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Abstract

The present paper investigates whether and through which channels
green public procurement (GPP) stimulates local environmental innova-
tion capacity. To this end, we use detailed data sources on green patents
and procurement expenditure at the level of US Commuting Zones for
the period 2000-2011. We also check for the moderating effects of local la-
bor market composition in the relation between green public procurement
and green innovation capacity. Lastly, we exploit the richness of patent
information to test for differential effects of green public procurement on
different classes of green technologies. The main finding is that GPP is an
important driver in explaining the growth of local green-tech stock. The
positive effect of GPP is mainly driven by expenditures for procured green
services and is magnified by the local presence of high shares of abstract-
intensive occupations. When separately considering diverse kinds of green
technologies, we do find evidence of a more pronounced effect of GPP on

the growth of local knowledge stocks of mitigation technologies.

Keywords: Green public procurement; Green technology; Innovation pol-

icy; Human capital



1 Introduction

While all the avenues of the debate about climate change seemingly lead to in-
novation, the nature of the problem, of the possible solutions and the roadmap
towards implementation remain highly contested. The academic and policy cir-
cles place great expectations in the prospect that technology, both old and new,
can assist in striking that balance between running business operations within
the limits of environmental sustainability while staying in the game for innova-
tion and high competitiveness (Porter and van der Linde, 1995).! There exists
wide consensus on the importance of other forces that, alongside technology,
can accelerate the transition to sustainable growth. For one, policy can create
propitious conditions across the board, not just for technological innovation but,
also, for promoting broader social engagement on the benefits of a low-carbon
economy. It goes without saying that none of the above would be feasible absent
a body of know-how that enables the necessary adjustments in the attendant
technological, organizational and institutional domains. Last but not least, cli-
mate change is a global phenomenon with marked local manifestations, which
entails that the dynamics of both policy and of the knowledge base carry strong
spatial dimensions that cannot be neglected. The present paper enters this de-
bate with a view to explore empirically the extent to which policy and human
capital enable or thwart local green innovation capacity in the local economies

of the United States (US).

The three dimensions of interest for our study are connected in complex
ways. To begin with, innovation in green technologies (GTs) suffers from a dou-
ble externality problem (Rennings, 2000). On the one hand, non-appropriability
and non-exclusivity of technological knowledge give way to the kind of external-
ities that are common to any innovation, and that lead to under-investment in
the private sector. On the other hand, because of their potentially pervasive in-
fluence, GTs that effectively contribute to containing or preventing the negative

effects of climate change bring about global benefits in the form of environmen-

1See Barbieri et al. (2016) for an extensive survey.



tal protection that represents a positive externality for society, therein including
non-innovating firms (Jaffe et al., 2002). This double externality exacerbates
the traditional uncertainty that surrounds the development of new technologies
and provides a rationale for the second dimension of interest, namely public pol-
icy interventions that create positive preconditions for investments in GTs (del
Rio Gonzéalez, 2009; Mowery et al., 2010). The portfolio of available mechanisms
is wide and encompasses setting emission standards, stimulating the demand for
green technologies (pull effect) or restoring incentives for private investments in
innovation (push effect) (Johnstone et al., 2012). Last but not least, the scale of
changes involved in these diverse but interconnected dimensions call upon spe-
cialized know-how. Human capital is a key asset to facilitate the development of
new technology but the transition towards low-carbon economies requires capa-
bilities beyond the strictly technical sphere, for example operation management
skills to manage the reconfiguration of industrial processes as well as legal and

administrative skills to comply with regulatory standards (Vona et al., 2018).

In the view proposed here the interplay between policy, technology and hu-
man capital offers a compelling framework to account for the space-bound co-
existence of technology push and demand pull forces (Requate, 2005; Horbach,
2008; Ghisetti and Quatraro, 2013; Costantini et al., 2015). The paper draws
on and contributes to this research by investigating whether and to what extent
Green Public Procurement (GPP) of environmentally sustainable products and
services enhances the introduction of new GTs in 722 US Commuting Zones
(CZs) over the period 2000-2011. Our proxy for environmental innovation at lo-
cal level is the stock of green patents granted to CZ residents. The main findings
of our analysis are four. First, GPP exerts a positive impact on the generation
of GTs in US CZs. Second, the configuration of the local bundle of skills has
a significant impact on green knowledge production. In particular, the posi-
tive effect of abstract skills intensity is persistent across all estimates. Third,
these two dimensions show a high degree of interdependence, as the positive

and significant coefficient for the interaction between the variables suggests the



existence of a mutual reinforcing effects. Fourth, we find interesting patterns
when disentangling the effects of product-related vis-a-vis service related GPP,

as well as when we disentangle mitigation vis-a-vis adaptation oriented GTs.

Our findings add to prior literature in several respects. To begin with, in
spite of an intense debate about the importance of demand-side policy instru-
ments, there is a gap on the role of public procurement as a driver of green
innovation. While existing research has focused on the impact of public pro-
curement on innovation in general (Nelson, 1982; Geroski, 1990; Ruttan, 2006),
only a few studies concentrate on the domain of environmental sustainability
and innovation (Ghisetti, 2017). Second, the inclusion of occupational structure
as a proxy of the skill endowment of the local workforce brings to the fore explic-
itly the dynamics of know-how and learning that can both enable or thwart the
development of a new technological trajectory. While recent exploratory studies
propose novel approaches to account for the analysis of environmental skills and
green jobs at the level of occupations (Consoli et al., 2016; Vona et al., 2018)
and of US geographical areas (Vona et al., 2017), no study has so far explored
the role of local human capital endowment on green technological change. Fur-
ther, our focus on the determinants of eco-innovation in the US enriches existing
empirical studies that is mainly centered on European countries. On the whole,
our empirical analysis connects the spatial dimension of eco-innovation and the
literature on the determinants of eco-innovation which remains an appealing,
yet arguably underdeveloped, space of future research (Ghisetti and Quatraro,

2017; Montresor and Quatraro, 2017).

The rest of the paper is structured as follows. Section 2 articulates the
theoretical framework and develops the hypotheses. In Section 3 we outline the
research design. Section 4 presents the results of the econometric analysis. In
Section 5 we provide a critical discussion of our findings and derive concluding

remarks.



2 Theory and hypotheses development

Knowledge generation and diffusion stem out of local interactions that confer in-
novation a space-bound nature. According to an established tenet, geographical
and cognitive proximity are necessary, but not sufficient, to reduce coordination
and transaction costs among otherwise dispersed individuals, and to eventually
spur learning, knowledge creation and innovation (Breschi and Lissoni, 2001;
Boschma, 2005; Quatraro and Usai, 2017). The spatial dimension of innovation
is especially relevant to analyse cross-regional heterogeneity in the composition
of economic activities and in the attendant competences and innovation capa-

bilities (Quatraro, 2009; Storper and Scott, 2009).

Empirical studies based on the knowledge production function (KPF) ap-
proach of Griliches (1984) and Jaffe (1986) insist that the variance in the quality
of regional innovation systems and of intensity of investments in R&D activities
explains a substantial portion of the difference of cross-regional innovation per-
formance (Acs et al., 2002; Fritsch, 2002; Paci et al., 2014; Miguelez and Moreno,
2017). A strand in evolutionary economic geography adds to this that regional
idiosyncratic factors affect not only the rate of local innovation activities but
also their direction, thus accounting for the effects of path-dependency on re-
gional technological branching (Colombelli et al., 2014; Montresor and Quatraro,

2017).

