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Dynamics and Welfare in Recombinant Growth Models
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Method
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Abstract

We consider the extended continuous time endogenous recombinant growth model with
a basic IPRs system introduced by Marchese et al. (2014). In order to analyze the effect
on social welfare of different IPRs policy regimes, we must carefully study the transition
dynamics associated to different values of the IPRs policy parameter. To this aim, we
exploit the computational method recently developed by Privileggi (2011, 2013), based
on Projection methods, Gauss-Chebyshev and Gauss-Legendre quadrature, along with
standard Runge-Kutta type algorithms, to approximate such transitional dynamic paths
and perform Skiba-point analysis. Our simulations show that softer IPRs policy regimes
generate higher welfare levels.

JEL Classification Numbers: C61; C63; C68; O31; O41

Keywords: Knowledge Production; Endogenous Recombinant Growth; Transition Dy-
namics; Turnpike; Skiba Point; Welfare

1 Introduction

Knowledge is by far one of the most important determinants of long-run economic growth; thus,
in the Economics literature great emphasis is placed on assessing the impact of different types of
policies on knowledge accumulation. In such a framework, the role played by intellectual prop-
erty rights (IPRs) policies is still controversial since two opposite effects need to be balanced.
On the one hand, a tighter IPRs policy allows stronger incentives for economic agents to engage
in knowledge creation activities; on the other hand, the same policy reduces the ability of the
public domain to exploit the newly created knowledge in order to generate further innovation.
The net impact of these two opposite effects determines whether tighter IPRs policy regimes
might lead to higher or lower levels of social welfare, thus indicating whether they might be
desirable for the society as a whole.

The main contribution of this paper is to provide a numerical approach to compute social
welfare in economies endowed with some IPRs system, so to analyze the impact of different IPRs

∗Dept. of Economics and Statistics “Cognetti de Martiis”, Università di Torino, Lungo Dora Siena 100 A,
10153 Torino (Italy). Phone: +39-011-6702635; fax: +39-011-6703895; e-mail fabio.privileggi@unito.it

†School of Business, James Cook University, PO Box 6811, 4870 Cairns (QLD, Australia). Phone:
+61740421762; e-mail: simone.marsiglio@jcu.edu.au
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policy regimes on social welfare. In order to do so, our computational procedure allows to ap-
proximate the complete transition path of the continuous time, recombinant-type, endogenous
growth model introduced by Marchese et al. (2014). Marchese et al. (2014) extend the Tsur
and Zemel’s (2007) continuous time version of the original Weitzman’s (1998) growth model in
order to introduce a basic IPRs system and investigate the relationship between IPRs policy
and welfare in a context of recombinant knowledge creation. In such a framework knowledge
does not evolve only because of profit seeking behavior (as traditionally discussed in the growth
literature; see Arrow, 1962, or Romer, 1990), but also because of its autonomous progress driven
by social interaction. This description of the complexity underlying knowledge accumulation is
consistent with some empirical evidence (Acemoglu, 2009) and allows us to better understand
the relationship between policy, growth and welfare in real world economies.

To evaluate the effect of policy on welfare, we perform a comparative dynamics exercise
analyzing how different values of the IPRs policy instrument will be reflected in the evolution
of consumption over time, and thus on the level of social welfare. A critical aspect of such an
approach consists of computing the value of consumption along the whole transitional dynamic
path. As shown in Marchese et al. (2014) and similarly in Privileggi (2010), we need to
distinguish between three different kind of trajectories: those occurring along a characteristic
curve labeled as ‘turnpike’, those outside the turnpike but eventually converging to the turnpike,
and those never converging to the turnpike but ending up in stagnation. Because such types
of transitional dynamics are tough objects to deal with, we rely on a wide range of numerical
techniques in order to quantitatively assess different consumption paths and the social welfare
they generate. The method we adopt in this paper is to a large extent built on previous works
of Privileggi, who has recently developed a reliable approach to study the transitional dynamics
in continuous time recombinant growth models á-la Tsur and Zemel (2007). Specifically, we
first apply a suitable transformation to the ODE defining the optimal transition dynamics in
order to study their associated ‘detrended’ system. Such transformation, although based on the
same idea originally developed in Privileggi (2010), involves non trivial extensions and provide
the main novel technical contribution of the paper. Next, the numerical method provided by
Privileggi (2011) is applied to the detrended system in order to approximate the optimal policy
along the (transitory) turnpike, while the techniques discussed in Privileggi (2013) are employed
to approximate the transition dynamics outside the turnpike and toward a steady state, and
to perform welfare analysis and comparative dynamics.

The paper proceeds as follows. In Section 2 we briefly recall the literature closely related
to the recombinant approach to knowledge accumulation. Section 3 introduces the extended
recombinant growth model (a more detailed discussion on the economic implications of the
model can be found in Marchese et al., 2014) and discusses short and long-run equilibria and
the eventual convergence towards an asymptotic balanced growth path equilibrium. Sections
4–6 are the core of this paper, where we present a computational approach to fully analyze
all types of transition dynamics associated to different IPRs policy regimes. Specifically, in
Section 4, after introducing a suitable detrendization of variables, we characterize and compute
the optimal consumption path along the turnpike, while in Section 5 we focus on trajectories
that start off (above) the turnpike. We develop an algorithm (based on a bisection routine) to
identify the intersection point between paths starting above the turnpike and their continuation
along the turnpike itself, together with the optimal policies along the early transition, so that
we can build the whole optimal consumption paths as piecewise functions by joining the early
trajectories with their continuation along the turnpike. In Section 6 a similar kind of analysis
is performed for studying trajectories not converging to the turnpike but leading to stagnation.
All these findings allow us to assess the impact of different IPRs policy regimes on welfare,
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thus understanding how IPRs policy should be used in order to promote improvements in
social welfare. Section 7 presents a specific illustrative example to test the performances of our
approach and shows how welfare might change under three alternative IPRs policy scenarios.
Section 8, as usual, concludes.

2 Related Literature

Weitzman (1998) firstly introduces the notion of recombinant knowledge: unprocessed ideas
(‘seeds’ in his terminology) are combined one another in order to generate new hybrid ideas;
a costly selection process allows to extract from hybrid ideas some fertile ideas which are in
turn combined with other existing fertile ideas to produce new hybrid ideas, and so on. Such a
recombinant process occurs indefinitely, generating knowledge accumulation and thus economic
growth. The number of newly generated successful ideas in Weitzman’s discrete time Solow-
type (1956) framework defines a recombinant expansion process of second-order through which
the stock of knowledge has the potential of growing at an increasing rate of growth. However,
because the hybridization process of seed ideas necessarily also consumes an amount of physical
resources, explosive growth is precluded by scarcity of resources, so that knowledge actually
grows at some bounded positive rate.

Tsur and Zemel (2007) simplify the dynamics associated to the production of new ideas
by reformulating the model in a continuous-time Ramsey-type (1928) framework, in which the
amount of resources employed in knowledge production, J , is a variable to be optimally chosen
by a benevolent social planner. In continuous-time the new knowledge production function is
defined as:

Ȧ (t) = H (t) η

[

J (t)

H (t)

]

, (1)

where A (t) denotes the stock of knowledge, H (t) represents the number of hybrid seed ideas,
and η (·) is the probability of obtaining a successful idea from each hybridization (matching);
specifically the success probability function η : R+ → [0, 1] is increasing and concave (η′ > 0
and η′′ < 0) according to Weitzman’s assumption (1998). Seed ideas are generated according
to the following production technology:

H (t) = C ′

m [A (t)] Ȧ (t) , (2)

where C ′

m (A) denotes the derivative of the number of different combinations of m elements as
a function of the stock A (Tsur and Zemel, 2007; Privileggi, 2010, 2011). Hence, when (2) is
substituted into (1), it turns out that the law of motion of knowledge at every instant is:

Ȧ (t) =
J (t)

ϕ [A (t)]
,

where ϕ (A) = C ′

m (A) η−1
[

1
C′

m(A)

]

is the expected unit cost of knowledge production as a

function of the stock of knowledge A, converging to the constant 1/η′ (0) > 0 as A → ∞. The
knowledge-based economy in Tsur and Zemel (2007) has two types of equilibria that can be
characterized by means of curves in the knowledge-capital state space: provided that a certain
parametric condition is met growing economies evolve along the turnpike curve, while non
growing economies converge to a point on a stagnation curve. Privileggi (2011, 2013) proposes
a numerical approach to further characterize the transitional dynamics in the Tsur and Zemel’s
model.
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While the Tsur and Zemel’s model allows to describe a fully rational and perfectly informed
benevolent decision’s problem, Marchese et al. (2014) extend the model to allow the presence of
a basic intellectual property rights system. Specifically, they assume that knowledge is a public
good made publicly available for free in the social domain by the government who devotes
public expenditure, G (t), to the purchase of newly produced knowledge from R&D-firms. As
a consequence, the law of motion of knowledge reads as:

Ȧ (t) =
G (t)

ψ [A (t)]
,

where ψ (A) = (η−1)
′

[

1
C′

m(A)

]

represents the expected price of knowledge production as a func-

tion of the stock of knowledge A paid by the government. As ψ (A) > ϕ (A) for any finite level
of knowledge, firms producing knowledge end up obtaining strictly positive profits (see Propo-
sition 1 and 2 in Marchese et al., 2014) and the government, aiming at maintaining a balanced
budget at any time, can actively intervene through an appropriate tax-subsidy scheme in order
to fix the inefficiency generated by these positive profits. Specifically, pure R&D profits can be
taxed at a rate 0 ≤ τ < 1 and the proceeds can be immediately re-invested in the purchase of
new R&D output. In such a framework, the law of motion of knowledge becomes:

Ȧ (t) =
G (t)

φτ [A (t)]
, (3)

with φτ [A (t)] = τϕ [A (t)] + (1− τ)ψ [A (t)] being a linear combination (depending on the
tax parameter, τ) of the costs of knowledge production under full centralization, ϕ [A (t)], and
under full decentralization, ψ [A (t)]. The tax parameter τ represents the policy instrument
available to the government to implement tighter of softer IPRs regimes, represented by smaller
or larger values of τ respectively. Indeed, a higher values of τ implies a weaker appropriability
of the profits generated by new knowledge creation, corresponding to a weaker protection of
intellectual property (softer IPRs regimes). In the following we refer to τ as the IPRs policy
parameter. A full description of the dynamics implied by (3) and some related theoretical
results can be found in Marchese et al. (2014).

