0005) 

0.0297*** 

(0.0005) 

0.0279*** 

(0.0004) 

0.0302*** 

(0.0005) 

1gen mig (ref native) -0.1264*** 

(0.0054) 

-0.0787*** 

(0.0055) 

-0.1160*** 

(0.0039) 

-0.0806*** 

(0.0050) 

2gen mig (ref native) -0.0687*** 

(0.0057) 

-0.0549*** 

(0.0058) 

-0.0659*** 

(0.0048) 

-0.0602*** 

(0.0062) 

Repeat grade *native -0.1422*** 

(0.0048) 

-0.1426*** 

(0.0049) 

-0.1035*** 

(0.0017) 

-0.1302*** 

(0.0021) 

Sampled class -0.0098*** 

(0.0022) 

-0.0104*** 

(0.0027) 

-0.0005 

(0.0015) 

-0.0005 

(0.0020) 

Sampled class *1gen mig -0.0224*** 

(0.0053) 

-0.0106* 

(0.0054) 

-0.0105** 

(0.0038) 

-0.0031 

(0.0048) 

Sampled class *2gen mig -0.0021 

(0.0057) 

-0.0083 

(0.0058) 

-0.0083 

(0.0049) 

-0.0039 

(0.0062) 

Peer variables at class level     

% Females -0.0045 

(0.0050) 

0.0000 

(0.0059) 

0.0003 

(0.0035) 

0.0045 

(0.0048) 

Mean SES 0.0027 

(0.0016) 

0.0059*** 

(0.0018) 

0.0052*** 

(0.0011) 

0.0098*** 

(0.0015) 

% native repeating grade 0.0011 

(0.0289) 

-0.0262 

(0.0338) 

-0.0302*** 

(0.0091) 

-0.0317** 

(0.0124) 

% 1gen mig  -0.0915*** 

(0.0152) 

-0.0497** 

(0.0164) 

-0.0561*** 

(0.0100) 

-0.0249 

(0.0130) 

%1gen mig * native 0.0426* 

(0.0170) 

-0.0101 

(0.0174) 

0.0251* 

(0.0116) 

-0.0293* 

(0.0148) 

% 1gen mig *native*SES 0.0053 

(0.0045) 

0.0107* 

(0.0046) 

0.0090** 

(0.0031) 

0.0141*** 

(0.0040) 

% 2gen mig  -0.0961*** 

(0.0168) 

-0.0277 

(0.0182) 

-0.0720*** 

(0.0137) 

-0.0271 

(0.0178) 

% 2gen mig * native 0.0356 

(0.0188) 

-0.0524** 

(0.0192) 

0.0314 

(0.0169) 

-0.0404 

(0.0215) 

% 2gen mig *native*SES 0.0215*** 

(0.0051) 

0.0336*** 

(0.0052) 

0.0159*** 

(0.0047) 

0.0302*** 

(0.0059) 

N° CHILDREN 180153 186076 207198 207377 

N° CLASSES 10699 10805 10789 10786 

N° SCHOOLS 6029 6059 4750 4750 

VAR(BETW CLASSES)/VAR(TOT) 0.055*** 0.091*** 0.016*** 0.027*** 

 * sig<0.05, **sig<0.01, ***sig<0.001 

Estimates are based on classes with at least 10 children with no missing values on each explanatory variable and less 

than 20% of children with unknown native/immigrant origin.  
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Individual characteristics strongly affect achievement. In line with international results, 

females perform significantly better in Italian and worse in math. Children of the highest SES level 

obtain on average a score which is 12 percentage points higher than that of children belonging to 

the lowest stratum (recall that scores are computed as the proportion of correct answers). Native 

students repeating the grade get much lower scores than regular students (10-14 points less). 

Immigrant children perform more poorly that natives; first generation immigrants are particularly 

disadvantaged (7-12 points less), not surprisingly, especially for Italian tests.  

Moving to peer variables, we observe that the share of females is never statistically 

significant. On the other hand, SES is significant in most cases, but has a small effect: scores 

increase of 1-4 points when we move from the case where all peers belong to the lowest SES level 

to the case where all peers belong to the highest. The effect is largest for math scores and in 6
th

 

grade. The number of native children repeating the grade seems to affect performance only in lower 

secondary school. As regards the effects of immigrant concentration, given the complexity of the 

variables involved, I summarize results in Table 9.   