Following on the above, we argue that the spatial features underlying the
generation and diffusion of green technology have been somewhat underplayed.
The only exceptions are studies based on the KPF approach that emphasize
the role of R&D activities and of the regulatory framework in influencing the
rate of green technological change (Ghisetti and Quatraro, 2013; Costantini
et al., 2015). Spatial patterns of GTs production have been analyzed from an
evolutionary perspective only in the fuel cell industry in EU regions with a
view to capture the role of technological relatedness (Tanner, 2014 and 2015).
We propose to fill this gap by articulating the analysis of eco-innovation in

the KPF framework with a view to gain greater understanding of the spatial



characteristics of green innovation.

Eco-innovations carry a number of features that set them apart from other
types of innovation (Rennings, 2000). To begin with, besides the classical
sources of externalities that affect any kind of knowledge, green knowledge has
positive effects on firm-level, and hence local-level, environmental performance.
These effects can be internalized by private agents only after policy has restored
the appropriate incentive for private investments. To be sure, there are several
variants of environmental policy such as setting technological standards, reg-
ulating prices or establishing pollution thresholds that induce firms to renew
their production processes. As a result of these inducement effects new market
for GTs emerge due to higher R&D efforts (Johnstone et al., 2012; Nemet, 2009;
Hoppmann et al., 2013; Costantini et al., 2015). These considerations bring the
institutional context to the core of the analysis of the drivers of GTs (Hitaj,
2013; Nesta et al., 2014). Since institutions are place-specific, empirical stud-
ies at the micro, meso and at the macro-level consider the regional or national
regulatory framework as a key discriminant to explain differences in the ability
to generate eco-innovations across firms, regions and countries (Barbieri et al.,
2016). Only few scholars have so far considered the role of supply side poli-
cies aimed at fostering the development of technological capabilities in green
domains through R&D supporting schemes (Costantini et al., 2015). More than
this, to the best of our knowledge only Ghisetti (2017) has hitherto explored

the role of innovative green public procurement.

Building on the notion that public procurement is place-specific and that it
exhibits variance both between and within regions over time (Heald and Short,
2002; Morgenroth, 2010), we propose that filling such a gap would allow to gain
a better understanding of the spatial determinants of eco-innovation (Cole et al.,
2013). GPP is touted as a key lever to stimulate the development of new tech-
nology that can facilitate meeting environmental sustainability targets. This is
because the pathway to successfully developing green technology entails deal-

ing with substantial uncertainty (Mowery et al., 2010). Under this perspective,



GPP is regarded as a direct form of public intervention to stimulate the demand
for GTs by the government (Parikka-Alhola, 2008). These arguments lead us to
propose the first hypothesis:

H1: Territorial differences in GPP are associated with green technological change

differentials across regions.

The full appreciation of the mechanisms underlying knowledge production is
crucial to gain a comprehensive view on the spatial dynamics of GTs generation.
Knowledge recombination has long been understood to be a key driver of new
competences that are eventually embodied in new technology (Weitzman, 1996
and 1998; Fleming and Sorenson, 2001). Proximity in the cognitive domain fa-
cilitates the recombination of know-how, and indeed highly coherent knowledge
bases increase significantly the chances of successful innovation (Quatraro, 2010;
Krafft et al., 2014). This is relevant to eco-innovations in that their emergence
is associated with the hybridization of green and dirty technologies (Zeppini
and van der Bergh, 2011; Dechezlepetre et al., 2004; Colombelli and Quatraro,
2017). According to an established tenet, skilled individuals can more quickly
adapt their activities to the changing incentives that follow the emergence of
new technologies (Nelson and Phelps, 1966) and, in the case at hand, the tran-
sition to low carbon economies calls upon a broad competence base that goes
beyond the merely technical domain (Vona et al., 2018). However, geographical
areas are likely to differ in terms of both the endowment of human capital as
well as in the capacity to adapt their occupational structure to the new op-
portunities (Vona et al., 2017). This entails that agglomeration economies due
to geographic concentration of economic activities may account for significant
differences in the capacity to generate green technology across space. On these

grounds, we propose the second hypothesis:

H2: The prevalence of exploration-oriented skills in local contexts is associated

with higher levels of green technological change.

Last but not least, human capital endowment and GPP are ideal candidates



to explain the green innovation capacity of local economies. This holds true also
for their interaction. Due to the double externality problem of eco-innovation,
the endowment of exploration-oriented skills at the local level can hardly display
its full potential in terms of GTs enablers because of the reluctance of economic
agents to bear the uncertainty associated with externalities and low appropri-
ability conditions. At the same time, high levels of GPP are likely to be more
effective in the stimulation of the production of environmentally sound technolo-
gies in areas that are characterized by local availability of exploration-oriented
skills. Accordingly, we expect the two dimensions to show a high degree of in-
terdependence and mutual enforcing effect on green innovation capacity. These

considerations lead us to spell out our third hypothesis.

H3: The prevalence of exploration-oriented skills and high levels of GPP in local
context are mutually enforcing in affecting the rate of green techmological

change.

The remainder of the paper will elaborate an empirical analysis to test the

hypotheses laid out in this section.

3 Research design

This section details the key data sources, the variable construction and the
proposed empirical strategy. As anticipated earlier, all the key dimensions of
interest for the present study, eco-innovation, public procurement and human
capital, are space-bound. For the purpose of their analysis we focus on US
Commuting Zones. These spatial units were first developed by Tolbert and Sizer
(1996) using county-level commuting data from the 1990 Census data to create
741 clusters of counties that are characterized by strong and weak commuting.?

Compared to other territorial units, CZs carry the advantage of covering the

20f them, we only consider the 722 CZs that cover the entire mainland United States

(both metropolitan and rural areas).



entirety of the US territory while at the same time being constructed in such a

way that meaningful mobility patterns are accounted for.?

3.1 Data and variables

We exploit three main sources of data at the level of CZs to measure: i) the
local green innovation capacity proxied by patenting activity; i) the level of local
green procurement expenditures and #44) the local composition of human capital

proxied by the occupational structure of the attendant local labor market.

Patent data We measure green innovation capacity as propensity to intro-
duce eco-innovations using data on US-invented patents with priority year be-

tween 1970 and 2012 (Source: PATSTAT, version 2016a).

Patents are assigned to the environment-related domain using the ENV-
TECH classification (OECD, 2015) based on the International Patent Classifi-
cation (IPC) and the Collaborative Patent Classification (CPC). Therein, eight
environmental areas are featured: (a) environmental management, (b) water
related adaptation technologies, (c) climate change mitigation technologies re-
lated to energy generation, transmission or distribution, (d) capture, storage,
sequestration or disposal of greenhouse gases, (e) climate change mitigation
technologies related to transportation, (f) climate change mitigation technolo-
gies related to buildings, (g) climate change mitigation technologies related to
wastewater treatment or waste management, and (h) climate change mitigation

technologies in the production or processing of goods.

Since the ENV-TECH classification uses both IPC and CPC codes? we first
convert IPC codes into CPC codes using the concordance tables of EPO and
USPTO.? Subsequently, we use information contained in patent documents to

extract CPC codes and assign patents to ENV-TECH categories. For what

3See Dorn (2009) for further details on empirical analysis at the US CZ level
4 Almost all the IPC codes are present in the CPC classification but not the other way

around.
Shttp:/ /www.cooperativepatentclassification.org/cpcConcordances.html



concerns the geographical dimension, we assign a patent to a US territory by
means of information contained in inventors’ addresses. This is an original
methodology for geo-localizing US green patents to the level of counties. The
2016a version of PATSTAT does not provide an address for every inventor. To
minimize the number of missing addresses, we follow two parallel strategies.
First, we rely the IFRIS version of PATSTAT. IFRIS recovers missing addresses
combining several external patent sources (REGPAT, INPI, etc). Second, we
propagate the inventor’s address into the relative patent family: for each patent
family and missing address, we check if there is an inventor with a similar name
(applying the Levenshtein distance) and with a non-missing address. If it is the
case, we fill the missing address with the one found. Combining both sources,

we diminish the missing rate to 10%.