3 Model and Asymptotic Equilibria

The model we consider is a continuous time Ramsey-type model of optimal growth with endoge-
nous creation of knowledge, based upon the formulation presented in Marchese et al. (2014).
The social planner maximizes social welfare by choosing the level of consumption, c (t), and
government expenditure, G (t), taking into account the dynamic evolution of capital and knowl-
edge. Social welfare is defined as the infinite discounted (ρ is the pure rate of time preference)
sum of instantaneous utilities; the instantaneous utility function takes the following iso-elastic
form: u (c) = c1−σ

−1
1−σ

, where σ ≥ 1 is the inverse of the intertemporal elasticity of substi-
tution. A unique final consumption good is competitively produced in the economy accord-
ing to a Cobb-Douglas production technology combining capital, k (t), and knowledge, A (t):
y (t) = F [A (t) , k (t)] = θA (t)1−α k (t)α where α is the capital share and θ a scale parameter
measuring the total factor productivity. Apart from this consumption good, in the economy
also knowledge is competitively produced by R&D-firms which sell the newly created knowledge
to the government, which then provides to make it freely available in the society. Output can be
allocated to consumption, capital investment (for simplicity, no depreciation is assumed), k̇ (t),
or government spending, G (t); thus capital evolves according to the following law of motion:
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k̇ (t) = y (t)− c (t)−G (t). Government expenditure is used to purchase new knowledge, which
evolves according to a recombinant rule defined by (3); we assume that only pair of ideas can
be matched and the probability of success in creating new ideas is described by a hyperbolic
function (increasing and concave as in Weitzman, 1998), specifically m = 2 and η (x) = βx

βx+1
,

where β > 0 measures the efficiency of the matching process. The last assumption implies the
following expression for the unit costs of knowledge production:

φτ (A) = τϕ (A) + (1− τ)ψ (A) = ϕ (A) [(1− τ) βϕ (A) + τ ]

=
1

β

(

2A− 1

2A− 3

)[

(1− τ)

(

2A− 1

2A− 3

)

+ τ

]

, (4)

which, as shown by the second equality, turns out to be a function only of the costs of knowledge
production under full centralization, ϕ (A) = 1

β

(

2A−1
2A−3

)

, where the last expression comes from

our specification of η (·) and the fact that m = 2.
Hence, the planner’s problem can be formulated as:

max
[c(t),G(t)]∞

t=t0

∫

∞

0

c1−σ − 1

1− σ
e−ρt dt (5)

subject to







k̇ (t) = θA (t)1−α k (t)α − c (t)−G (t)

Ȧ (t) =
G (t)

φτ (A)

(6)

with the additional constraints G (t) ≤ y (t), c (t) ≤ k (t) + y (t), the usual non-negativity
constraints, and given the initial conditions k (0) and A (0). Suppressing the time argument,
the current-value Hamiltonian associated to the above problem reads as:

H (k,A,G, c, λ, δ) = u (c) + λ [F (k,A)−G− c] + δ
G

φτ (A)
, (7)

where λ and δ are the costate variables associated with k and A respectively. Along with the
transversality condition and the state equations (6), first order necessary conditions are:

u′ (c) = λ (8)

G =







0 if δ/φτ (A) < λ

G̃ if δ/φτ (A) = λ
F (k,A) if δ/φτ (A) > λ

(9)

λ̇ = ρλ− λFk (k,A) (10)

δ̇ = ρδ − λFA (k,A) + δ
Gφ′

τ (A)

φτ (A)
2 , (11)

where G̃ will be defined by (15) later.

Remark 1 While the costates λ (t) and δ (t) are continuous functions of time,1 clearly con-
ditions (9) envisage a discontinuous optimal R&D financing (a ‘bang-bang’ solution) due to
linearity of the Hamiltonian in the variable G. On the other hand, through (8) and the continu-
ity of u′ (·), continuity of λ (t) implies that the optimal trajectory of consumption, c (t), must
be a continuous function of time as well.

1More precisely, they are continuous and piecewise continuously differentiable (Halkin, 1974).
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As in Tsur and Zemel (2007) and Privileggi (2010, 2011, 2013), three curves in the (A, k)
space are useful for characterizing the solutions of the social planner problem in our regulated
economy.

1. The locus satisfying Fk (k,A) =
FA(k,A)
φτ (A)

, which defines the (transitory) turnpike curve:

k̃τ (A) =
α

1− α
φτ (A)A =

α

β (1− α)

(

2A− 1

2A− 3

)[

(1− τ)

(

2A− 1

2A− 3

)

+ τ

]

A. (12)

2. The locus satisfying Fk (k,A) =
FA(k,A)
φτ (A)

for large A, which defines the asymptotic turnpike
curve:

k̃∞τ (A) =
α

β (1− α)
(A+ 2− τ) . (13)

3. The locus Fk (k,A) = ρ, which defines the stagnation line:

k̂ (A) = (θα/ρ)1/(1−α)A. (14)

Differentiating k̃τ (A) in (12) with respect to time and substituting into both equations
forming the dynamic constraint (6), yields

G̃ (t) = [ỹτ (t)− c̃ (t)]
φτ [A (t)]

k̃′τ [A (t)] + φτ [A (t)]
, (15)

where ỹτ (t) = θ
{

k̃τ [A (t)]
}α

A (t)1−α. Condition (15) establishes a relationship between the

optimal investment in R&D, G̃ (t), as a function of the other control variable, the optimal
consumption c̃ (t), when the economy is constrained to grow along the curve k̃τ (A) defined in
(12); that is, in view of (9), when δ (t) /φτ [A (t)] = λ (t) holds.

As shown in Marchese et al. (2014), the economy shows positive long-run growth if the
stagnation line lies above the asymptotic turnpike for sufficiently large A, that is if

θα

[

β (1− α)

α

]1−α

> ρ; (16)

when condition (16) is not met the economy will stagnate forever (zero growth). If (16) is
met, provided that the initial knowledge stock is large enough (that is, A0 >

3
2
) and the initial

capital stock is larger than a certain threshold [that is, k0 ≥ kskτ (A0), where the superscript
‘sk’ is used to refer a Skiba-type (1978) point], the economy will reach the turnpike k̃τ (A) in a
finite time, and then continue to grow along it until reaching the asymptotic turnpike k̃∞τ (A)
in the long-run. In this case the economy converges towards an asymptotic balanced growth
path (ABGP) characterized by a common constant growth rate of output, knowledge, capital
and consumption given by:

γ =
1

σ

{

θα

[

β (1− α)

α

]1−α

− ρ

}

, (17)

which turns out to be totally independent of the IPRs policy parameter τ . Even if the growth
rate is independent of τ , the Skiba-type point kskτ (A0), the turnpike k̃τ (A) and the asymptotic
turnpike k̃∞τ (A) do depend on τ . Specifically, the turnpike curves (both the turnpike and
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the asymptotic turnpike) are monotonic with respect to the IPRs policy parameter τ (see
Propositions 3 and 4 in Marchese et al., 2014).

In order to study how a given economy reacts to different IPRs policies (different values of
0 ≤ τ < 1, assumed to be constant over time) we perform comparative dynamics by chang-
ing the value of parameter τ while keeping constant all other parameters’ values; specifically,
we wish to characterize how the (unique) Skiba-type point kskτ (A0) on the turnpike changes
for different τ -values and to compare the social welfare associated to the optimal trajectories
corresponding to different IPRs policy regimes for an economy starting from the same initial
pair (k0, A0) in t = 0. Provided that condition (16) holds and that k0 ≥ kskτ (A0), the turnpike
k̃τ (A) is ‘trapping’, i.e., the economy keeps growing along it after it is reached. Note that we
need to distinguish between two types of transitions: one driving the system toward the turn-
pike starting from outside it, and another characterizing the optimal path along k̃τ (A) after it
has been entered. Since there exists only one turnpike that crosses the initial point (k0, A0),
corresponding to a specific value for parameter τ , then there is one single value for τ such that
the associated turnpike k̃τ (A) satisfies k̃τ (A0) = k0. Thus, in order to analyze the welfare
implications of optimal trajectories corresponding to different policies starting from the same
initial condition (k0, A0), besides characterizing the optimal dynamics along their correspond-
ing turnpikes, we must also study their optimal dynamics outside such turnpikes for the initial
time interval required to reach them. The computational approach to study these different
dynamics is presented in the next two sections, where we first numerically compute the optimal
consumption c̃ (t) along the turnpike k̃τ (A), and then we select the unique optimal trajectory
joining (k0, A0) (outside the turnpike) in t = 0 with the turnpike itself at some instant t0 > 0
(when the turnpike is entered).

4 Dynamics Along the Turnpike

Let t0 ≥ 0 be the instant at which the turnpike is reached [if k0 = k̃τ (A0) then t0 = 0]. As
in Privileggi (2010, 2011, 2013), under condition (16) and assuming that k (t0) ≥ kskτ [A (t0)],
for t ≥ t0 the relevant variables are bound to move along the turnpike k̃τ (A) and the planner
problem (5), (6) reduces into a simpler optimization problem in one state variable, A, and one
control, c, and one dynamic constraint with reference to the initial instant t0:

2

Ṽτ [A (t0)] = max
[c(t)]∞

t=t0

∫

∞

t0

c1−σ − 1

1− σ
e−ρt dt (18)

subject to

{

Ȧ = [ỹτ (A)− c] /
[

k̃′τ (A) + φτ (A)
]

k (t0) = k̃τ [A (t0)] ,

with the additional constraint 0 ≤ c ≤ k̃τ (A) + ỹτ (A), where the time argument has been
dropped for simplicity, ỹτ (A) = θk̃τ (A)

αA1−α is the output as a function of the sole variable
A on the turnpike k̃τ (A) as defined in (12), k̃′τ (A) = (∂/∂A) k̃τ (A), and φτ (A) is given by
(4). Necessary conditions on the current-value Hamiltonian for problem (18) yield the following
system of ordinary differential equations (ODEs) defining the optimal dynamics for A and c

2The state variable k and the control G become functions of A and c according to (12) and (15) respectively.
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along the turnpike (details are in Section 2.2 in Privileggi, 2010):















Ȧ =
[

θk̃τ (A)
αA1−α − c

]

/
[

k̃′τ (A) + φτ (A)
]

ċ = c

{

θα
[

k̃τ (A) /A
]α−1

− ρ

}

/σ.
(19)

As the stock of knowledge A cannot be depleted and, since (see Proposition 3 in Marchese
et al., 2014) the optimal investment in R&D must be positive along the turnpike, G (t) > 0 for
all t, A must grow: Ȧ (t) > 0 for all t ≥ t0. Some characteristics of the turnpike are summarized
in the next proposition.

Proposition 1

i) For all 0 < α < 1 and all 0 ≤ τ < 1 the graph of k̃τ (A) is a U-shaped curve on (3/2,+∞),
reaching its unique minimum on a unique interior point A > 3/2.

ii) Moreover, for all 0 < α < 1 and all 0 ≤ τ < 1 the denominator on the RHS of the first
equation in (19), k̃′τ (A) + φτ (A), vanishes on a unique interior point As > 3/2, and
k̃′τ (A)+φτ (A) < 0 for 3/2 < A < As, while k̃′τ (A)+φτ (A) > 0 for A > As; As satisfies3

3/2 < As < A.