 

Table 9. Effects of immigrant background class composition  

 5
th

 grade 

Italian 

5
th

 grade 

Math 

6
th

 grade 

Italian 

6
th

 grade 

Math 

Effect of first gen. 

immigrants on: 
    

immigrants -0.091 -0.050 -0.056 -0.025 

natives SES=0 -0.049 -0.060 -0.031 -0.054 

natives SES=2 -0.038 -0.038 -0.013 -0.026 

natives SES=4 -0.028 -0.017 0.005 0.002 

Effect of second gen. 

immigrants on: 

    

immigrants -0.096 -0.028 -0.072 -0.027 

natives SES=0 -0.060 -0.080 -0.041 -0.067 

natives SES=2 -0.018 -0.013 -0.009 -0.007 

natives SES=4   0.026 0.054 0.023 0.053 

According to point estimates reported in Table 7. 

 

The concentration of immigrant background children does affect achievement. Yet, effects are 

heterogeneous, and generally small. As regards Italian scores, immigrant children are more affected 

than natives. On the other hand, the negative effect on native children of low SES is larger than the 

effect on immigrants for math. In all cases, the effect on medium-high SES is negligible, and in 

some cases it is positive, implying that these students could even benefit from the presence of 

immigrant children. The highest figure reported in Table 7 is -0.096 (referred to the effect of second 

generation immigrants on immigrants’ achievement in Italian, in 5
th

 grade). Since the peer variable 

varies between 0 (no immigrants) and 1 (all immigrants), this figure implies that a 10 percentage 
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point increase in the class share of first generation immigrants would lower the percentage of 

correct answers by less than 1 point. Although not negligible, this should be considered a weak 

effect. I also estimate a different specification of the model allowing for non-linear effects in the 

class share of immigrant origin children, but since the results are not particularly insightful, I do not 

shown them here. 

7.3 Robustness checks 

I made a number of robustness checks in order to evaluate the extent to which results are dependent 

on particular assumptions.
14

 First, I run additional regressions using an alternative SES measure 

provided by INVALSI (Campodifiori et al., 2010), a composite index based on numerous variables, 

similar to PISA’s ESCS. Both the magnitude and the significance of immigrant background peer 

effects are close to those reported in Table 8. Average class ESCS coefficients are consistent with 

the estimates relative to the number of books, although they are not strictly comparable because the 

scale of the two measures is different. 

Second, I estimate model (3) on different subsets of schools. As anticipated in section 6, I 

consider the set of schools who pass the test of random allocation to classes with respect to 

immigrant background at different significance levels (up to α=0.40). Results do not change 

substantially and no clear pattern is appreciable.  

Moreover, since a substantial number of schools do not pass random allocation tests with 

respect to SES
15

, I restrict the analyses to the schools that pass the tests with respect to both 

immigrant background and SES (as measured by the n° of books at home) at the significance level 

0.10. Immigrant origin peer effects, the focus of this paper, change little. I find a slight increase of 

the effect of the share of immigrant background students on immigrant students in 5
th

 grade Italian, 

of the share of first generation immigrants on immigrants in 5
th

 grade math, of the share of second 

generation immigrants on all students in 6
th

 grade Italian, but the substantive conclusions remain the 

same.  

On the other hand, the coefficients of average class SES diminish substantially and in some 

cases even loose significance.  Consider however that SES is likely to be affected by measurement 

error, and in this case SES peer effects would be underestimated (Ammermueller, Pischke, 2009). 

In this perspective the bias due to including SES non-random allocating schools (presumably 

conducting to the overestimation of SES peer effects, see the discussion in section 6) might in fact 

                                                           
14

 Results are not shown here but are available upon request.  
15

 Approximately 38% of schools do not pass single school tests of random allocation with respect to SES (based on 

Anova F-statistics).  
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counterbalance the bias due to measurement error. With this in mind, caution should be applied 

when  interpreting the estimates of SES peer effects.               

7.4  Achievement or characteristics of peers? 

Despite the well known difficulties due to the reflection problem (Manski, 1993), some scholars 

attempt to disentangle the effects due to peer achievement and peer characteristics. Sacerdote 

(2000) examines peer effects of college roommates in a very simple setting, with random 

assignment and only two-people peer groups and shows that in this case the effects are identified. 