The next step consists in assigning precise geographical coordinates to each
address and, thus, to each patent. To do this we, first, extract the postal code
included in the inventor’s address, when available, to identify US cities according
to the GeoNames postal code table. For each country, GeoNames indeed pro-
vides a regular expression to find postal codes according to their official format.
We apply it to identify postal codes in inventor’s addresses. Second, addresses
that could not be assigned to a specific postal code were parsed through an
iterative algorithm that would identify the name of the city within the address
field. Once extracted this information was matched with names of US city above
5000 inhabitants in GeoNames.® Third, we exploit the Google’s Geocoding API
resource to assign geographical coordinates to all the remaining addresses. This
procedure allowed us to assign geographical coordinates to 90% of unique US
inventors’ addresses. These coordinates were subsequently matched with the

1990 US CZs map to assign each inventor to a CZ.

The local level of green innovation activity is measured through the fraction-

alized” stock of US-invented patents with at least one CPC class which relates

SWe set a threshold on the city population to limit noise in the results. We checked

manually results to remove false positives.
"Patent p is assigned to CZ c according to the fraction of inventors resident in CZ ¢ over



to a green technology. The stock of green patents is corrected for INPADOC
patent families® and weighted by forward (family) citations received?. Weight-
ing by forward citations allows us to account for the intrinsic technological value

of the local protected inventions.

The green patent stock per CZ j at time ¢ is thus calculated as:
Stockj,t = N.Patjﬂg + [(1 — (5) X Stockﬁ_l} s (1)
where § is the decay rate.'?

Furthermore, by exploiting the ENV-TECH classification, we differentiate
the GT-stock between two macro-technology groups: i) green adaptation tech-
nologies (ENV-TECH areas (a) and (b)); and i) green mitigation technologies
(ENV-TECH areas from (c) to (h)).

Procurement data Second, we collect data on environmental-related pro-
curement expenditures by exploiting public information provided by the US-

1

Aspending.gov resource.!! Procurement information are available from 2000

onwards.

The Federal Funding Accountability and Transparency Act of 2006 (FFATA)
was signed into law on September 26, 2006. The legislation required that federal

the total number of inventors filing the patent p.
8Patent families essentially originate from a company or an inventor applying for the

protection of the same invention at different patent offices. This results in a series of equivalent
filings that patent examiners and attorneys can cite indifferently. Simple patent families are
quite restrictive sets of equivalents, all sharing the same priority (an original filing at one
or another patent once, before extension elsewhere). For a complete discussion about the

opportunity of correcting citations for patent families, see Martinez (2011).
9In order to make citations comparable across years and ENV-TECH technologies, we

calculate a weighted number of citations, dividing the raw number of citations by the average
number of citations in the same year ¢t and the same technology j, and then by the average
number of citations in the same year t, following the method proposed by Hall et al. (2001):

N.cit.weighted = Augf}’vi%ft”

“AvgN.city
10We calculate patent stocks with the permanent inventory method, applying a 15% annual

rate of obsolescence.
https://www.usaspending.gov

10



contract, grant, loan, and other financial assistance awards of more than $25,000
be displayed on a searchable, publicly accessible website, USAspending.gov, to
give the American public access to information on how their tax dollars are
being spent. As a matter of discretion, USAspending.gov also displays certain
federal contracts of more than $3,000. The initial site went live in 2007. Federal
agencies are required to report the name of the entity receiving the award, the
amount of the award, the recipient’s location, the place of performance location,

as well as other information.

In particular, using data on all registered federal contracts we extract infor-

)12 where the

mation about the location of funding provision (5-digits Zipcode
contract is executed and the amount of resources dedicated (in 2010 USD). The
Product and Service Codes Manual (PSC, August 2015 Edition) is the guide
to identify procured ‘green’ contracts and to distinguish between product-, and
service-related.'® Indeed, the PSC Manual provides codes to describe products,
services, and R&D purchased by the federal government for each contract action
reported in the Federal Procurement Data System (FPDS). Since a contract may
include multiple products/services, with and without environmental attributes,

the PSC data element code has been selected based on the predominant product

or service that is being purchased.

Occupational-task data To capture the role of human capital in local labor
markets, we rely on the task-based framework originally proposed by Autor

et al. (2003) and recently extended to the analysis at geographical level by Autor

125._digits Zipcodes allow us to assign precise levels of expenditures to counties and, conse-

quently, to CZs.
13Statutory requirements and Executive Order 13514 direct the Office of Management and

Budget (OMB) Office of Federal Procurement Policy (OFPP) to report on procurement of
products and services with environmental attributes including recycled content, biobased, and
energy efficient. Data collected in the Federal Procurement Data System include these three
environmental attributes plus an ‘environmentally preferable’ attribute. This last attribute
means products or services that have a lesser or reduced effect on human health and the

environment when compared with competing products or services that serve the same purpose.

11



and Dorn (2013). This approach differs from the traditional operationalization
of human capital because it focuses on the relative importance of occupations
rather than on educational-based proxies such as i.e. the average number of
years of education in the workforce or the share of individuals with postgraduate
degrees. In this view, labor is the institutional mechanism that allows the
application of individual know-how, and the changing structure of occupation
reflects the growth or decline in the relative importance of the attending human

capital endowment (Consoli and Rentocchini, 2015; Vona and Consoli, 2015).

In this framework work activities are grouped in three broad categories de-
fined on the basis of the match between the main work tasks and the skills needed
to perform them. First, routine tasks that entail executing codified instructions
with minimal discretion on the part of the worker. Routine tasks are character-
istic of middle-skilled jobs that entail repetitive cognitive (i.e. clerks) or manual
(i.e. blue-collar) duties. The second main category of work task include activi-
ties that require creativity, problem-solving, intuition and social perceptiveness.
These abstract tasks are characteristic of professional, managerial, technical and
creative occupations that require high levels of formal education. Since analytic
and interpersonal capabilities are so important, technology accrue productiv-
ity benefits to these workers by facilitating the transmission, organization, and
processing of information. On the other side of the skill spectrum are manual
tasks, which demand visual and language recognition, personal interaction and
physical dexterity. Occupations that use intensively these tasks are typically

low-skill service jobs such as food preparation, catering, driving and cleaning.

Following prior empirical studies (Autor et al., 2003, 2006; Dorn, 2009; Au-
tor and Dorn, 2013) we merge job task requirements from the fourth edition of
the US Department of Labor’s Dictionary of Occupational Titles (DOT) (US
Department of Labor 1977) to their corresponding Census occupation classifi-
4

cations to measure routine, abstract, and manual task content by occupation.!

We combine these measures to create summary indicators of task-intensity by

14The DOT permits an occupation to comprise multiple tasks at different levels of intensity.
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occupation (routine RTI, abstract ATI and manual MTI), calculated as

AT, = l”(TJSlgso) - ln(Tlfl%O) - l”(lelgso)a (2)
RTI), = ln(Tlflgso) - l"(Télgso) - ln(lelQSO)v (3)
MTI, = ln(T%%o) - ln(Tléwso) - ln(TlleSO)a (4)

where, T,f, T,f and T,iw are, respectively, the routine, abstract, and manual
task inputs in each occupation k in 1980.15 For each kind of task, this measure
rises in its importance in each occupation and declines in the importance of the

other two tasks.