Proof. i) Differentiating k̃τ (A) in (12) with respect to A one gets

k̃′τ (A) =
α [8A3 − 36A2 + 2 (11 + 10τ)A− 3− 6τ ]

β (1− α) (2A− 3)3
, (20)

where the denominator is positive for all A > 3/2, so that the sign of k̃′τ (A) depends on the
sign of the numerator, which is a 3rd-degree polynomial in A with positive coefficient on A3.
As its value on A = 3/2 is negative, equal to −24 (1− τ) < 0, and its derivative with respect
to A is negative as well on A = 3/2, equal to −32 + 20τ < 0, the polynomial is negative and
decreasing in A = 3/2, so that there is a unique real zero A > 3/2 such that k̃′τ (A) = 0, which
is the unique interior minimum for k̃τ (A).
ii) Using (20) and (4) we can write

k̃′τ (A) + φτ (A) =
8A3 − (20 + 16α + 8τ − 8ατ)A2 + (14 + 8α + 16τ + 4ατ)A− 3− 6τ

β (1− α) (2A− 3)3

where, again, the denominator is positive for all A > 3/2 and the sign of k̃′τ (A)+φτ (A) depends
on the sign of the numerator, which is a 3rd-degree polynomial in A with positive coefficient on
A3. Its value on A = 3/2 is negative, equal to −24α (1− τ) < 0, while its second derivative,
equal to 48A − 40 + 16 (2− τ) (1− α), is positive for all A > 3/2, so that the polynomial is
negative on A = 3/2 and convex for all A > 3/2; therefore, there is a unique real zero As > 3/2
such that k̃′τ (A

s) + φτ (A
s) = 0, k̃′τ (A) + φτ (A) < 0 for 3/2 < A < As and k̃′τ (A) + φτ (A) > 0

for A > As. Note that, because φτ (A
s) > 0, k̃′τ (A

s) + φτ (A
s) = 0 implies k̃′τ (A

s) < 0, and
thus 3/2 < As < A must hold.

3Points A and As correspond to A = 3/2 +
√
6/2 and As = 1 + (1/2)

(

α+
√
1 + 4α+ α2

)

in the original
Tsur and Zemel (2007) framework; they are explicitly computed in Privileggi (2010, 2011) (see Proposition 3
in Privileggi, 2010).
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Proposition 1 (i) states that the graph of k̃τ (A) is a U-shaped curve, so that capital k̃ (t)
decreases when t is small and increases for larger t along the turnpike. Note that, as Ȧ (t) > 0
for all t ≥ t0, the whole ratio on the RHS of the first equation in (19) must be positive
for all t ≥ t0, that is, the numerator, θk̃τ (A)

αA1−α − c, must have the same sign of the
denominator, k̃′τ (A) + φτ (A), and must vanish on a unique interior point, As. Moreover, as
θk̃τ (A)

αA1−α = ỹτ (A), Proposition 1 (ii) implies that the optimal consumption c̃τ must satisfy
c̃τ > ỹτ (A) for A < As, c̃τ < ỹτ (A) for A > As, and c̃τ = ỹτ (A) for A = As. We thus conclude
that in early times it is optimal to take away physical capital from the output-producing sector
both for investment in R&D and consumption.

4.1 Detrended Dynamics

As system (19) diverges in the long-run, we transform the state variable A and the control c in
a state-like variable, µ, and a control-like variable, χ, defined respectively by

µ = k̃τ (A) /A = [α/ (1− α)]φτ (A) (21)

χ = c/A, (22)

where in the second equality in (21) we used (12) and φτ (A) is defined in (4). As φτ (·) is strictly
decreasing, there is a one-to-one relationship between A and µ; in order to find it explicitly, we
write (21) in implicit form:

β (1− τ) [ϕ (A)]2 + τϕ (A)− [(1− α) /α]µ = 0, (23)

where φτ (·) has been suitably rewritten. Hence, two solutions for ϕ (A) are found, both de-
pending on µ; ruling out the negative one, we can express the (first-best) unit-cost, ϕ, as a
function of the detrended variable µ:

ϕ (µ) = [R (µ)− τ ] / [2β (1− τ)] , (24)

where
R (µ) =

√

τ 2 + 4 [(1− α) β (1− τ) /α]µ. (25)

Clearly, with R (µ) defined as in (25) ϕ (µ) in (24) turns out to be strictly increasing in µ.
Then, using the fact that ϕ (A) = 1

β

(

2A−1
2A−3

)

, we can write A as a strictly decreasing function of

ϕ: A = 1/ (βϕ− 1) + 3/2; finally, substituting ϕ as in (24) we obtain:

A = 2 (1− τ) / [R (µ)− 2 + τ ] + 3/2, (26)

which establishes a one-to one, strictly decreasing relationship between A and µ.
Following the same steps as in Section 3.1 in Privileggi (2010), we divide the first equation

in (19) by A, differentiate (21) with respect to time so that µ̇ =
[

k̃′τ (A)− µ
] (

Ȧ/A
)

, substitute

Ȧ/A accordingly, and use (22) to write

µ̇ =
[

k̃′τ (A)− µ
]

(θµα − χ) /
[

k̃′τ (A) + φτ (A)
]

. (27)

In order to rewrite (27) entirely in terms of µ and χ, the key step is to write k̃′τ (A) as a function
of µ. Differentiating (12) with respect to A one gets k̃′τ (A) = [α/ (1− α)] [φ′

τ (A)A+ φτ (A)],
so that we must compute φ′

τ (A) first. Differentiating φτ (A) with respect to A we get φ′

τ (A) =
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ϕ′ (A) [2β (1− τ)ϕ (A) + τ ]; now recall from Privileggi (2010), p. 262, that ϕ′ (A) can be writ-
ten as a function of ϕ (A). In fact, differentiating and using ϕ (A), ϕ′ (A) = −4/

[

β (2A− 3)2
]

=

− (1/β) [2/ (2A− 3)]2 = − (1/β) [βϕ (A)− 1]2 holds. Thus,

φ′

τ (A) = ϕ′ (A) [2β (1− τ)ϕ (A) + τ ]

= − (1/β) [βϕ (A)− 1]2 [2β (1− τ)ϕ (A) + τ ]

= − 1

β

[

R (µ)− τ

2 (1− τ)
− 1

]2

[R (µ)− τ + τ ]

= −R (µ)

β

[

R (µ) + τ − 2

2 (1− τ)

]2

,

where in the third equality we used (24) to replace ϕ (A) with ϕ (µ) – the positive solution
of the implicit form (23) as a function of µ – and R (µ) is given by (25). Substituting the
expression above in k̃′τ (A) = [α/ (1− α)] [φ′

τ (A)A+ φτ (A)] and using the second equality in
(21), φτ (A) = [(1− α) /α]µ, after a fair amount of algebra k̃′ (A) becomes

k̃′τ (A) = µ− αR (µ)
[

3R (µ)2 − 2 (4− τ)R (µ) + 4− τ 2
]

8β (1− α) (1− τ)2
, (28)

which, when substituted in (27) and, again, using (21), yields

µ̇ =
k̃′τ (A)− µ

k̃′τ (A) + φτ (A)
(θµα − χ) =

[

1− µ

αk̃′τ (A) + (1− α)µ

]

(θµα − χ)

=

{

1− 8β (1− α) (1− τ)2 µ

8β (1− α) (1− τ)2 µ− α2R (µ)
[

3R (µ)2 − 2 (4− τ)R (µ) + 4− τ 2
]

}

(θµα − χ) .

Differentiating (22) with respect to time, using the second equality in (19) and substituting
Ȧ/A from the first equation in (19), we get

χ̇ =

[

θαµα−1 − ρ

σ
− θµα − χ

k̃′τ (A) + φτ (A)

]

χ,

which, by replacing k̃′τ (A) as in (28) and φτ (A) = [(1− α) /α]µ, yields the following ODE for
the control-like variable χ:

χ̇ =

[

θαµα−1 − ρ

σ
− 8αβ (1− α) (1− τ)2 (θµα − χ)

8β (1− α) (1− τ)2 µ− α2R (µ)
[

3R (µ)2 − 2 (4− τ)R (µ) + 4− τ 2
]

]

χ.

Hence, we have built the following system of ODEs describing the transition optimal dy-
namics in the detrended variables µ (state) and χ (control), conjugate to the true (diverging)
system (19):



























µ̇ =

[

1− 8β (1− α) (1− τ)2 µ

Q (µ)

]

(θµα − χ)

χ̇ =

[

θαµα−1 − ρ

σ
− 8αβ (1− α) (1− τ)2 (θµα − χ)

Q (µ)

]

χ,

(29)

where, to simplify notation, we have set

Q (µ) = 8β (1− α) (1− τ)2 µ− α2R (µ)
[

3R (µ)2 − 2 (4− τ)R (µ) + 4− τ 2
]

, (30)
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with R (µ) defined in (25) – i.e., R (µ) =
√

τ 2 + 4 [β (1− α) (1− τ) /α]µ.
Apart from the more algebraic complexity of function Q (µ) in (30) – including R (µ) as

defined in (25) – system (29) resembles closely system (56) in Privileggi (2010) [or, equivalently,
system (22) in Privileggi (2011)]. As a matter of fact, the whole qualitative behavior of the
dynamics described by (29) turns out to be the same as in those models, as it will be briefly
illustrated below.

4.2 Steady States and Phase Diagram

The state-like variable µ has the same range as in the centralized model by Privileggi (2010,
2011, 2013): [µ∗,+∞) with µ∗ = α/ [β (1− α)]. To see this note that µ∗ in (25) yields R (µ∗) =
2 − τ , which, when plugged into (26), leads to the upper bound of A, A → +∞; while, again
using (25) in (26), µ→ +∞ corresponds to A = 3/2, the lower bound of the A range.

It turns out that system (29) has three steady states in the (µ, χ) phase diagram, with
the same properties of the three steady states characterizing the optimal dynamics for the
centralized model as discussed in Privileggi (2010, 2011, 2013). From the first equation in (29)
two loci on which µ̇ = 0 on the [µ∗,+∞)× R++ plane are found:

the curve χ = θµα and the vertical line µ ≡ µ∗. (31)

The former vanishes the second factor in the RHS of the first equation in (29), while µ∗ is
the largest (and only feasible) solution of Q (µ)− 8β (1− α) (1− τ)2 µ = 0, vanishing the first
factor in the RHS of the same equation. By (30), such equation is equivalent to 3R (µ)2 −
2 (4− τ)R (µ) + 4− τ 2 = 0, which admits the only feasible solution4 R (µ∗) = 2− τ . From the
second equation in (29) the unique locus on which χ̇ = 0 is given by:

χ = θµα −Q (µ)
(

θαµα−1 − ρ
)

/
[

8αβσ (1− α) (1− τ)2
]

. (32)

Note that the necessary condition for growth (16) is equivalent to

θα (µ∗)α−1 > ρ. (33)

1. The first steady state is thus (µ∗, χ∗) defined by

µ∗ =
α

β (1− α)
and χ∗ = θ

[

α

β (1− α)

]α (

1− 1

σ

)

+
ρ

βσ (1− α)
, (34)

where χ∗ is (32) evaluated at µ = µ∗, which is the intersection point between the second
locus in (31), µ ≡ µ∗, and the curve (32). We shall see in Proposition 2 below that
(µ∗, χ∗) is the saddle-path stable steady state to which system (29) converges in the long-
run. Indeed, µ∗ corresponds to the capital/knowledge ratio along the asymptotic turnpike
k̃∞τ (A), i.e., the slope of k̃∞τ (A) in (13), while χ∗ is the consumption/knowledge ratio,
i.e., the asymptotic slope of the optimal policy c̃ (A), when consumption steadily grows at
the constant rate γ defined in (17). Note that (µ∗, χ∗) is independent of the IPRs policy
parameter τ and is the same as in Privileggi (2010, 2011, 2013).