Entorf and Lauk (2008) start from a pure endogenous effects model and derive “social multipliers”, 

summarising the overall impact of exogenous changes in individual or school characteristics.
16

  

Exploiting multiple peer exogenous variables, Hoxby (2000) translates the estimates of 

reduced form coefficients  into what she calls “a common basis for achievement effects”, i.e. the 

implied estimates of the endogenous effect from each peer variable, under the assumption that only 

endogenous effects are at work. Since these implied estimates vary substantially, she concludes that 

not only achievement effects operate, but also peer characteristics. I draw this idea from her, and 

follow her line of reasoning quite closely. However, I develop a more explicit formalization of the 

method, obtaining an interpretation of the results that conflicts with hers.      

The functions linking the coefficients of the reduced form to structural parameters have been 

derived in the Appendix. It can be easily demonstrated that in a model with k=1..K peer variables, 

(setting class size to its average value) each couple of parameters 

#, �#� takes the form:     


#
∗ = $%&'(%

)�'
*+,�)

*+,�)&'            (4) 

�#
∗ = �#


*+,�)�

*+,�)&'� + 
$%&(%�'


)�'�
*+,�)&'�          (5) 

Note that achievement effects are governed by one single parameter β. This means that if 

achievement effects operate, they are the same no matter if a given change in test-scores is induced 

by, say, an increase in the share of females or in the share of immigrants.  

From equations (4) and (5) we derive that under the assumption that exogenous effects 
# are 

nil, β and �# are identified. We obtain: 

�-# = $%
∗
*+,�)�


*+,�.�$%
∗&
*+,�)�(%

∗ ≅ $%
∗

$%
∗&(%

∗                                                                                               (6) 

For β  to be meaningful it must be non-negative and smaller than 1, so we should expect estimated 

reduced form effects to be either both positive or both negative. In this case, the larger 
∗ with 

                                                           
16

 The authors acknowledge that estimates of the pure endogenous model are biased because of the reflection problem. 
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respect to �∗, the larger the implied β. Moderate individual level gaps may have a large impact on  

peers if achievement effects are strong; on the other hand, if β is small even large individual gaps 

could have small effects on peers.
17

 

Since �-# represent the value of β if only endogenous effects operated, (disregarding sampling 

variability) could we think of �-# as upper bounds for β? First note that the empirical result 

#
∗ >

0, �#
∗ > 0 � does not imply 

# > 0, �# > 0�, and 

#

∗ < 0, �#
∗ < 0� does not imply 

# < 0, �# <

0�. 18  However, if structural parameters 
# and �# are both positive or negative, then also 
#
∗ and �#

∗  

have the same sign and �-# ≥ � ≥ 0.
19

 

The exception occurs when structural parameters have opposite signs. What is the substantive 

meaning of 

# > 0, �# < 0�? As �# grows the individual is less performing, while a group of peers 

with large �# positively affects performance. As suggested in some empirical research, this might 

be the case of gender effects on math scores: females score lower than males, however a peer group 

with many females may foster learning. In this case peer effects related to the share of females 

cannot all be driven by achievement effects: if females are less performing than males, they should 

negatively affect others’ learning. In this case, depending on the values of the true 
# e and �#, we 

could even find values of 
#
∗ and �#

∗  leading to �-# < 0 or �-# > 1. So, if we suspect that 
# and �# 

have different signs – which can be suggested (but not demonstrated) by the different signs of the 

corresponding reduced form parameters  – we should not calculate the implied values of �-# : they 

are meaningless, because 
# cannot be 0. 

Comparing the estimates of �-# derived from the explanatory variables we that believe have 

either both positive or both negative structural parameters, gives us some insights on the relative 

magnitude of exogenous and endogenous effect. To simplify the exposition, I use the estimates of a 

school fixed-effect model with no interactions involving peer variables and no heterogeneous 

effects. For the reason exposed above, I do not consider gender peer effects here. 

 

 

                                                           
17

 To my understanding, Hoxby derives the “common basis for achievement effects” by dividing  
#
∗ by �#

∗ , and 

interprets the result as if it was an estimate of β. However, according to equation (6), 1 �-#⁄ ≅ 1 + (%
∗

$%
∗, hence 

$%
∗

(%
∗ ≅ '8%

)�'8%
. 