Next, to operationalize these measures constructs at the geographic level, we
take two additional steps. We first use the task intensity index to identify the set
of occupations that are in the top employment-weighted third of task-intensity
in 1980. We refer to these as either abstract-, routine- or manual-intensive
occupations. We next calculate for each CZ j a task employment share measure

(RSHj;, ASHj; and M SH;;) equal to:

K

K —1
ASH;; = (ZLW -1 [ATT, > ATIP66]> (ZL]M> , (5)
k=1

k=1
—1

K K
RSH;, = (ZLW -1 [RTI > RTIP“}) <2ijt> : (6)
k=1

k=1

K K -1
MSH;; = (ZLJM 1 [MTI, > MTIP66]> <2ijt> : (7)
k=1

k=1

where L;j; is the employment in occupation k in CZ j at time ¢, and 1[] is
the indicator function, which takes the value of one if the occupation is task

intensive by our definition.

Finally, according to the shares calculated form (5) to (7), we assign a set
of dummies equal to 1 if the CZ j is in the top third of national task share at
time ¢:

Al = 1[ASH;, > ASH[%], (8)

15Tasks are measured on a zero to ten scale.
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RI; =1[RSHj > RSH{%], 9)

MI;; =1[MSHj > MSH %] . (10)

This characterization of local labor markets allows us to investigate whether
diverse occupational task compositions moderate the effect of green public pro-

curement on the generation of GTs.

Table 1 reports the main descriptive statistics of the variables used in the
analysis. Figures 1, 2 and 3 offer a visual summary of the the geographical dis-
tribution of key dimensions across CZs. Therein area boundaries are outlined
in grey, the interior of each CZ is shaded according to the quintile rank in the
distribution of the relevant dimension - colour coding is darker for higher quin-
tiles and progressively lighter for lower quintiles. The distribution of GT patent
stock in Figure 1 (panel a) shows that inventive activity is more concentrated
along coastal areas (especially California, Florida and the north east) as well as
in lakeside CZs of the north and of Texas. The figure also indicates that there is
no significant difference in the distribution of patenting of the component sub-
categories, namely green mitigation technologies (panel b) and green adaptation
technologies (panel c). Figure 2 plots the geographic quintile distribution of the
average amount of GPP expenditures (2010 USD) at the level of CZs for the
period 2000-2011. Precisely, panel a) refers to the total level of expenditures,
panel b) to GPP for products, panel ¢) to GPP for services, respectively. This
pattern reveals some degree of overlap between the distribution of GPP and
that of inventive activities of the previous figure. Finally, Figure 3 shows the
geographic quintile distribution of task-intensive occupations at the level of CZs
in 2005. Precisely, panel a) refers to abstract-intensive occupations, panel b) to
routine-intensive occupations, panel ¢) to manual-intensive occupations, respec-
tively. The noticeable feature is that, relative to the other categories, routine
intensive occupations are more concentrated in CZs in the center and the east
of the US. This resonates with the prominence of the attendant jobs in areas
with high density (i.e. clerical occupations) and with higher levels of industrial

activity (i.e. blue collar jobs).

14



On the whole the maps show that for all the measures there is a large variance
across CZs, as well as a marked evidence of spatial concentration. The maps
also show interesting converging patterns in the spatial distribution of GPP, GTs
and abstract-skills intensity. This evidence suggests that an economic geography
approach is very suitable to analyze how policy levers and skills-intensity affect

the local production of GTs over time.

(c) Total GT patents

Figure 1: Geographic distribution of GT patent stock, 2011 (quintiles)
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(b) Service GPP

(a) Product GPP
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Figure 2: Geographic distribution of GPP average expenditures, 2000-2011

(quintiles)
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(a) Abstract (b) Routine

(c) Manual

Figure 3: Geographic distribution of task-intensive occupations, 2005 (quintiles)
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3.2 Empirical strategy

Using the full sample of 722 CZs observed from 2000 to 2011, we fit models of the
following form to investigate the relationship between green public procurement

and the local level of green technological activity:

Y+ =Po+ 1GPPj 1 + Xgl-,tﬂQ + € ts (11)

where Y} ; is the (log transformed) fractionalized stock of green patent families
(weighted by forward citations) at time ¢ filed by inventors resident in CZ j;
GPPj;_1 is the (log transformed) level of expenditures for green public pro-
curement performed in CZ j at time ¢ — 1 (2010 USD); additionally, the vector
X} ; contains (in most specifications) a rich set of controls for CZs’ labor force
and demographic composition that might independently affect innovation out-
comes. Standard errors are clustered at the State level to account for spatial

correlations across CZs.

To test for moderating effects of local heterogeneity in terms of CZ occu-
pational task compositions on green innovation activities, we estimate three

models, augmenting (11) as follows:

Vit = Bo+B1GPPjy—1+PoRIj 1+ B3GPPj 1 X Rl 1+ X} Batejy. (12)
Vit = Bo+BiGPPjy1+B2Alj 1+ B3GPPj 1 x Aljp—1+ X Bateje. (13)

Yie = Po+PiGPPji 1+ oMl 1+ B3GPPjy1 x Ml 1+

+X Ba+ € (14)

where dummy variables RI;+—1, Al;+—1 and MI;;_; are calculated according

to equations from (8) to (10).1¢

16Due to occupational data availability, the period considered for this second step of the

analysis reduces (2005-2011).

18



Exploiting the ENV-TECH classification, we are also able to differentiate
between diverse types of green technologies. In the final step of the analysis we
thus change our dependent variable accordingly, re-estimating equations from
(11) to (14). Precisely, we aggregate technologies in two precise groups: miti-

gation and adaptation GTs.'7

4 Results

Section 2 puts forward the key hypotheses driving our study, according to which
we expect that GPP exerts a positive impact on the local dynamics of GT gen-
eration, because of the double externality problem and the regulatory push/pull
effect. Moreover, we expect that the configuration of the skill bundle in local
labor markets also affect the process by which green inventions are brought
about, because of the spanning of the recombinant innovation process over a

large number of heterogeneous technological components.

Tables 2, 3 and 4 present the results of the baseline estimates of the rela-
tionship between expenditures in GPP and the local environmental innovation
capacity. Table 2 shows the estimates for the effect of the overall levels of GPP.
Tables 3 and 4 focus instead on product-related and service-related GPP, re-
spectively. Our dependent variable is the log transformed level of fractionalized
stock of local environmental patents, weighted by forward citations corrected

for patent equivalents (INPADOC patent families).

Columns from I to V of Table 2 provide the results of CZ fixed-effect esti-
mations of equation (11), by gradually saturating the empirical model with the
controls described in Section 3.1. GPP in column one shows a positive and sig-
nificant coefficient. Although we use CZ fixed effects, this result can hide some
effects of unobserved variables that one may want to mitigate. The coefficient

of GPP remains positive and significant, if slightly lower, after controlling for

I7Mitigation technologies aggregate ENV-TECH technologies from (c) to (h). Adaptation

technologies are the ones related to groups (a) and (b).
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the population density of the area (Column II). The estimates in Column III
includes also employment share, the coefficient of which is negative and signifi-
cant . The other coefficients are in line with previous estimations. In Columns
IV and V we control, respectively, for the number of firms in the area and the
share of R&D employment. Both coefficient are positive and significant. Still,

the coefficient of GPP preserves the sign and statistical significance.

Column VI estimates equation (11) obtained by substituting fixed effects
for the nine US Census macro-areas for CZ fixed-effects. The overall results
suggest that the effect of GPP is robust across different model specifications.
In particular, we can quantify the positive and significant impact of GPP on
local green innovation activities: a 1% increase in GPP leads to some 0.077%

increase in the stock of green patents in the local areas.