2. As Q (µ∗) − 8β (1− α) (1− τ)2 µ∗ = 0 implies Q (µ∗) > 0, (33) implies that on µ = µ∗

the locus (32) lies strictly below the first locus in (31), χ = θµα. However, as 0 < α < 1,
θαµα−1 is a decreasing function of µ; hence, there is a unique value µ̂ > µ∗ such that

4The other solution, R (µ) = (2 + τ) /3, when plugged into (26), yields A = 0, which is unfeasible.
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[

θα (µ̂)α−1 − ρ
]

= 0. It is clear from the second term in the RHS of (32) that the locus
(32) and the first locus in (31) intersect in µ = µ̂; hence, the point (µ̂, χ̂), with coordinates

µ̂ = (θα/ρ)
1

1−α and χ̂ = θ (θα/ρ)
α

1−α , (35)

is another steady state for (29). Again it is independent of τ and equals its analogous in
Privileggi (2010, 2011, 2013). From (14), it is immediately seen that the (unique) steady
state µ̂ in (35) corresponds to any steady state on the stagnation line k̂ (A) in the (A, k)
space. Using µ̂ into (26), we get Âτ = 2 (1− τ) / [R (µ̂) + τ − 2] + 3/2, where Âτ denotes
the (unique) value at which the turnpike k̃τ (A) intersects the stagnation line k̂ (A) in the
original model. Recalling that the expression of the analogous point for the centralized
model (p. 264 in Privileggi, 2010) is Â = α/ [β (1− α) µ̂− α] + 3/2 and using (25) it
is readily shown that Â < Âτ for all 0 ≤ τ < 1. That is, the intersection points of the
decentralized economies, Âτ , are all larger than the intersection point of the centralized
economy, Â.

3. The last steady state corresponds to the second intersection point between the locus (32)
and the first locus in (31), which is identified by a zero of function Q (µ), again vanishing
the second term in the RHS of (32). As R (µ) in 25 is strictly increasing in µ, it is
invertible, so that µ = α (R2 − τ 2) / [4β (1− α) (1− τ)]; after substituting into (30), we
can rewrite Q (µ) as a 3rd-degree polynomial in R with negative coefficient on the term
R3: Q (R) = −3α2R3 + 2α [1 + 4α− (1 + α) τ ]R2 − α2 (4− τ 2)R− 2α (1− τ) τ 2. Recall
that R∗ = R (µ∗) = 2− τ is the left endpoint of the range for R, [R∗,+∞), corresponding
to the range [µ∗,+∞) for µ. As Q (µ∗) = Q (R∗) > 0 and its derivative is positive as

well on R∗, Q
′

(R∗) = 4 (1− α) (τ 2 − 3τ + 2) > 0 for all 0 ≤ τ < 1, there is a unique
feasible real zero, call it Rs > R∗, such that Q (Rs) = 0, Q (R) > 0 for R∗ ≤ R < Rs and
Q (R) < 0 for R > Rs. To Rs corresponds µs

τ which, according to (26), defines our third
and last steady state (µs

τ , χ
s
τ ) as

µs
τ = α

[

(Rs)2 − τ 2
]

/ [4β (1− α) (1− τ)] and χs
τ = θ (µs

τ )
α . (36)

Note that µs
τ is defined as a function of Rs, which cannot be explicitly computed as

function of parameters α and τ ; however, for our purposes it will be sufficient to calculate
it whenever some values for α and τ are chosen. Thus, µs

τ > µ∗ is the largest (and only
admissible) zero of the function Q (µ) defined in (30), with Q (µ) > 0 for µ∗ ≤ µ < µs

τ

and Q (µ) < 0 for µ > µs
τ . The value µs

τ corresponds to the critical point As on which
c = ỹτ (A

s) in the (A, c) space discussed in Proposition 1 (ii). The steady state (µs
τ , χ

s
τ )

defined in (36) is the only one depending on the IPRs policy parameter τ in our model;
in other words, it is the only steady state that differs from its analogous defined by (62)
on p. 264 in Privileggi (2010).

While the singular point (µs
τ , χ

s
τ ) lies north-east of the long-run steady state (µ∗, χ∗) for all

admissible parameters’ values, the position of (µ̂, χ̂) depends on the magnitude of the discount
factor ρ with respect to parameters α, θ and β. Following Privileggi (2010, 2011, 2013), we
shall assume that

θα (µs
τ )

α−1 < ρ < θα (µ∗)α−1 , (37)

envisaging a phase diagram in which (µ̂, χ̂) lies north-east of (µ∗, χ∗) and south-west of (µs
τ , χ

s
τ ).

Note that the RHS in (37) equals the necessary condition (33) for long-run growth.

Proposition 2 Provided that (37) holds, the two fixed points (µ∗, χ∗) and (µ̂, χ̂), defined in
(34) and (35) respectively, can be classified as follows.
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i) (µ∗, χ∗) is saddle-path stable, with the stable arm converging to it from north-east whenever
the initial values (µ (t0) , χ (t0)) are suitably chosen.

ii) (µ̂, χ̂), with coordinates defined in (35), is an unstable clockwise-rotating spiral.

Proof. By studying both the phase diagram and/or the Jacobian of (29) evaluated at
(µ∗, χ∗) and (µ̂, χ̂) the result is readily shown; we omit the cumbersome calculations for brevity.
As a matter of fact, the Jacobian on (µ∗, χ∗) turns out to be the same as that of the centralized
model; also the Jacobian on (µ̂, χ̂) is the same as its counterpart in the centralized model, with
the appropriate Q (µ̂) as in (30) in place of that defined in (57) on p. 263 in Privileggi (2010).
We refer the reader to the proof of Proposition 4 in Privileggi (2010) for details.

Like in the centralized model, the critical point (µs
τ , χ

s
τ ) defined in (36) is a ‘supersingu-

lar’ steady state whose Jacobian contains elements diverging to infinity, so that its stabil-
ity/instability properties cannot be classified analytically. It corresponds to the value As on
which the RHS of the first equation in (19) is not defined (both the numerator and the de-
nominator vanish) as discussed in Proposition 1 (ii). It is crossed by the stable arm of the
saddle-path at low values of the stock of knowledge A, that is, in early times (in proximity
of the very beginning of the economy’s dynamics). Proposition 2 (ii) implies that, like in the
centralized model, the steady state (µ̂, χ̂) is irrelevant for our analysis, as the optimal trajectory
keeps well apart from it. The qualitative phase diagram associated to (29) is the same as that in
Figure 1 on p. 266 in Privileggi (2010), here reported in Figure 1, where all loci are drawn and
stability/instability properties of the three steady states are illustrated. We refer the reader to
that paper for a more thoroughly discussion of the qualitative properties of the three steady
states (µ∗, χ∗), (µ̂, χ̂) and (µs

τ , χ
s
τ ).

µ

χ

µ∗ µ̂ µs
τ

χ∗

χ̂

χs
τ

µ̇ = 0

χ̇ = 0

Figure 1: phase diagram of system (29) when θα (µs
τ )

α−1 < ρ < θα (µ∗)α−1.

4.3 Optimal Policy, Welfare and Time-path Trajectories

Remember that k̃τ (A) > k̃∞τ (A) for all A (and thus for all t); this is consistent with µ (t) > µ∗

for all t. Because, by Proposition 2 (i), the stable arm χ (µ) – which is the optimal policy
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expressed in terms of state-like and control-like variables – approaches (µ∗, χ∗) from north-east,
along the turnpike both ratios µ (t) = k̃τ [A (t)] /A (t) and χ (t) = c̃ (t) /A (t) decline in time
when they are approaching the asymptotic turnpike k̃∞τ (A) corresponding to (µ∗, χ∗).

In order to study the policy function χ (µ) – which is the conjugate of c̃ (A) in the original
model – we apply the technique developed by Mulligan and Sala-i-Martin (1991) and tackle the
unique ODE given by the ratio between the two equations in (29):

χ′ (µ) =
[(αθµα−1 − ρ) /σ]Q (µ)− 8αβ (1− α) (1− τ)2 [θµα − χ (µ)]

[

Q (µ)− 8β (1− α) (1− τ)2 µ
]

[θµα − χ (µ)]
χ (µ) , (38)

where Q (µ) is defined in (30). Following Privileggi (2011, 2013), to numerically approximate
the solution, χτ (µ), of (38) we apply a Projection method based on OLS of the residual function
associated to equation (38), assuming that the approximate solution is a linear combination

of Chebyshev polynomials up to degree n translated on an interval
[

µ
τ
, µτ

]

– whose endpoints

µ
τ
and µτ and further details will be discussed in Subsection 7.1 – containing the two relevant

steady states, (µ∗, χ∗) and (µs
τ , χ

s
τ ), which are used to set the initial condition for the OLS

algorithm. Such function χτ (µ) is then used together with (21) and (22) to get the optimal
consumption policies for problem (18) according to

c̃τ (A) = χτ (µ)A = χτ

[

α

β (1− α)
φτ (A)

]

A, (39)

where φτ (A) is defined in (4).
For parameter values [see (51) in Section 7] satisfying condition (48) of Proposition 4 in

Privileggi (2013), we can compute the value functions associated to (18) – yielding social welfare
along the turnpikes and toward the ABGP as functions of the initial stock of knowledge A and
independently of the starting instant t0, for any τ -value in [0, 1) – by means of the Hamilton-
Jacobi-Bellman (HJB) equation as [see equation (47) in Privileggi, 2013]

Ṽτ (A) =
1

ρ

[

c̃τ (A)
1−σ − 1

1− σ
+
θk̃τ (A)

αA1−α − c̃τ (A)

c̃τ (A)
σ

]

, (40)

where c̃τ (A) is given by (39).
To get the time-path trajectories µτ (t) for any fixed value τ ∈ [0, 1) we substitute the

approximated optimal policies χτ (µ) into the first equation of (29), which is then numerically
solved through the standard Fehlberg fourth-fifth order Runge-Kutta method with degree four
interpolant available in Maple 16, using the initial conditions given by the upper bounds µτ .
The time-path trajectories for the detrended controls are thus computed as χτ [µτ (t)]. The
time-path trajectories of the stock of knowledge, Ãτ (t), and capital, k̃τ (t), along the turnpikes

are obtained using µτ (t) in (26) and then computing k̃τ (t) = k̃τ

[

Ãτ (t)
]

from the definition

of turnpike in (12). Similarly, the time-path trajectories of output along the turnpikes are

given by ỹτ (t) = θÃτ (t)
{

k̃τ

[

Ãτ (t)
]

/Ãτ (t)
}α

, while the time-path trajectories of the optimal

consumption along the turnpikes, c̃τ (t), are obtained using trajectories χτ (t) and Ãτ (t) in (22).