This would explain some of her findings, that she had interpreted as odd results. Values far larger than 1 are suspect if 

we interpret them as �-#, but they are no longer anomalous if they represent 
'8%

)�'8%
 (for example, Hoxby finds  

$%
∗

(%
∗ =6 for 

some variable; this implies that �-# is approximately 0.86, which is a large but acceptable value). 
18

 All these results are trivial consequences of equation (A.6) in the Appendix. 
19

 Similarly, if � = 0 then 
# = 
#
∗. So, if 
# and �# have the same sign, either 0 ≤ 
# ≤ 
#

∗ or 
#
∗  ≤ 
# ≤ 0; if they 

have different signs, these limits do not hold. 
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Table 10. Endogenous and exogenous effects. 

SCORES 
PEER 

VARIABLE 

(1)  

�#
∗  

(2) 


#
∗ 

(3) 

�-# 
(4) 

�-  
(5) 
�̌# 

(6) 


;# 

 

5
th

 grade – Italian 

1 gen migr -0.1351 -0.0450 0.253  

0.078 

 

-0.1349 -0.0312 

2 gen migr -0.0779 -0.0264 0.257 -0.0778 -0.0184 

SES 0.0322 0.0027 0.078 0.0322 0.0000 

 

5
th

 grade – math 

1 gen migr -0.0789 -0.0391 0.337  

0.082 

 

-0.0787 -0.0295 

2 gen migr -0.0560 -0.0050 0.082 -0.0559 0.0000 

SES 0.0319 0.0060 0.159 0.0319 0.0029 

 

6
th

 grade – Italian 

1 gen migr -0.1235 -0.0181 0.129  

0.129 

 

-0.1234 0.0000 

2 gen migr -0.0736 -0.0161 0.181 -0.0735 -0.0047 

SES 0.0293 0.0052 0.152 0.0293 0.0008 

 

6
th

 grade – math 

1 gen migr -0.0801 -0.0240 0.233  

0.088 

 

-0.0800 -0.0150 

2 gen migr -0.0607 -0.0058 0.088 -0.0607 0.0000 

SES 0.0326 0.0097 0.232 0.0326 0.0060 

Note. Average class size is approximately 20 in 5
th

 grade and 22 in 6
th

 grade. 

 

To illustrate Table 10, take 5
th

 grade – Italian scores (uppermost panel). Columns (1) and (2) 

report reduced form estimated values. In column (3) we find implied values of β under the 

assumption 
#=0, according to equation (6). If we assume that individual and peer exogenous 

effects for immigrant backgrounds have the same sign, and the same we do for SES, we can infer 

that � must not exceed the smallest of these implied values, so � ≤ 0.078. The reason is that � must 

be smaller than all the estimated upper bounds. In column (4) I report the smallest value of �-#. If 

this was the “true” value of β,  an exogenous increase in peer scores of 10 percentage points would 

lead to an increase of less than 0.8 percent of correct answers. The other values in column (4) are 

also small (between 0.082 and 0.129); hence we can conclude that if endogenous effects operate, 

they must be weak.   

As a final exercise, I take for good this β, and use it to estimate �# and 
#. Column (5) reports 

the implied individual effects (which in this case are almost identical to the corresponding reduced 

form estimates). Colum (6) shows the implied estimates for exogenous peer effects. Note that these 

estimates are trivially 0 for the variable displaying the smallest threshold �-#. So, going back to the 

example of 5
th

 grade – Italian scores, 
;# = 0 for SES, because we are assuming that all peer effects 

related to SES are driven by achievement differentials. By assumption, the other estimates of 
;# 

have the same sign of the corresponding reduced form parameter and their absolute value falls 

between 0 and that of 
#
∗. Under the hypotheses made above, a 10 percent increase in the share of 

first generation immigrants would lead to an increase of 0.31 in the percentage of correct answers.  

Interesting conclusions can be drawn by comparing the 
;# across explanatory variables: as 

regards 5
th

 grade –Italian tests, the share of first generation immigrants is likely to affect learning 

also through exogenous effects, and these exogenous effects are likely to be larger than those 
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related to the share of second generation immigrants and to average SES. This also holds for 5
th

 

grade-math tests. Second generation exogenous effects slightly prevail for 6
th

 grade-Italian tests and 

SES for 6
th

 grade-math tests (recall that SES varies between 0 and 4, so a change from all peers 

with SES=0 to all peers with SES=4 induces an increase in individual scores of approximately 2.4 

percentage points). 