Tables 3 and 4 replicate the same strategy as the one proposed in Table
2 but focusing on the effects of, respectively, GPP for products and GPP for
services on the total stock of green technological knowledge at the local level.
We find a significant and positive effect of both types of public procurement
expenditures. Importantly, we do observe that expenditures for procured green
services show higher effectiveness in boosting the overall level of local green
innovation activity than expenditures for procured green products. If one looks
at Column VI of both tables, it comes that a 1% increase in GPP for products
yields a 0.053% increase in the local stock of GTs, while the same variation in

GPP for services yields a 0.087% increase in the local stock of GTs.

The overall picture emerging from this first set of estimates provides em-
pirical support to our Hypothesis 1, according to which GPP is expected to
positively affect the local accumulation of GT stock. We can now turn to inves-
tigation of the effects of the local occupational task compositions on GTs stock,
drawing upon the measures proposed in Section 3.1. Our aim is to test for the
direct effect of the local skills configuration on the local stock of GTs, as well
as how they moderate the relationship between GPP and local green innovation

capacity.
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Table 5 takes as a benchmark Column VI proposed in Tables 2 to 4. As
explained in Section 3.1, we built dummy variables equal to 1 if a CZ is in the
top 33% of task-intensive occupations shares: abstract (ASH), routine (RSH)
and manual (MSH). We include these dummy variables in the estimations, as
well as their interaction with (total) GPP. Column I and IT focus on RSH. Both
the coefficient of the direct and moderating effects do not appear to signifi-
cantly affect local GTs generation. Columns IIT and IV deal with AHS. The
coefficient of the direct effect is positive and significant in column III, but it
loses significance in column IV, when the interaction with GPP is introduced.
The moderating effect shows a positive and significant coefficient. Columns V
and VI report the estimations of the effect of RHS. The direct effect does not
appear to be significant in any of the estimations, while the moderating effect is
negative. The prevalence of routine skills appears to reduce the impact of GPP

on local accumulation of GTs.

Overall, the inclusion of the local skills composition in the empirical frame-
work seems to reduce the magnitude of the direct effect of GPP. According to
the estimates in table 5, a 1% increase in GPP yields an increase in GTs ranging
from 0.021% to 0.048%, which is far lower than the 0.077% increase found in
Table 2. ASH is the only skill category yielding a positive impact on GTs at the
local level. If one sums the coefficient of GPP and the one of the interaction
of ASH with GPP, the overall effect of GPP appears to be much closer to the
evidence reported in Table 2. Focusing on Column IV, in the areas in the top
33% of abstract-task intensive occupations (ASH=1), the overall impact of 1%

increase in GPP consists of some 0.063% increase in local GTs stock.

Tables 6 and 7 complement the analysis proposed in Table 5 by investigating
whether there are differences in the effect of GPP expenditures for, respectively,
products and services on total GT stock. Results show that the direct impact
found before exists for both types of expenditures. However, it is strongly driven
by GPP expenditures for services, confirming the initial estimates proposed in

Tables 2, 3 and 4. Moreover, the moderating effect of ASH holds for what
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concern GPP for services, while when one focuses on GPP for products, only

the direct effect of ASH shows a positive and significant coefficient.

Figure 4 plots average marginal effects calculated on the basis of the results
from Tables 5, 6 and 7. The bottom parts of the three panels plot average
marginal effects of respectively, total, product- and service-related GPP when
the CZ is in the top third share of task-intensive occupations (abstract, routine
and manual alternatively). Top areas plot the reverse case (average marginal

effects when the CZ is not in the top third share of task-intensive occupations).
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Figure 4: Average marginal effects of GPP on total GT stock with 95% CIs

Focusing on areas in the top third of the skill endowment, we find that
the local knowledge base proxied by means of occupations brings about hetero-
geneity in the results. In particular, the coefficient for abstract occupations is
always significant, with a stronger effect of expenditure on services as compared
to product. Recall that abstract occupations are intensive in activities that
require problem-solving, intuition, persuasion, and creativity. These character-
istics are over-represented in professional, managerial, technical and creative
occupations in areas as diverse as law, medicine, science, engineering, design,

and management. Workers who are most adept in these tasks typically have
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high levels of education and analytic capability. This resonates with the high
level of knowledge intensity of service activities that entail personal interaction,
social perceptiveness and adaptability and which, in our model, augment the
innovation outcome of public procurement. The coefficient for routine occupa-
tions is only significant for green-service procurement. These jobs encompass
many middle-skilled cognitive (i.e., bookkeeping, clerical work) or manual ac-
tivities (i.e., repetitive physical operations in production jobs). Even though
the growth of routine jobs has been in decline for some time (Autor et al., 2003;
Autor and Dorn, 2013), routine occupations still make up the bulk of employ-
ment in the United States. In the case under analysis, we ascribe the positive
effect of routine occupations to the persistent important role of clerical and ad-
ministrative workers in services. Lastly, the endowment of manual skills is only
mildly significant in the general category of public procurement but not in the
sub-components. This is not surprising considering that low-skill manual inten-
sive jobs are mainly concentrated in areas such as assistance and hospitality,
and thus we expect them to be only marginally related to the relation between

innovation and public procurement.

4.1 A comparison between GTs for adaptation and miti-

gation

As a further step of the analysis, we exploit the OECD ENV-TECH classifica-
tion to test for the differential effects of GPP on the two main groups of green
technological stock: adaptation and mitigation, respectively. Columns I, IT and
IIT of Table 8 present estimates for the effect of, respectively, total, product-
and service-related GPP on the stock of green mitigation technologies. Columns
IV, V and VI report the similar estimates concerning the determinants of green
adaptation technologies. Results demonstrate that the overall level of GPP pos-
itively affects both kinds of green technological stock (Columns I and IV). The
magnitude is higher for mitigation technologies. When splitting GPP between

product- and service-related, we do find a significant positive effect of both,
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with service-related GPP expenditures showing higher effectiveness within both
groups of green technologies. The highest effect is found for service-related GPP
on mitigation GT stock (results from Column IIT suggest that a 1% increase in
service-related GPP leads to a 0.096% increase in the stock of green mitigation

patents).

Next, we investigate more in depth the moderating effect of local labor mar-
ket composition in the relation between green public procurement and green
innovation capacity across macro-families of green technology. In particular,
we analyze separately the effects on GT stock in mitigation (Tables 9, 10 and
11) and in adaptation technologies (Tables 12, 13 and 14). In short, mitigation
strategies, and the attendant technologies, seek to tackle the causes of climate
change such as accumulation of greenhouse gases in the atmosphere. Mitigation
is understood as having a global character as opposed to adaptation strategies
which, instead, aim at reducing the local impact of climate change. Mitiga-
tion is a priority in a broad range of domains such as energy, transportation,
manufacturing and waste management. Conversely, adaptation strategies target

primarily water and health sectors.

We find that the average marginal effects for mitigation technologies are the
same as those observed in the general case above. This applies to both the
significance and the magnitude of the coefficients. Once again, a high endow-
ment of managerial, scientific and interpersonal (viz. abstract) skills yields an
innovation premium (Figure 5) for public procurement in both green products
and green services. Routine intensive occupations have a significant moderating
effect only for green service expenditures. Conversely, among adaptation tech-
nologies, the coefficients of both routine and abstract occupations are significant
only for service-related GPP (Figure 6). We ascribe this to the preponderance
of intangible nature of coordinating, planning and implementing adaptation

strategies at local level.
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5 Conclusions

Green technologies are a means to successfully decoupling economic growth and
environmental degradation. Their adoption allows firms to improve both their
economic and environmental performances. In view of the social desirability
of the diffusion of this type of technologies, creating economic incentives for
private investments in innovation remains a key issue in the policy agenda. Due
to the double externality problem, sub-optimal allocation of resources in these
activities is highly likely unless public intervention puts in place policies that
restore incentives to invest in green technologies. In this paper we have analyzed
the impact of a somewhat neglected type of public intervention, green public
procurement, on the generation of GTs. The present paper marks an important
difference with most of the extant literature in that we consider a direct demand-
side policy lever (i.e. government expenditure) instead of indirect demand-pull
effects engendered by the implementation of stringent environmental regulatory

frameworks.