5 Dynamics and Welfare Above the Turnpike

We noted at the end of Section 3 that also optimal trajectories starting ‘outside’ the turnpike at
t = 0 and entering the turnpike at some later instant t0 > 0 must be considered. As observed
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in Privileggi (2013), trajectories starting from initial conditions (A0, k0) that lie ‘above’ the
turnpike at t = 0 are easier to handle; therefore, we assume that k (0) = k0 ≥ k̃τ [A (0)] =
k̃τ (A0). When k0 > k̃τ (A0) we must study the optimal trajectories from (A0, k0) in t = 0 to
(

A (t0) , k̃τ [A (t0)]
)

in t = t0 > 0. Any optimal trajectory above the turnpike must satisfy the

last necessary condition in (9), δ/φτ (A) > λ, corresponding to the largest possible investment
in R&D activities by the government:5 G = θkαA1−α. In other words, from the social planner
point of view it is optimal to invest all the output into the production of new knowledge along
such early-transition trajectories. Hence, problem (5), (6) simplifies into one in two interlinked
state variables, A and k, and one control variable, c:

Ṽ ab
τ [A0, A (t0)] = max

[c(t)]
t0
t=0

∫ t0

0

c1−σ − 1

1− σ
e−ρt dt (41)

subject to















k̇ = −c
Ȧ = θkαA1−α/φτ (A)
k (0) = k0, A (0) = A0

k (t0) = k̃τ [A (t0)] , c (t0) = c̃τ [A (t0)] ,

where the superscript ‘ab’ is used to refer any function related to dynamics above the turnpike,
with the additional constraint 0 ≤ c ≤ k, where again the time argument has been dropped
for simplicity. The terminal conditions k (t0) = k̃τ [A (t0)] and c (t0) = c̃τ [A (t0)] bound our
trajectory to reach the turnpike k̃τ (A) at time t = t0 with the same consumption value as the
optimal consumption c̃τ [A (t0)] on the turnpike evaluated according to (39) on A = A (t0). The
latter condition holds because the control c – the optimal consumption – is continuous for all
t ≥ 0, as noted in Remark 1.

Necessary conditions on the current-value Hamiltonian associated to (41) yield the following
optimal dynamics:







k̇ = −c
Ȧ = θkαA1−α/φτ (A)

ċ = c
[

θα (k/A)α−1 − ρ
]

/σ,

(42)

which is a boundary problem in three variables, k, A, c, and one unknown, the terminal instant
at which the turnpike is entered, t0, with four boundary conditions – the initial and terminal
conditions in problem (41).

To approximate the solution of (41) we take the ratios k̇/Ȧ and ċ/Ȧ in system (42) and study
the following system of ODEs in the functions k (A) and c (A) (see Mulligan and Sala-i-Martin,
1991):















k′ (A) = − c (A)φτ (A)

θk (A)αA1−α

c′ (A) =

{

θα [k (A) /A]α−1 − ρ
}

c (A)φτ (A)

θk (A)αA1−α
.

(43)

Provided that we know the value Ar
τ = A (t0) on which at instant t0 the trajectories starting

from (A0, k0) in t = 0 and defined by the dynamics above stop and switch regime becoming
the optimal dynamics along the turnpike k̃τ (A) discussed in the previous subsection, to solve
(43) we apply a Projection method based on Chebyshev Orthogonal Collocation on n collocation
points over the (compact) interval [A0, A

r
τ ] applied to the two residual functions – one for each

policy kabτ (A) and cabτ (A) to be estimated – built upon approximation functions which are linear

5See Proposition 1 on p. 3464 in Tsur and Zemel (2007).
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combinations of n Chebyshev polynomials. As initial condition for the Maple 16 ‘fsolve’ routine
used to numerically solve the system of 2n + 2 equations setting the two residual functions
equal to zero on each collocation node plus the two terminal conditions kabτ (A) = k̃τ (Ar) and
cabτ (A) = c̃τ (Ar) available from the calculations in the previous subsection, we use a Chebyshev

regression of order n on the lines crossing the pairs of points
(

A0, k̃τ (A0)
)

,
(

Ar, k̃τ (Ar)
)

and

(A0, c̃τ (A0)), (Ar, c̃τ (Ar)) for the k
ab
τ (A) and cabτ (A) policies respectively. Further details can

be found in Section 5 of Privileggi (2013).
Note that the terminal conditions kabτ (A) = k̃τ (Ar) and cabτ (A) = c̃τ (Ar) – and thus the

whole policies kabτ (A) and cabτ (A) over [A0, A
r
τ ] – crucially depend on the number Ar

τ . As a
matter of fact, both the value Ar

τ and the instant t0 at which Ar
τ is reached are unknown. The

following Algorithm 1, based on a bisection routine, aims at finding Ar
τ by searching the unique

zero of the function
f (Ar

τ ) = kabτ (A0)− k0, (44)

where kabτ (A0) is the initial capital level corresponding to A0 at t = 0 along the backward-

in-time trajectory from the point
(

Ar
τ , k̃τ (A

r
τ )
)

on the τ -valued turnpike according to the

capital optimal policy kabτ (A) solving (43), and k0 is the initial capital value set in problem
(41). In other words, the algorithm runs several estimates of the solution of system (43) –

corresponding to different intersection points
(

Ar
τ , k̃τ (A

r
τ )
)

– and each estimated policy kabτ (A)

is then evaluated (backward-in-time) at the initial knowledge value A0 until it matches the true
initial capital value k0. Besides yielding Ar

τ , clearly Algorithm 1 provides also the associated
optimal policies kabτ (A) and cabτ (A) over [A0, A

r
τ ] as its output.

Because, by construction, we are considering initial capital endowments that lie ‘above’ the
turnpike at t = 0, k0 > k̃τ (A0), so that f (A0) < 0, A0 clearly plays a useful role as left endpoint
of the initial interval bracketing the unique zero of f in (44). As far as the right endpoint of
such bracket is concerned, we shall see from the analysis in Subsection 7.2 (see Table 1) that
the knowledge value corresponding to the Skiba-point on each turnpike considered in Section 7
turns out to be larger than our choice of initial stock of knowledge, Ãsk

τ > A0, for the τ -values
there considered. Therefore, we can start from the known value Ãsk

τ and then add subsequent
increments until a knowledge point AR is found such that f (AR) > 0, then we set [A0, AR] as
the initial bracketing interval for the zero of f we are looking for.

Algorithm 1 (Finds intersection point Ar
τ and policies kabτ (A), cabτ (A) over [A0, A

r
τ ])

Step 1 (Initialization): Choose 0 ≤ τ < 1 and set [AL, AR] =
[

A0, Ã
sk
τ

]

, with Ãsk
τ being the

knowledge stock corresponding to the (unique) Skiba-point on the turnpike k̃τ (A), as the
initial interval for searching the interval bracketing the zero of f in (44), set a (switch)
variable B = 1, choose an increment ǫ > 0, choose stopping rule parameters 0 < ε, η < 1,
and set (fake) initial values f (Ar

τ ) = f (AR) = 1 > η.

Step 2 (Bisection Loop): While AR − AL > ε and |f (Ar
τ )| > η do:

1. if B = 1 then set AR = AR + ǫ (increase right bound) and Ar
τ = AR, else set

Ar
τ = (AR − AL) /2 (compute midpoint),

2. approximate policies kabτ (A) and cabτ (A) over [A0,A
r
τ ] by solving (43) through the

Collocation-Projection method described above,

3. compute kabτ (A0) evaluating the policy kabτ (A) found in the previous step on A = A0,
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4. update f (Ar
τ ) in (44) by setting f (Ar

τ ) = kabτ (A0)− k0,

5. if B = 1 and f (Ar
τ ) < 0 then (keep searching for bracket right endpoint) go to step

2, else (bisection loop)
- if B = 1 set B = 0 (stop searching for bracket),
- refine the bounds: if f (Ar

τ ) f (AR) < 0 then set AL = Ar, else set AR = Ar and
update f (AR) by setting f (AR) = f (Ar

τ ).

Step 3: Report the intersection point value Ar
τ from step 2.1 and optimal policies kabτ (A) and

cabτ (A) over [A0,A
r
τ ] from step 2.2.

Once we have the functions kabτ (A) and cabτ (A) over [A0, A
r
τ ] we can numerically compute the

optimal time-path trajectories Aab
τ (t), kabτ (t), yabτ (t) and cabτ (t) between t = 0 and the instant

t0 at which each turnpike is reached. To get the optimal time-path trajectory of the stock of
knowledge Aab

τ (t) along this early transition dynamic for the economy, kabτ (A) is substituted
into the first equation of (42) so to obtain a ODE with respect to time which can be numerically
solved through the standard Fehlberg fourth-fifth order Runge-Kutta method with degree four
interpolant method available in Maple 16, using the initial condition Aab

τ (0) = A0 in t = 0
over a tentative time range of [0, tmax], with the right endpoint larger than the intersection
instant t0, that is, such that tmax > t0. The choice of tmax comes from a guess-and-try approach
and is delicate issue as it must be larger than t0 – which is still unknown – but not too large
to prevent the Maple 16 Runge-Kutta algorithm to collapse (see also Remark 4 in Privileggi,
2013). Next, we eventually calculate t0 by solving Aab

τ (t) = Ar with respect to t through
the Maple 16 ‘fsolve’ routine over [0, tmax]. The other optimal time-path trajectories over
[0, t0] are then computed as kabτ (t) = kabτ

[

Aab
τ (t)

]

, yabτ (t) = Gab
τ (t) = θkabτ (t)αAab

τ (t)1−α and
cabτ (t) = cabτ

[

Aab
τ (t)

]

respectively.
The whole optimal time-path trajectories, Aτ (t), kτ (t), yτ (t), cτ (t) and Gτ (t), for all t ≥ 0

are then built as piecewise functions by joining each trajectory above the turnpike over [0, t0]
with its ‘continuation’ along the turnpike over (t0,+∞) at the instant t = t0, the latter being
obtained through the procedure discussed at the end of Subsection 4.3 and shifted forward in
time up to the instant at which the knowledge stock value Ar

τ is reached. As G (t) = y (t) for
0 ≤ t < t0 while G (t) = G̃ (t) < y (t) for t ≥ t0, with G̃ (t) given by (15), we expect to observe
a discontinuity ‘jump’ for the control G at the instant t = t0 [see necessary conditions (9)],
while all other trajectories must exhibit a kink on t = t0, where they are not differentiable (see
Figures 6 and 7 in Section 7).