8. Conclusions and discussion 

The considerable growth of the share of immigrant students which has occurred over the last decade 

has contributed to raise the concern within large sectors of the public opinion that immigrant 

children would have a negative influence on the school performance of natives. However, this 

concern does not seem to be empirically well founded. The analyses carried out in this paper point 

to the existence of negative effects of the concentration of immigrant students on peer performance; 

yet, these effects are small and heterogeneous. As regards Italian tests, the concentration of 

immigrant students (either of first or second generation) appears to influence immigrants more than 

natives. Among natives, while low SES children may suffer somewhat from a large share of 

immigrant background classmates, high SES children do not; on the contrary, in some cases they 

even seem to benefit from the presence of immigrants.  

The identification strategy adopted in this paper rests on the assumption of random class 

assignment: consequences of a possible residual non-randomness are discussed in section 6 and 

point to the overestimation of family background peer effects. I can think of two additional potential 

sources of bias: omitted variables and measurement error. Regarding the first, Hanushek et al. 

(2003) demonstrate that peer effects are overestimated when historical family and school inputs are 

neglected. As for the second, Ammermueller and Pischke (2009) show that measurement error in 

the family background variables leads to the underestimation of the corresponding peer effects; yet, 

they focus on the number of books at home, which have a large likelihood of incorrect reporting. 

Although the complexity of the model does not allow to make precise predictions, if the immigrant 

origin is not subject to measurement error, the underestimation of peer effects related to the number 

of books should yield to the overestimation of peer effects related to immigrant background. In this 

light, my overall conclusion is that the estimates obtained in this paper are likely to represent upper 

bounds of immigrant origin peer effects.  

Two major conclusions can be drawn: (i) the concentration of immigrant children in schools 

should not be an issue of major concern as there is little evidence of substantial detrimental effects 

on students’ learning; (ii) still, since disadvantaged children (immigrants or low SES) are somewhat 
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affected, children should be allocated into schools and classes according to the principle of 

maximum family background heterogeneity.  

On the other hand, the relative disadvantage of immigrant children at the individual level is 

large and needs to be urgently addressed with adequate integration policies – severely lacking in 

Italy – aimed at ensuring equality of opportunity to all children and at fostering social cohesion.  

 

 

References 

Ammermueller A., Pischke J. S. (2009) Peer Effects in European Primary Schools: Evidence from 

the Progress in International Reading Literacy Study, Journal of Labor Economics, 2009, vol. 

27, no. 3, 315-348 

Black S.E., Devereux P.J., Salvanes K.G. (2010) Under Pressure? The Effect of Peers on Outcomes 

of Young Adults. NBER Working Paper 16004 

Brannstrom L. (2008) Making Their Mark: The Effects of Neighborhood and Upper Secondary 

School on Educational Achievement, European Sociological Review, vol. 24, no. 4, 463–478 

Brunello G. and Rocco L. (2011) The Effect of Immigration on the School Performance of Natives: 

Cross Country Evidence Using PISA Test Scores, IZA DP No. 5479 

Campodifiori E., Figura E., Papini M., Ricci R. (2010) Un indicatore di status-economico-culturale 

degli allievi della quinta primaria in Italia, INVALSI WP 02/2010 

Cebolla-Boado H. (2007) Immigrant Concentration in Schools: Peer Pressures in Place? European 

Sociological Review, vol. 23, no. 3, 341-356 

Cebolla-Boado H., Garrido Medina L. (2011) The Impact of Immigrant Concentration in Spanish 

Schools: School, Class, and Composition Effects, European Sociological Review, vol. 27, no. 

5, 606–623 

Dustmann C., Frattini T., Lanzara G. (2011) Educational Achievement of Second Generation 

Immigrants: An International Comparison, Centro Studi Luca D’Agliano Development 

Studies WP, no. 314.  

Entorf H., Lauk M. (2008) Peer Effects, Social Multipliers and Migrants at School: An International 

Comparison, Journal of Ethnic and Migration Studies, vol. 34, no. 4, 633-654 

Fekjaer S.N., Birkelund G.E. (2007)  Does the Ethnic Composition of Upper Secondary Schools 

Influence Educational Achievement and Attainment? A Multilevel Analysis of the Norwegian 

Case, European Sociological Review, vol. 23, no. 3, 309-323 

Gavosto A. (2010) Il quadro dell’integrazione scolastica in realtà multiculturali. Il contesto europeo, 

http://www.istruzione.lombardia.it/wp-content/uploads/2011/02/RicercaGavosto.pdf 

Goldstein H., (1997) Methods in school effectiveness research. School Effectiveness and School 

Improvement, vol. 8, 369–395. 