Our analysis of the link between GPP and the generation of GTs has been
conducted at the territorial level of US commuting zones. We put forward
the hypothesis that the local accumulation of competences represents a key
enabling condition for the generation of new technologies in general. GTs show
some specificity in this respect, in that they appear to emerge as an outcome of
the hybridization of a variety of technologies that often are loosely related with
one another. The configuration of the local bundle of skills is therefore much
important in affecting local differences in the capacity to sustain green inventive
activities. The prevalence of abstract skills is crucial in this respect, in that it
is related to cognitive abilities to combine ideas and inputs from different fields

in new and previously untried ways.

Our results provide empirical support to our hypotheses, showing that GPP
exerts a positive impact on the generation of GTs. In particular, we have found
that a 1% increase in GPP engenders some 0.077% increase in the local stock

of GTs. The government expenditure lever can therefore prove to be efficient
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in the promotion of technology-driven sustainability transitions. Moreover, we
have found that GPP for services yield a stronger impact than GPP for products.
This suggests the existence of bandwagon effects upwards in the value chain, for
which the demand for green services stimulate the generation of the technologies

that make them possible.

The configuration of the local labor market plays also a role in the dynamics
of GTs generation. In particular, the prevalence of abstract skills is positively
associated to the generation of GTs. Moreover, this specific set of skills moder-
ates the effect of GPP on GTs, by magnifying its coefficient. According to our
estimates, the overall impact of GPP in areas in which abstract skills are preva-
lent is almost twice the impact of GPP in areas in which this prevalence is not
observed. Finally, our analysis allowed to investigating the differential impact
of GPP and local skills bundle configuration on mitigation vis-a-vis adaptation

oriented green technologies.

Our results bear important implications for policy. Dealing with climate
change will require timely interventions to minimize the risks of further envi-
ronmental damage while at the same time making the most of the opportunities
provided by the reconfiguration of intertwined legislative, production, distri-
bution and consumption systems. Transition assistance at all levels will be
important for regions that are home to high emission industries, and thus can-
didates for disruption, as well as for regions that can leverage natural or built
assets to seize opportunities for growth. Our analysis highlights two areas of

intervention.

The first concerns the role of public expenditure in boosting technology-
driven sustainable development. Most of the extant literature has focused on
technology push or demand pull deployment policies. We do not deny the
relevance of these policy instruments. However, we show that besides these
options, policymakers can affect the rate and the direction of green inventive
activities by demanding for specific green services or products. While these

are expected to satisfy specific needs of public administrations, the GTs that
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are produced are expected to be relevant for a wider set of economic activities,
bearing important spillovers for prospective adopters. On the other hand, the
transition to green growth entails much more than just new technologies, in that
much of the innovation that is required is organizational and institutional. These
innovations represent a break from established practice and entail considerable
uncertainty about how to make the new practice work effectively. Therefore,
supporting the creation and adaptation of human capital is the second domain of
policy intervention. Active labor market policies are essential to both favor the
rapid re-absorption of displaced workers and to counter, or prevent altogether,
skill gaps. A smooth adaptation of the labor markets to these pressures calls
upon dedicated efforts are needed to identify the direct (i.e. market demand)
and indirect (i.e. through regulations) effects of dealing with climate change
on existing occupational profiles and on the skills mix that is needed for new
green activities. Beyond merely quantitative impact, public authorities should
support business firms in facilitating the creation of decent jobs as they undergo
transformations and adaptations of local labor markets to greener demands. In
a dynamic perspective, nimble, adaptable and focused education and training
systems are the key to prepare the ground for an egalitarian transition to a low-
carbon economy. Because climate change is a global phenomenon with strong
territorial specificity, local labor market institutions will be at the forefront of
the dual task of accommodating national or supranational regulations while

seeking to promote incentives to stimulate sustainable business activities.
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Tables

Table 1: Descriptive statistics

Variable Obs Mean Std. Min Max
Dev.

total GT stock 7,937 20.325 87.865 0 2092.176

mitigation GT stock 7,937 16.932 77.027 0 1989.022

adaptation GT stock 7,937 3.393 12.845 0 318.381

total GPP 7,937 14.681 108.543 -203.139 4219.37

product GPP 7,937 4.025 55.748 -44.238 3675.805

service GPP 7,937 9.377 77.731 -158.900 2425.968

RSH 4,476 .336 472 0 1

ASH 4,476 .333 471 0 1

MSH 4,476 .330 470 0 1

pop density 7,937 149.478 770.542 .255 19643.86

employment 7,937 156279.6 452789 138.5 6787960

7# of establishments 7,937 10168.18 28537.29 23 434368

R&D employment share 7,937 .001 .002 0 .055

Note: The time-span of our analysis is 2000-2011. Because information on CZ occupa-
tional structures are available from 2005 onwards, the sample is reduced to 4,476 obser-

vations (from 7,937).

34



Table 2: Effect of total green procurement on GT stock (2001-2011)

M (11) (1) (1v) (V) (VD)
tot GPP 0.082*** 0.068*** 0.067*** 0.064*** 0.063*** 0.077***
(0.009) (0.009) (0.009) (0.009) (0.009) (0.010)
pop density 0.003** 0.004*** 0.003*** 0.003*** -0.000
(0.001) (0.001) (0.001) (0.001) (0.000)
empl share -0.000***  -0.000***  -0.000***  -0.000*
(0.000) (0.000) (0.000) (0.000)
N. of firms 0.000* 0.000* 0.000***
(0.000) (0.000) (0.000)
R&D empl 6.686* 8.584**
(3.824) (4.260)
r2_w 0.383 0.399 0.403 0.404 0.405 0.386
r2_o 0.147 0.127 0.073 0.084 0.085 0.501
r2_b 0.551 0.125 0.071 0.082 0.082 0.508
N 7937 7937 7937 7937 7937 7937

Dep. Var.: Stock of fractionalized patent families weighted by forward citations (log). GPP
Models I to V, estimated

lagged 1-year.

Standard errors clustered at the level of State.

in fixed effect, include a constant and year dummies. Model VI includes also geographic

dummies (9 Census divisions). * p < .1, ** p < .05, *** p < .01
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Table 3: Effect of GPP for products on GT stock (2001-2011)

M (11) (1) (1v) (V) (VD)
prod GPP 0.073*** 0.050*** 0.049*** 0.041*** 0.041*** 0.053***
(0.013) (0.012) (0.012) (0.012) (0.012) (0.013)
pop density 0.004** 0.004*** 0.004*** 0.004*** -0.000
(0.002) (0.001) (0.001) (0.001) (0.000)
empl share -0.000***  -0.000***  -0.000***  -0.000**
(0.000) (0.000) (0.000) (0.000)
N. of firms 0.000** 0.000** 0.000***
(0.000) (0.000) (0.000)
R&D empl 6.972* 8.609**
(3.888) (4.378)
r2_w 0.365 0.385 0.389 0.391 0.392 0.371
r2_o 0.067 0.118 0.069 0.082 0.083 0.472
r2_b 0.432 0.118 0.068 0.080 0.081 0.478
N 7937 7937 7937 7937 7937 7937

Dep. Var.: Stock of fractionalized patent families weighted by forward citations (log). GPP

lagged 1-year. Standard errors clustered at the level of State.