We shall see in Subsection 7.3 that the speed of the economy’s growth is heavily affected by
whether the initial condition (A0, k0) lies either ‘on’ or ‘above’ the turnpike at t = 0. Because,
when k lies above the turnpike, for the social planner it is optimal to invest all output in R&D
activities, when k0 > k̃τ (A0) the time period, t0, required to reach the turnpike is much shorter
than the time period necessary to reach the same point on the turnpike when starting already
on the turnpike, along which it is optimal to invest only a fraction of the output in R&D
activities.

Finally, to estimate the social welfare associated to the whole piecewise-built time-path tra-
jectory toward the ABGP starting at t = 0 from (A0, k0), we apply the Principle of Optimality
and again Proposition 4 in Privileggi (2013). Specifically, after having computed the intersec-
tion instant t0, we can exploit the early optimal consumption trajectory cabτ (t) just calculated
and conveniently define the welfare as the sum of two terms:

Ṽ ab
τ (A0, A

r
τ ) =

∫ t0

0

e−ρt c
ab
τ (t)1−σ − 1

1− σ
dt+e−ρt0Ṽτ (A

r
τ ) , (45)
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where Ṽτ (A
r
τ ) is the value function of problem (18) according to (40) evaluated at the intersec-

tion point Ar
τ obtained from Algorithm 1. That is, at t = t0 we consider the welfare generated

along the turnpike when it starts with initial stock of knowledge Ar
τ , and discount this value

in t = 0. The first integral on the RHS of (45) is approximated through a Gauss-Legendre
quadrature routine on a large number of nodes over the time range [0, t0], using the time-path
trajectory value of optimal consumption, cabτ (t), defined before on each node.

6 Dynamics and Welfare Toward Stagnation

Finally, we must also evaluate social welfare toward the steady state
(

A0, k̂ (A0)
)

on the stag-

nation line starting from the initial point (A0, k0) in t = 0. This value can be compared with
those obtained from trajectories leading to the ABGP as results of the analysis in Subsection
4.3 and Section 5 in order to check whether the Skiba condition is satisfied. According to con-
dition δ/φτ (A) < λ in (9), the optimal dynamics characterizing this scenario follow a constant
zero-R&D investment policy, G (t) ≡ 0, and are just standard saddle-path stable trajectories
of a typical Ramsey model in which the level A0 of knowledge stock remains constant through
time. That is, they are solutions of the following problem in the two variables k (state) and c
(control), and the usual dynamic constraint:

V̄ (A0, k0) = max
[c(t)]

t0
t=0

∫

∞

0

c1−σ − 1

1− σ
e−ρt dt (46)

subject to

{

k̇ = θkαA1−α
0 − c,

k (0) = k0.

Necessary conditions on the current-value Hamiltonian associated to (46) easily lead to the
following well-known conditions:

{

k̇ = θkαA1−α
0 − c

ċ = c
[

θα (k/A0)
α−1 − ρ

]

/σ.
(47)

Rescaling the variables k and c in system (47) by the ratios µ = k/A0 and χ = c/A0 and keeping
A0 constant, we can evaluate the optimal policy associated to (46) in the same ‘detrended’
(µ, χ) space that contains the optimal policy χ̃τ (µ) of model (18) given by the solution of (38)
obtained in Subsection 4.3. A constant stock of knowledge A ≡ A0 implies Ȧ ≡ 0, which allows
to rewrite system (47) as

{

µ̇ = θµα − χ
χ̇ = χ (θαµα−1 − ρ) /σ.

Again we take the ratio of equations above and study the unique ODE characterizing the
optimal policy in this scenario:

χ′ (µ) =
(θαµα−1 − ρ)χ (µ)

σ [θµα − χ (µ)]
. (48)

Following Privileggi (2013) we approximate the solution of (48) through a Projection method
based on Chebyshev Orthogonal Collocation on n collocation points applied to a residual func-
tion built upon an approximation function which is a linear combination of n Chebyshev poly-
nomials translated over the (compact) interval [µ̂, µmax], where µ̂ = k̂ (A) /A is the steady state
defined in (35), which happens to be neutral with respect to the optimal dynamics on the
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turnpike discussed in Section 4, representing all points on the stagnation line in the detrended
space6 (µ, χ), for all A, while µmax is the upper-bound choice for the (global) analysis along the
turnpike that will be discussed in Subsection 7.1. Such choice for the right endpoint µmax of
the range over which a solution of (48) is being approximated allows for a direct comparison
between trajectories that start on or above the turnpike and either diverge toward the ABGP or
converge to stagnation, as will become clear in Subsection 7.2. See also footnote 10 in Privileggi
(2013) for further technical details.

The optimal consumption policy for problem (46), which is a function of the only variable
k, is then obtained as

c̄ (A, k) = χ̄ (k/A)A, (49)

where its dependence on the initial stock of knowledge A – which remains constant with respect
to optimal dynamics – has been emphasized in order to eventually reach a formulation for a
value function that is a function of A. To approximate the value function V̄ (A, k) of problem
(46) again we follow Privileggi (2013) and exploit the HJB equation as [see equation (45) in
Privileggi, 2013]

V̄ (A, k) =
1

ρ

[

c̄ (A, k)1−σ − 1

1− σ
+
θkαA1−α − c̄ (A, k)

c̄ (A, k)σ

]

, (50)

where c̄ (A, k) is given by (49).

7 Simulations

We assume the following values for the fundamentals parameters in our economy, which are
common in the macroeconomic literature (see, e.g., Mulligan and Sala-i-Martin, 1993, and
Privileggi, 2010, 2011, 2013) and satisfy both the necessary growth condition (16) and condition
(48) of Proposition 4 in Privileggi (2013):7

α = 0.5, ρ = 0.04, θ = 1, σ = 1 (log utility), β = 0.01429. (51)

Our goal is to perform comparative dynamics analysis among different optimal transition tra-
jectories characterized by the same parameters’ values as in (51) and starting from the same
values of initial stock of knowledge, A0, and physical capital, k0, under different values of the
policy parameter, 0 ≤ τ < 1, which are assumed to be constant over time. Specifically, we
consider the following three values:

τ = 0, 0.5, 0.9. (52)

From Proposition 4 in Marchese et al. (2014) it is known that to each τ -value in (52)
corresponds a different (transitory) turnpike k̃τ (A) as defined in (12), each lying one below the
other for increasing values of the parameter τ , with k̃0 (A) – i.e., the turnpike corresponding
to τ = 0 – on top, characterizing a scenario in which the largest capital/knowledge ratio is
optimal to sustain growth, and k̃0.9 (A) at the bottom, envisaging an equilibrium with smaller
capital/knowledge ratio and closer to the the first-best solution. Each curve converges to its own

6See footnotes 13 and 14 in Privileggi (2013).
7The β value has been chosen in order to contain the error in the simulation of the optimal policy in all three

IPR policy regimes considered in (52). Note that the parameter values we have chosen imply a growth rate of
around 2% in (53), which is very close to that in Acemoglu and Akcigit (2012).
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linear asymptotic turnpike, k̃∞τ (A), as defined in (13), which are parallel lines corresponding
to long-run balanced growth with the same constant growth rate given by (17):

γ = 0.0198. (53)

Figure 2 depicts in the (A, k) space the stagnation line k̂ (A) = (156.25)A in dark grey,
and three turnpike curves in light grey, dark grey and black, corresponding to τ = 0, τ = 0.5
and τ = 0.9 respectively. We shall identify with these three colors all relevant curves related
to these three examples in subsequent figures. To the value for the initial stock of knowledge,
A0, common to all three IPRs policy regimes, correspond three capital values on each turnpike:
k̃0 (A0) > k̃0.5 (A0) > k̃0.9 (A0). To simplify our analysis we assume that the initial condition

common to all IPRs policy scenarios is the point (A0, k0) =
(

A0, k̃0 (A0)
)

on the ‘highest’

turnpike among the three, corresponding to the tighter IPRs policy regime (τ = 0 under full
decentralization); specifically, we set8 A0 = 2.2190 and k0 = 887.6010. Note that this choice for
the A0-value is such that the corresponding initial capital values on each turnpike lie all above
the capital value k̂ (A0) = 346.7191 on the stagnation line (the point on the bottom left corner
in Figure 2), for all τ -values in (52); that is, k̃τ (A0) > k̂ (A0) for all τ = 0, 0.5, 0.9.

A

k

A0

k̂ (A0)

k̃0 (A0)

k̃0.5 (A0)

k̃0.9 (A0)

k̂ (A)

k̃0 (A)

k̃0.5 (A)

k̃0.9 (A)

Figure 2: the stagnation line and three turnpikes, for τ = 0, 0.5, 0.9.

7.1 Trajectories Along the Turnpikes

For the parameters’ values in (51) we are able to produce satisfactory approximations of the
optimal trajectories for our economy in all IPRs policy scenarios considered in (52). We ex-
ploit the value of the unique steady state (µ∗, χ∗) = (69.9790, 5.5983) defined in (34) plus
those of all different steady states (µs

τ , χ
s
τ ) defined in (36), each corresponding to a τ -value

in (52) and satisfying the left inequality in condition (37) for our parameters’ values as in
(51); specifically, for τ = 0, τ = 0.5 and τ = 0.9 we have (µs

0, χ
s
0) = (230.9069, 15.1956),

(µs
0.5, χ

s
0.5) = (203.9620, 14.2815) and (µs

0.9, χ
s
0.9) = (181.5192, 13.4729).

8See the discussion after conditions (54) and (55) below.
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In order to allow the Projection algorithm to work fine in all scenarios we establish the
initial stock of knowledge, A0, by choosing a µ-value larger than the largest value for the
µs
τ s considered, corresponding to the τ = 0 (full decentralization) regime, µs

0 = 230.9069;
specifically, we set µmax = 400. Using (26) with τ = 0, we get

A0 = 2/ [R (µmax)− 2] + 3/2 = 2.2190, (54)

to which corresponds the initial capital value

k0 = k̃0 (A0) = 887.6010 (55)

on the highest turnpike (the light grey curve in Figure 2). A large upper bound for µ, µmax =
400, has been chosen because it allows each upper bound µτ = k̃τ (A0) /A0 in the Projection
method to be larger than µs

τ for all τ -values in (52). Insofar, we obtain policy simulations

on the (compact) intervals
[

µ
τ
, µτ

]

given by [µ∗, µ0] = [µ∗, µmax] = [69.9790, 400], [µ∗, µ0.5] =

[69.9790, 283.6535] and [µ∗, µ0.9] = [69.9790, 190.5762], all including the steady states abscissae
µs
0, µ

s
0.5 and µs

0.9.
Thus, the whole range of the analysis is [µmin, µmax] = [µ∗, µ0] = [69.9790, 400]. In all

IPRs policy scenarios we set n = 7 as the largest degree of the Chebyshev polynomials for the
OLS-Projection method, while the integral of the squares of the residual function associated
to equation (38) is approximated through Gauss-Chebyshev quadrature over 57 nodes on each
interval [µ∗, µτ ]. We apply a constrained optimization routine using the two equality constraints
provided by the steady state pairs (µ∗, χ∗) and (µs

τ , χ
s
τ ) for each τ -regime. Specifically, we use

the Maple 16 nonlinear programming (NLP) solver with the sequential quadratic programming
(sqp) method, exploiting the vector given by a Chebyshev regression of order 7 on the segment
crossing the two steady states (µ∗, χ∗) and (µs

τ , χ
s
τ ) as initial condition for the algorithm. See

Privileggi (2011, 2013) for all caveats related to such a procedure.
Figure 3 plots in the (µ, χ) space the approximated optimal policies χτ (µ) for the three ex-

amples considered, χ0 (µ), χ0.5 (µ) and χ0.9 (µ) (in light grey, dark grey and black respectively),
obtained through our procedure together with loci and steady states of all three cases (the
latter are the balls colored light grey to black). Accuracy tests show that our results exhibit
a worst (largest) maximum error of 0.015, corresponding to the highest peak of the residual
function9 for the τ = 0 case. The other τ -values yield better results, with the best (smallest)
maximum error of 0.001 when τ = 0.9. Like in similar works, residual functions do not really
oscillate around zero, exhibiting a qualitative pattern similar to that in Figure 3 of Privileggi
(2011), while the 8 coefficients associated to each Chebyshev polynomial of the approximation
function follow a uniformly decreasing pattern at least up to the fifth coefficient, after which
they start to oscillate. All in all, these results exhibit a slightly better performance than those
from the analogous computations in Privileggi (2011), while they are definitely worse than those
in Privileggi (2013).