Gould E. D., Lavy V, Paserman M. D. (2009) Does Immigration Affect the Long-Term Educational 

Outcomes of Natives? Quasi-Experimental Evidence, The Economic Journal, 119, 1243-1269 

Hanushek E.A., Kain J.F., Markman J.M., Rivkin S.G. (2003) Does peer ability affect achievement? 

Journal of Applied Econometrics, 18, 527-544 



27 

 

Hanushek E.A., Woessmann L. (2011b) The Economics of International Differences in Educational 

Achievement, in: Hanushek E.A., Machin S., Woessmann L. (eds.), Handbook of the Economics 

of Education, 3: 89-200, Amsterdam: North Holland. 

Heus, M. de, Dronkers, J. (2010) De onderwijsprestaties van immigrantkinderen in 16 OECD-

landen. De invloed van onderwijsstelsels en overige samenlevingskenmerken van zowel 

herkomst- als bestemmingslanden, Tijdschrift voor Sociologie, 31, 260–294 

Hoxby C. (2000) Peer effects in the classroom: learning from race and gender variation, NBER WP 

No 7867 

Hoxby C. (2006) Economics of Education NBER Program Report, NBER Reporter, Fall 2006 

 

Luciano A., Ricucci R., Demartini M. (2009) L’istruzione dopo la scuola dell’obbligo. Quali 

percorsi per gli alunni stranieri?, in Zincone, G. (eds), Immigrazione: segnali di integrazione. 

Sanità, scuola e casa, Il Mulino, Bologna, pp 113-156. 

Lavy V., Schlosser A. (2007) Mechanisms and Impacts of Gender Peer Effects at School, NBER 

WP No. 13292 

Lugo M. A. (2011) Heterogeneous peer effects, segregation and academic attainment, World Bank, 

Policy Research WP 5718 

Manski C., (1993) Identification of endogenous social effects: The reflection problem, The Review 

of Economic Studies 60(3), 531-542. 

MIUR (2008) La scuola in cifre, 2006-07 

Moffitt. R. (2001) Policy Interventions, Low-Level Equilibria, and Social Interactions, in Social 

Dynamics, Steven Durlauf and Peyton Young, Eds, Cambridge MIT Press 

OECD (2006) Where Immigrant Students Succeed -  A Comparative Review of Performance and 

Engagement in PISA 2003, OECD 

Ogbu J. U. (1991) Immigrant and involuntary minorities in comparative perspective. In Gibson, M. 

A. and Ogbu, J. U. (Eds) Minority Status and Schooling. A Comparative Study of Immigrant 

and Involuntary Minorities. New York: Garland Publishing, Inc. 

Portes, A. and Rumbaut, R. G. (2001) Legacies. The Story of the Immigrant Second Generation. 

Berkeley, California: University of California Press 

Quintano, C., Castellano R., Longobardi S. (2009). A fuzzy clustering approach to improve the 

accuracy of Italian student data. An experimental procedure to correct the impact of outliers on 

assessment test scores. Statistica & Applicazioni, 7 (2), 149-171. 

Rangvid B. S. (2007) School composition effects in Denmark: quantile regression evidence from 

PISA 2000, Empirical Economics, 33, 2, 359-388  

Sacerdote, B. (2001) Peer effects with random assignments: Results for Dartmouth roommates, 

Quarterly Journal of Economics, 116(2), 681-704. 

Schneeweis N.,  Winter-Ebmer R. (2007) Peer effects in Austrian schools, Empirical Economics, 

32, 2-3: 387-409 

Schnepf S. V. (2007) Immigrants’ educational disadvantage: an examination across ten countries 

and three surveys, Journal of Population Economics 20, 527-545 

Snijders, T. A. B. and Bosker, R. J. (1999). Multilevel Analysis. An Introduction to Basic and 

Advanced Multilevel Modeling. London: Sage. 



28 

 

APPENDIX.   