Models I to V, estimated

in fixed effect, include a constant and year dummies. Model VI includes also geographic

dummies (9 Census divisions). * p < .1, ** p < .05, *** p < .01
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Table 4: Effect of GPP for services on GT stock (2001-2011)

M (11) (1) (1v) (V) (VD)
serv GPP 0.093*** 0.078*** 0.077*** 0.073*** 0.073*** 0.087***
(0.010) (0.010) (0.010) (0.010) (0.010) (0.011)
pop density 0.003** 0.004*** 0.003*** 0.003*** -0.000
(0.001) (0.001) (0.001) (0.001) (0.000)
empl share -0.000***  -0.000***  -0.000***  -0.000**
(0.000) (0.000) (0.000) (0.000)
N. of firms 0.000** 0.000** 0.000***
(0.000) (0.000) (0.000)
R&D empl 6.716* 8.510**
(3.772) (4.168)
r2_w 0.384 0.400 0.404 0.406 0.406 0.388
r2_o 0.138 0.126 0.074 0.086 0.086 0.498
r2_b 0.495 0.125 0.072 0.083 0.084 0.505
N 7937 7937 7937 7937 7937 7937

Dep. Var.: Stock of fractionalized patent families weighted by forward citations (log). GPP
Models I to V, estimated

lagged 1-year. Standard errors clustered at the level of State.

in fixed effect, include a constant and year dummies. Model VI includes also geographic

dummies (9 Census divisions). * p < .1, ** p < .05, *** p < .01
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Table 5: Effect of total GPP and task composition on GT stock (2006-2011)

0 (I1) (I1T) av) V) (VI)
tot GPP 0.039%**  0.039***  0.039***  0.021** 0.040%**  0.048%**
(0.008) (0.009) (0.008) (0.008) (0.008) (0.009)
RSH 0.003 0.004
(0.013) (0.012)
GPP*RSH -0.000
(0.011)
ASH 0.041%**  0.017
(0.014) (0.015)
GPP*ASH 0.042%**
(0.010)
MSH -0.013 0.001
(0.010) (0.010)
GPP*MSH -0.037%%*
(0.012)
pop density  -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

empl share  -0.000***  -0.000***  -0.000***  -0.000***  -0.000***  -0.000***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

N. of firms ~ 0.000***  0.000***  0.000***  0.000***  0.000***  0.000***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

R&D empl  6.101 6.100 6.533 6.378 6.455 6.561
(6.303) (6.298) (6.272) (6.264) (6.348) (6.418)
2w 0.328 0.328 0.328 0.331 0.327 0.329
2 o 0.458 0.458 0.464 0.469 0.461 0.464
2 b 0.467 0.467 0.473 0.478 0.471 0.473
N 3851 3851 3851 3851 3851 3851

Dep. Var.: Stock of fractionalized patent families weighted by forward citations (log). GPP,
RSH, ASH and MSH lagged l-year. Standard errors clustered at the level of State. All
models include a constant, year and geographic dummies (9 Census divisions). * p < .1, **

p < .05, *** p< .01
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Table 6: Effect of GPP for products and task composition on GT

stock (2006-

2011)
@ (I1) (I1D) av) V) (VI)
prod GPP  0.020* 0.021* 0.020** 0.008 0.021* 0.023**
(0.010) (0.011) (0.010) (0.012) (0.010) (0.010)
RSH 0.005 0.006
(0.013) (0.013)
GPP*RSH -0.006
(0.018)
ASH 0.038"**  0.036**
(0.014) (0.014)
GPP*ASH 0.021
(0.014)
MSH -0.012 -0.009
(0.010) (0.010)
GPP*MSH -0.031
(0.023)
pop density  -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
empl share  -0.000***  -0.000***  -0.000***  -0.000***  -0.000***  -0.000***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
N.of firms  0.000%**  0.000***  0.000***  0.000***  0.000***  0.000***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
R&D empl  5.782 5.845 6.243 6.257 6.164 6.248
(6.243) (6.248) (6.220) (6.233) (6.302) (6.320)
2w 0.327 0.327 0.327 0.327 0.326 0.326
r2 o 0.440 0.440 0.446 0.447 0.444 0.444
2 b 0.449 0.449 0.455 0.455 0.453 0.453
N 3851 3851 3851 3851 3851 3851

Dep. Var.: Stock of fractionalized patent families weighted by forward citations (log). GPP,
RSH, ASH and MSH lagged l-year. Standard errors clustered at the level of State. All

models include a constant, year and geographic dummies (9 Census divisions). * p < .1, **

p < .05, *** p< .01
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Table 7: Effect of GPP for services and task composition on GT stock (2006-

2011)
@ (I1) (I1D) av) V) (VI)
serv GPP  0.047***  0.048***  0.048***  0.025** 0.048***  0.057%**
(0.010) (0.011) (0.010) (0.011) (0.010) (0.011)
RSH 0.003 0.005
(0.013) (0.012)
GPP*RSH -0.004
(0.012)
ASH 0.041***  0.018
(0.014) (0.015)
GPP*ASH 0.050%**
(0.012)
MSH -0.013 0.001
(0.010) (0.011)
GPP*MSH -0.042%%*
(0.016)
pop density  -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
empl share  -0.000***  -0.000***  -0.000***  -0.000***  -0.000***  -0.000***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
N.of firms  0.000%**  0.000***  0.000***  0.000***  0.000***  0.000***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
R&D empl  5.875 5.881 6.324 6.167 6.245 6.292
(6.254) (6.249) (6.230) (6.224) (6.301) (6.383)
2w 0.331 0.331 0.331 0.334 0.330 0.331
r2 o 0.458 0.459 0.465 0.470 0.462 0.464
2 b 0.468 0.468 0.474 0.479 0.472 0.474
N 3851 3851 3851 3851 3851 3851

Dep. Var.: Stock of fractionalized patent families weighted by forward citations (log). GPP,
RSH, ASH and MSH lagged l-year. Standard errors clustered at the level of State. All

models include a constant, year and geographic dummies (9 Census divisions). * p < .1, **

p < .05, *** p< .01
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Table 8: Effect of GPP on GT stock: mitigation and adaptation (2001-2011)

Mitigation GT Adaptation GT

0 (11) (1) (1v) (V) (VD)
total GPP 0.086*** 0.043***

(0.011) (0.008)
prod GPP 0.061*** 0.036***

(0.014) (0.010)
serv GPP 0.096*** 0.049***
(0.011) (0.009)

pop density  -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
empl share -0.000** -0.000*** -0.000** -0.000* -0.000** -0.000**

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

N. of firms ~ 0.000***  0.000***  0.000***  0.000***  0.000***  0.000***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

R&D empl  7.089 7.115 7.016 4.603 4.640 4.558
(4.438) (4.379) (4.367) (4.983) (5.283) (4.917)
2w 0.381 0.364 0.382 0.245 0.236 0.247
2 o 0.510 0.479 0.507 0.558 0.539 0.556
2 b 0.519 0.486 0.516 0.576 0.555 0.573
N 7937 7937 7937 7937 7937 7937

Dep. Var.: Stock of fractionalized patent families (mitigation and adaptation) weighted by
fwd. cits. GPP variables lagged 1-year. Standard errors clustered at the level of State. All
models include a constant, year and geographic dummies (9 Census divisions). * p < .1, **

p < .05, *** p < .01
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Table 9: Effect of total GPP and task composition on GT-mitigation stock