According to Subsection 4.3, the analysis proceeds by numerically approximating the opti-

mal consumption policies c̃τ (A) in (39) starting from
(

A0, k̃τ (A0)
)

in t = 0 on each turnpike

and then evolving along the turnpike itself for each IPRs policy regime envisaged in (52). These
policies are then employed in the HJB equation (40) to determine the value function Ṽτ (A) of
problem (18), yielding total welfare as a function of the stock of knowledge A ≥ A0 when the
economy evolves along each turnpike toward the ABGP. Such results will be used later either

9Recall that the (absolute value of the) residual function tell us how far from the true policy our approxi-
mation is in each IPR policy scenario: the larger the residual, the worse the approximation.
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Figure 3: phase diagrams, steady states and approximate detrended policies for τ ∈ {0, 0.5, 0.9}.

together with welfare estimations when the economy ends up in stagnation to evaluate Skiba-
type points on each turnpike in Subsection 7.2, or, according to (45), together with welfare
estimations along early trajectories outside the turnpike in Subsection 7.4.

Applying the method described at the end of Subsection 4.3 we obtain all approximate
time-path trajectories: Figures 4(a) and 4(b) report µτ (t) and χτ (t) for 0 ≤ t ≤ 400 and
τ ∈ {0, 0.5, 0.9}, Figure 4(c) draws the Ãτ (t) trajectories all starting from A0 = 2.2190 in
t = 0, while Figures 4(d), 4(e) and 4(f) show the corresponding optimal capital, k̃τ (t), output,
ỹτ (t), and consumption, c̃τ (t), trajectories.

Note that, because here our goal was to approximate the optimal time-path trajectories
along each turnpike independently of other conditions, we have assumed that t0 = 0 in all three
scenarios. Therefore, in Figure 4(d) the initial capital values in t = 0 are all different from each
other, as they correspond to their own turnpike value on the same initial stock of knowledge
A0 = 2.2190: k̃0 (A0) = k0 = 887.6010 > k̃0.5 (A0) > k̃0.9 (A0) (see Figure 2). Similarly, also
the initial output and consumption values in Figures 4(e) and 4(f) are different. Hence, such
trajectories do not provide the correct information aimed at performing comparative dynamics,
as, unlike assuming identical initial conditions as in the following Subsections 7.3 and 7.4, they
start from different initial capital endowments.

7.2 Skiba-Points On the Turnpikes

Our next goal is to approximate the function c̄ (A, k) according to (49) in Section 6 yielding

the optimal policy toward the stagnation point
(

A, k̂ (A)
)

= (A, (156.25)A) on the stagnation

line, starting from any initial pair (A, k) such that A ≥ A0 and with k/A ratio values in

the range10
[

k̂ (A) /A, k0/A0

]

, that is, as k0/A0 = 887.6010/2.2190 = 400, for A ≥ A0 and

k/A ∈ [156.25, 400]. Recall that in all such computations A is being kept constant; also

10This range is justified by the assumption that all initial capital values considered in our simulation lie above
the steady state value k̂ (A) = (156.25)A on the stagnation line and are equal or less than the upper bound
k0 = 887.6010.
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Figure 4: time-path trajectories of (a) µτ (t), (b) χτ (t), (c) Ãτ (t), (d) k̃τ (t), (e) ỹτ (t) and (f)
c̃τ (t) along the turnpikes, for τ = 0 (light grey), τ = 0.5 (dark grey) and τ = 0.9 (black).

note that this routine can be run just once for all IPRs policy regimes, as the optimal policy
toward stagnation, in its detrended variables version, turns out to be the same for all scenarios.
Hence, following Section 6, we numerically approximate the solution of the ODE (48) through a
Collocation-Projection method based on n = 14 collocation points over the (compact) interval
[µ̂, µmax] = [156.25, 400], where µ̂ = k̂ (A) /A is defined in (35) while µmax = k0/A0 is the upper-
bound already chosen in Subsection 7.1. Such a choice for the range [µ̂, µmax] – specifically,
for the left endpoint µ̂ – is motivated by our assumptions that the trajectories in all scenarios
here considered start from points above the stagnation line, implying that µ (0) > k̂ (A) /A
always hold. The resulting approximated solution of (48), that we label χ̄ (µ), exhibits an
outstanding performance with a maximum error of 10−9 and a residual function symmetrically
oscillating around zero, while the 15 coefficients associated to each Chebyshev polynomial of
the approximation function uniformly decrease from a0 = 19.9320 to a14 = 8.7× 10−10.

Using the function χ̄ (µ) just obtained in (49) we get the optimal policy c̄ (A, k) that, in
turn, allows for the approximation of the value function V̄ (A, k) of problem (46), yielding
total welfare when the economy evolves toward stagnation as a function of any initial stock
of knowledge A ≥ A0 and initial capital k such that k/A ∈ [156.25, 400], through the HJB
equation (50).

With both value functions Ṽτ (A) and V̄ (A, k) obtained so far, we can exploit the tech-
niques developed by Privileggi (2013) in order to evaluate the unique Skiba-point on each
turnpike corresponding to the values of τ considered in (52). Specifically, because our choice
of parameters’ values in (51) satisfies condition (48) of Proposition 4 in Privileggi (2013), after
reformulating each turnpike according to (12) and using the value functions Ṽτ (A) and V̄ (A, k)
just calculated according to (40) and (50) respectively, we apply the analogous of Algorithm 1

in Privileggi (2013) to approximate the unique
(

Ãsk
τ , k̃

sk
τ

)

=
(

Ãsk
τ , k̃τ

(

Ãsk
τ

))

pair that satisfies

Ṽτ (A) = V̄
[

A, k̃τ (A)
]

, i.e., that equates the social welfare yield by the trajectory starting on
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(

Ãsk
τ , k̃

sk
τ

)

and then following its optimal path along the turnpike toward the ABGP to the

welfare generated by the optimal path leading to stagnation.
These findings are listed in Table 1: it is remarkable the decreasing pattern of both the

initial stock of knowledge, Ãsk
τ , and stock of capital, k̃skτ , required to allow the economy to

take off toward sustained growth when starting on the turnpike, with respect to increasing
τ -values. In other words, larger values of parameter τ relieve the initial conditions required
for the economy to grow in the long-run, allowing poorer countries to undertake a growth
path. It is also noticeable from the second column in Table 1 that, as Ãsk

τ > A0 = 2.2190 for
all τ -values in (52), if the economy were supposed to start with an initial capital endowment
corresponding to k̃τ (A0) on each turnpike, none of the scenarios considered in our study would
allow a sustained growth pattern under our choice of initial stock of knowledge A0 = 2.2190, as
the social planner would find optimal to lead the economy to eventual stagnation, regardless
the IPRs policy regime chosen.

τ Ãsk
τ k̃skτ

0 3.0149 581.4472
0.5 2.7154 488.8517
0.9 2.3462 400.5483

Table 1: Skiba-points in terms of initial knowledge, Ãsk
τ , and capital, k̃skτ , on each turnpike.

7.3 Trajectories that Start Above the Turnpikes

To complete our study, from now on we assume that the economy starts from the same initial
condition on the highest turnpike, that is on the pair (A0, k0) = (2.2190, 887.6010) – corre-
sponding to the left endpoint on the light grey curve on the top left corner of Figure 2 – and
perform a truly comparative dynamics analysis across the different values of the IPRs policy
parameter τ listed in (52). As the value k0 = k̃0 (A0) = 887.6010 lies on the turnpike defined by
the value τ = 0, only for the last two τ -values, τ = 0.5, 0.9, we must consider an early period
of time, from t = 0 to t = t0 > 0, during which the optimal time-path trajectories follow the
pattern discussed in Section 5 starting from the initial condition (A0, k0) – which lies strictly
‘above’ all values k̃τ (A0) for τ > 0 – before entering their own turnpike at t = t0 and keep
growing along it thereafter.

Running the bisection Algorithm 1 presented in Section 5 for τ = 0.5, 0.9 we get two values
for the stock of knowledge, Ar

τ > A0, which are reported in the second column of Table 2,
and two optimal policies kabτ (A) and cabτ (A). We used the the last two Skiba values Ãsk

τ in
the second column of Table 1 as starting point for the search of the right endpoint of the
initial bracketing interval [A0, AR] for the zero of f in step 1 of Algorithm 1. We actually ran
Algorithm 1 for several τ -values other than 0.5 and 0.9. Depending on the τ -value, we set n
(the number of nodes and the largest degree of the Chebyshev polynomials in the Collocation-
Projection method) between 21 for smaller τ and 24 for larger τ ; similarly the step increment
ǫ has been set equal to 1 for smaller τ and equal to 2 for larger τ , while the stopping rules
has been set at ε = η = 10−7 for all τ -values. All policies estimations exhibit quite reasonable
maximum errors of order 10−6, corresponding to the highest peak of the residual functions
for the kabτ (A) policies [maximum errors for the cabτ (A) policies are on average 10−2 smaller],
residual functions symmetrically oscillating around zero and all n+ 1 coefficients associated to
each Chebyshev polynomial of the approximation function uniformly decreasing for all τ -values.
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The time elapsed for running Algorithm 1 varies from 158 seconds when τ = 0.3 to 229 seconds
when τ = 0.8 on an Intel Dual-Core CPU machine with 4GB RAM, with numbers of iterations
ranging from 27 to 29.