Derivation of the reduced form from the structural model 

In this section I derive the reduced form from the structural model (1). I present two results: 

(i) The commonly employed reduced form is just an approximation of the “true” reduced 

form; 

(ii) For explanatory variables entering the model with both individual and peer effects, the 

reduced form coefficient of individual effects is not equal to that of the structural form.   

From the structural model:  

���� = � + ��	
����� + 
��
����� + ����� + �� + ��� + ����                                                                (A.1)          

we obtain the school mean score: 

�	� = � + ��	� + 
��� + ���� + �� + ����
�� + �����
��                                                                            (A.2) 

where ����
�� is the average of class effects in school s, and �����
�� is the average of individual effects 

in school s, Equation (A.2) implies that: 

�	� = <

)�'� + $&(


)�'� ��� + )

)�'� ��� + ����
�� + �����
���                                                           (A.3) 

Similarly, the class mean score is given by: 

�	�� = <

)�'� + $&(


)�'� ���� + )

)�'� ��� + ��� + �����
����                                                           (A.4)         

where �����
��� is the average of individual effects in class c, school s. 

The term �	
����� in the structural model can be written as follows: 

�	
����� = =	+,*+,�=>+,
*+,�)                                                                                                               (A.5) 

where ncs is the class size, and similar formulas hold for ��
�����, 

Including (A.4) in (A.5), and then the resulting expression in the structural model, we obtain 

the following: 

���� = <
)�' + $&'(

)�'
*+,�)

*+,�)&' ��
����� + ?� 
*+,�)�

*+,�)&'� + 
$&(�'


)�'�
*+,�)&'�@ ���� + )
)�' �� + )

)�' ��� +
'

)�'
*+,

*+,�)&' �����
��� +  *+,�)
*+,�)&' ����                              (A.6) 

which is formally equivalent to: 

���� = �∗ + 
∗
A�����
����� + �∗
A������� + ��∗ + ���∗ 
A��� + ����
∗ 
A���                               
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The equivalence of (A.6) with the typical reduced form holds only if class size is constant, 

otherwise regression coefficients vary (deterministically) over individuals. Also note that the class 

effect ���∗  is a function of the structural class effect and of the class average of individual error 

terms. Due to this last component, the resulting reduced form class-specific effect is not nil even 

with no structural class effect; it is independent of other explanatory variables, and can be handled 

with conventional random effect models.        

The reduced-form coefficient of peer characteristics 
∗ depends on the structural effects of 

peer ability β and of peer characteristics 
, but also on the structural effect of individual 

characteristics �. This a well established result. On the other hand, a result that to my knowledge 

has not been highlighted in the literature is that the reduced-form coefficient of individual 

characteristics �∗  is not equal to the corresponding structural coefficient �. The first term of �∗ 

approaches �, but the second can be non-negligible if β and either 
 or �  are large (the upper bound 

as β approaches 1 is 
$&(
*+,

), and in this case it can vary substantially with class size.
20

 Why is it so? 

While the structural � captures only the direct effect of individual characteristics z (taking mean 

peer ability and characteristics as given), the reduced form �∗ also captures an indirect effect 

triggered by endogenous effects. As z directly affects student i’s  own performance, in the model for 

student j peer performance will also change (because i is among j’s peers). Consequently j’s 

performance will  be affected, yielding to a further change in i’s performance (Figure 2).  

Figure 2. The reduced-form model 
 

                                 

                                                                    

                         
 

                                   

                                                                                       

                                                                                         

                                

                                                                              

 

 

 

 

 

To conclude, the commonly employed reduced form is just an approximation of the true 

reduced form (A.6), because it does not acknowledge that parameters vary with class size. What 

                                                           

20
 On the other hand 
∗ varies little with class size, as the multiplicative factor 

*+,�)
*+,�)&'  is close to 1 for reasonable A��. 

peer    γγγγ∗∗∗∗ 

effect  

Z mean 

others 

Legenda: 
               behavioral effect 

              “mechanical"effect 

individual     
effect   τ∗τ∗τ∗τ∗ 

Z Y mean  

others 
Y 

µschool, µclass 
 correlated  effect 
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happens if we ignore this variability? I have explored the consequences in a heterogeneous class 

size environment with a small simulation study. For the range of parameters I considered – 

suggested by the actual estimates of model (3) – consequences are small, but in order to come up 

with more general results this issue should be investigated more in depth.
21
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 These results are not shown in the paper but are available from the author upon request.  
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