Figure 5(a) shows the functions kab0.5 (A) and k
ab
0.9 (A) representing the optimal capital asso-

ciated to the stock of knowledge for A0 ≤ A ≤ Ar
0.5 and A0 ≤ A ≤ Ar

0.9, respectively, before
entering the turnpikes k̃0.5 (A) and k̃0.9 (A), according to the last two rows in the second column
of Table 2, at the points Ar

0.5 = 5.2342 and Ar
0.9 = 6.1187 (thick part of the curves).11 Simi-

larly, Figure 5(b) reports the functions cab0.5 (A) and c
ab
0.9 (A) defining the optimal consumption

associated to the stock of knowledge for A0 ≤ A ≤ Ar
0.5 and A0 ≤ A ≤ Ar

0.9 respectively, before
entering their turnpike consumption policies c̃0.5 (A) and c̃0.9 (A) as computed in Subsection
7.1, at the points Ar

0.5 and Ar
0.9 (thick part of the curves). Note the kinks at the points Ar

τ in
both figures.
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Figure 5: functions (a) kτ (A) and (b) cτ (A) representing optimal capital and consumption before
hitting their turnpike values at Ar

τ , after which they become turnpike themselves, for τ = 0.5 (dark
grey) and τ = 0.9 (black).

Following the steps described after Algorithm 1 in Section 5, we first numerically compute
the optimal time-path trajectories Aab

τ (t), kabτ (t), yabτ (t) and cabτ (t) between t = 0 and some
instant tmax > 0, the latter to be determined through some guess-and-try, being careful to
choose a value larger than the (still unknown) instant t0 at which each turnpike is reached. A
value of tmax around 10 worked well in all our simulations. Next, by solving Aab

τ (t) = Ar with
respect to t over [0, tmax], the corresponding instants t0 > 0 at which the optimal trajectories
from above intersect their respective turnpikes are found; they are reported in the last two
rows of the third column of Table 2 [in the first row Ar

0 = A0 and t0 = 0 because, for τ = 0,
the initial knowledge-capital pair lies exactly on the highest turnpike, k̃0 (A0)]. Finally, the
whole optimal time-path trajectories Aτ (t), kτ (t), yτ (t), cτ (t) and Gτ (t) over (0,+∞) when
the economy starts at t = 0 from (A0, k0) = (2.2190, 887.6010) are obtained by joining the
trajectories above the turnpike over [0, t0] just calculated with their ‘continuation’ along the
turnpike over (t0,+∞) provided by the analysis of Subsection 7.1. Figure 6 plots Aτ (t), kτ (t),
yτ (t) and cτ (t): the light grey curves, corresponding to the zero IPRs policy parameter regime
τ = 0, denote trajectories starting already on the k̃0 (A) turnpike at t = 0 which keep moving
along it thereafter, while the dark grey and black curves, corresponding to the positive IPRs

11The whole turnpikes k̃0.5 (A) and k̃0.9 (A) for A ≥ A0 are the union of the thin curves on the left with the
thick ones to the right in the figure, corresponding to the dark grey and black curves in Figure 2.
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policy parameter regimes τ = 0.5 and τ = 0.9, are the piecewise trajectories obtained by
joining12 at t = t0 the trajectories above the turnpikes for 0 ≤ t ≤ t0 with their continuation
along the turnpikes for t ≥ t0.
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Figure 6: whole optimal transition time-path trajectories, (a) Aτ (t), (b) kτ (t), (c) yτ (t) and (d)
cτ (t), under the three tax-subsidy regimes, τ = 0 (full decentralization) in light grey, τ = 0.5 in dark

grey and τ = 0.9 in black, all starting from A0 = 2.2190 and k0 = 887.6010 in t = 0.

It turns out that along the time-path trajectories Ãτ (t), k̃τ (t), ỹτ (t) and c̃τ (t) along each
turnpike as computed in Subsection 7.1 for τ = 0.5, 0.9, if the economy were to start already
on the turnpike at t = 0 (rather than from the capital level k0 = 887.6010 strictly above each
turnpike), it would take around ten times longer than t0 to reach the same intersection points
Ar

τ . In other words, the time period t0 required to enter the turnpikes starting from above the
turnpikes is around ten times shorter than the time period needed to reach the same points
when starting already on the turnpikes. Indeed, an initial capital endowment k0 which is is
strictly larger than the k̃τ (A0) level on the turnpike is beneficial in that it implies that it is
optimal to invest the maximum amount allowed in the production of new knowledge, which
equals output, G (t) = y (t), a policy that translates into steeper A (t), y (t) trajectories for
0 ≤ t ≤ t0 [dark grey and black curves in Figures 6(a) and 6(c)], indicating a high boost to
growth provided during the initial paths covered ‘above’ the turnpikes. Such initial boost, in
turn, explains the better performances of all Aτ (t), kτ (t), yτ (t) and cτ (t) trajectories under

12From the third column in Table 2 we see that all intersection points are reached at instants t0 that are very
close to each other in different IPR policy regimes.
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the τ > 0 regimes (e.g., those in dark grey and black in Figure 6) than their counterparts for
τ = 0 (in light grey in Figure 6) when t becomes large.

Note the kinks of all the trajectories for τ = 0.5 and τ = 0.9 at the instant t0 in Figure 6
[especially Aτ (t), kτ (t) in Figures 6(a) and 6(b)], corresponding to the kinks at the points Ar

τ

in Figure 5: on t0 such trajectories are not differentiable due to the discontinuity jump of the
optimal investment in R&D activities time-path trajectory, Gτ (t), as it is evident from Figure
7.
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Figure 7: whole transition time-path trajectories of optimal R&D financing, Gτ (t), under the three
tax-subsidy regimes, τ = 0 (full decentralization) in light grey, τ = 0.5 in dark grey and τ = 0.9 in

black, all starting from A0 = 2.2190 and k0 = 887.6010 in t = 0.

From figure 6(d), showing the whole time-path trajectories of optimal consumption in the
three IPRs policy parameter scenarios, however, it is not clear what the effect of the different
policies on welfare may be, as in early times the τ = 0.5 and τ = 0.9 regimes envisage a lower
consumption than in the τ = 0 regime, only to catch up and rapidly overcome later on. As a
matter of fact, the former trajectories may fail to deliver a welfare higher than that yield by
the latter if discounting assigns less weight to later consumption than that assigned to early
consumption.

7.4 Welfare Estimates

The last two columns of Table 2 report our main welfare results. For the initial condition
(A0, k0) = (2.2190, 887.6010) common to all τ -values in (52), the social welfare estimates in the
fifth column of Table 2 are computed through (45) at the end of Section 5, where, whenever t0 >
0, the first integral on the RHS is approximated through a Gauss-Legendre quadrature routine
on 1000 nodes over each time range [0, t0], using the time-path trajectories approximations
of optimal consumption obtained in the previous subsection, cabτ (t), on each node. Note that
the first scenario, corresponding to τ = 0, implies t0 = 0 so that the social welfare along the
turnpike and toward the ABGP would actually be given by (40) at the end of Subsection 4.3,
yielding Ṽ ab

0 (A0, A0) = Ṽ0 (A0) = 95.2964. However, from Table 1 we know that when τ = 0 and
(A0, k0) = (2.2190, 887.6010) the economy does not satisfy the Skiba condition; this is confirmed
by the first value in the fourth column of Table 2, and implies that the first number in the fifth
column comes from the value function toward stagnation estimated through (50) at the end of
Section 6, V̄ (A0, k0) = V̄ (2.2190, 887.6010) = 95.8745, rather than the former smaller estimate
Ṽ0 (A0) = 95.2964. The other two welfare values in the fifth column, estimated through the
value function Ṽ ab

τ (A0, A
r
τ ) as properly defined in (45), are larger than V̄ (A0, k0) = 95.8745;
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consistently, (A0, k0) = (2.2190, 887.6010) satisfies the Skiba condition when τ = 0.5, 0.9, as
confirmed by the last two rows in the fourth column.

The last two rows of Table 2 clearly indicate that the initial push deriving from starting
above any turnpike, if on one hand entails sacrificing consumption in early times as shown by
Figure 6(d), on the other hand it turns out to be sufficiently strong to 1) let the economy
escape the stagnation trap otherwise forecasted by Table 1 for all regimes, including the active-
policies characterized by τ > 0, and 2) yield a social welfare that is strictly increasing in the τ
parameter values, as it is apparent from the fifth column of Table 2 and is confirmed by all other
simulations we have run. Indeed, consistently with the first row in Table 1, when τ = 0 our
economy happens to be born on the highest turnpike k̃0 (A0) and doomed to renounce growth
in the long-run as the Skiba condition is not satisfied. Conversely, positive IPRs policy regimes
implemented by policymakers may let the same economy take off toward long-run sustained
growth, as shown in the last two rows of the fourth column of Table 2. A more thorough
discussion on the robustness of the results implied by Table 2 end their economic interpretation
can be found in Marchese et al. (2014).

τ Ar
τ t0 Toward Social welfare

0 2.2190 (= A0) 0 stagnation 95.8745
0.5 5.2342 8.76 ABGP 97.8152
0.9 6.1187 8.30 ABGP 99.8471

Table 2: Intersection points Ar
τ between each trajectory from above and its turnpike, instants t0 at

which the intersection occurs, type of equilibrium (toward either stagnation or sustained growth
along an ABGP) and social welfare for the common initial condition (A0, k0) = (2.2190, 887.6010) in

all IPR policy regimes.

8 Concluding Remarks

In this paper we provide a numerical method to assess the impact of different IPRs policy
regimes on social welfare in the extended continuous time endogenous recombinant growth
model presented in Marchese et al. (2014). The wide range of techniques used include Projec-
tion methods, Gauss-Chebyshev and Gauss-Legendre quadrature, and standard Runge-Kutta
type algorithms. Thus, this work represents a further step forward in the analysis of the tran-
sitional dynamics of recombinant growth models (Privileggi, 2010, 2011, 2013) providing some
interesting insights into the evaluation of alternative policies to promote economic growth and
ultimately improvements in social welfare.

In order to quantitatively assess welfare effects through a comparative dynamic analysis,
we need to compute the entire transitional dynamics of the optimal consumption associated
to different IPRs policy regimes. This requires to distinguish between trajectories that starts
on the turnpike and trajectories starting outside the turnpike, further distinguished between
those converging to the turnpike and those ending up in stagnation. We develop an algorithm
(based on a bisection routine) to identify the intersection point between paths starting above
the turnpike and the turnpike itself in order to build the whole optimal consumption path as a
piecewise function of time by joining each trajectory above the turnpike with its continuation
along the turnpike. This allows to compute social welfare and thus compare the welfare levels
associated to different policy parameters, for a better understanding of which IPRs policy
regime might be more desirable for our society as a whole. Our simulations based on a certain
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parametrization of the model allows us to conclude that welfare increases with the IPRs policy
parameter, thus softer IPRs policy regimes should be preferred in order to maximize social
welfare.

Supplementary Material

The Maple 16 code for all numeric procedures described in this paper, including the detailed
code for Algorithm 1 as well as for the computations performed in section 7, is available from
the authors upon request.
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