(2006-2011)

@ (I1) (I1D) av) V) (VI)
tot GPP 0.043***  0.044™**  0.044***  0.023***  0.045***  0.053***
(0.009) (0.010) (0.009) (0.008) (0.009) (0.010)
RSH 0.001 0.003
(0.013) (0.013)
GPP*RSH -0.003
(0.011)
ASH 0.044***  0.016
(0.016) (0.017)
GPP*ASH 0.049***
(0.011)
MSH -0.010 0.005
(0.011) (0.011)
GPP*MSH -0.040%**
(0.013)
pop density  -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
empl share  -0.000***  -0.000***  -0.000***  -0.000***  -0.000***  -0.000***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
N.of firms  0.000%**  0.000***  0.000***  0.000***  0.000***  0.000***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
R&D empl  5.863 5.870 6.360 6.177 6.206 6.320
(6.416) (6.413) (6.391) (6.384) (6.451) (6.528)
2w 0.319 0.319 0.319 0.322 0.318 0.320
r2 o 0.463 0.463 0.469 0.476 0.466 0.469
2 b 0.473 0.473 0.479 0.485 0.476 0.479
N 3851 3851 3851 3851 3851 3851

Dep. Var.: Stock of fractionalized patent families (mitigation and adaptation) weighted by
fwd. cits. GPP, RSH, ASH and MSH lagged 1-year. Standard errors clustered at the level

of State. All models include a constant, year and geographic dummies (9 Census divisions).

*p<.1,** p<.05 *** p<.01
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Table 10: Effect of GPP for products and task composition on GT-mitigation
stock (2006-2011)

@ (I1) (I1D) av) V) (VI)
prod GPP  0.024** 0.026** 0.025% 0.009 0.026** 0.028**
(0.011) (0.012) (0.011) (0.013) (0.011) (0.011)
RSH 0.003 0.004
(0.013) (0.013)
GPP*RSH -0.006
(0.020)
ASH 0.041%**  0.037**
(0.016) (0.016)
GPP*ASH 0.027*
(0.016)
MSH -0.008 -0.005
(0.011) (0.011)
GPP*MSH -0.035
(0.024)
pop density  -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
empl share  -0.000***  -0.000***  -0.000***  -0.000***  -0.000***  -0.000***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
N.of firms  0.000%**  0.000***  0.000***  0.000***  0.000***  0.000***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
R&D empl  5.514 5.581 6.046 6.055 5.890 5.983
(6.337) (6.345) (6.320) (6.336) (6.388) (6.411)
2w 0.318 0.318 0.317 0.318 0.317 0.317
r2 o 0.443 0.443 0.450 0.450 0.446 0.446
2 b 0.452 0.452 0.458 0.459 0.455 0.456
N 3851 3851 3851 3851 3851 3851

Dep. Var.: Stock of fractionalized patent families (mitigation and adaptation) weighted by
fwd. cits. GPP, RSH, ASH and MSH lagged 1-year. Standard errors clustered at the level

of State. All models include a constant, year and geographic dummies (9 Census divisions).

*p<.1,** p<.05 *** p<.01
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Table 11: Effect of GPP for services and task composition on GT-mitigation
stock (2006-2011)

@ (I1) (I1D) av) V) (VI)
serv GPP 0.051***  0.053***  0.052***  0.026** 0.052***  0.061%**
(0.010) (0.011) (0.010) (0.011) (0.010) (0.011)
RSH 0.001 0.005
(0.013) (0.013)
GPP*RSH -0.009
(0.013)
ASH 0.044***  0.018
(0.016) (0.017)
GPP*ASH 0.057***
(0.013)
MSH -0.009 0.005
(0.011) (0.011)
GPP*MSH -0.045%%*
(0.016)
pop density  -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
empl share  -0.000***  -0.000***  -0.000***  -0.000***  -0.000***  -0.000***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
N.of firms  0.000%**  0.000***  0.000***  0.000***  0.000***  0.000***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
R&D empl  5.621 5.639 6.140 5.960 5.987 6.036
(6.375) (6.369) (6.357) (6.353) (6.413) (6.502)
2w 0.321 0.321 0.321 0.325 0.320 0.322
r2 o 0.463 0.463 0.470 0.476 0.466 0.469
2 b 0.473 0.473 0.479 0.486 0.476 0.479
N 3851 3851 3851 3851 3851 3851

Dep. Var.: Stock of fractionalized patent families (mitigation and adaptation) weighted by
fwd. cits. GPP, RSH, ASH and MSH lagged 1-year. Standard errors clustered at the level

of State. All models include a constant, year and geographic dummies (9 Census divisions).

*p<.1,** p<.05 *** p<.01
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Table 12: Effect of total GPP and task composition on GT-adaptation stock
(2006-2011)

) (11) (111) 1v) V) (VD)
tot GPP 0.021%**  0.020"**  0.022***  0.012 0.022***  0.030%**
(0.007) (0.007) (0.007) (0.008) (0.007) (0.008)
RSH 0.003 0.002

(0.007) (0.007)
GPP*RSH 0.003
(0.011)
ASH 0.020% 0.007
(0.009) (0.008)
GPP*ASH 0.023*
(0.010)
MSH -0.019***  -0.006
(0.006) (0.007)
GPP*MSH -0.036%**
(0.008)
pop density  -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
empl share  -0.000**  -0.000**  -0.000**  -0.000**  -0.000**  -0.000**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

N.of firms  0.000***  0.000***  0.000***  0.000***  0.000***  0.000***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

R&D empl  2.601 2.590 2.815 2.737 2.902 3.013
(4.737) (4.732) (4.707) (4.720) (4.760) (4.856)
2w 0.188 0.188 0.187 0.188 0.187 0.190
2 o 0.511 0.511 0.515 0.520 0.516 0.520
2 b 0.525 0.525 0.530 0.535 0.530 0.535
N 3851 3851 3851 3851 3851 3851

Dep. Var.: Stock of fractionalized patent families (mitigation and adaptation) weighted by
fwd. cits. GPP, RSH, ASH and MSH lagged 1-year. Standard errors clustered at the level
of State. All models include a constant, year and geographic dummies (9 Census divisions).

*p<.1,** p<.05 *** p<.01
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Table 13: Effect of GPP for products and task composition on GT-adaptation
stock (2006-2011)

) (11) (111) 1v) V) (VD)
prod GPP  0.009 0.008 0.009 0.007 0.009 0.011

(0.009) (0.009) (0.009) (0.010) (0.009) (0.009)
RSH 0.004 0.004

(0.007) (0.007)
GPP*RSH 0.003
(0.014)
ASH 0.018** 0.018*
(0.009) (0.009)
GPP*ASH 0.003
(0.012)
MSH -0.018***  _0,017***
(0.006) (0.006)
GPP*MSH -0.022*
(0.012)
pop density  -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
empl share  -0.000**  -0.000**  -0.000**  -0.000**  -0.000**  -0.000**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

N.of firms  0.000***  0.000***  0.000***  0.000***  0.000***  0.000***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

R&D empl  2.474 2.488 2.708 2.713 2.799 2.867
(4.790) (4.783) (4.771) (4.774) (4.826) (4.844)
2w 0.189 0.189 0.188 0.187 0.188 0.188
2 o 0.497 0.498 0.502 0.502 0.502 0.503
2 b 0.511 0.511 0.516 0.516 0.516 0.517
N 3851 3851 3851 3851 3851 3851

Dep. Var.: Stock of fractionalized patent families (mitigation and adaptation) weighted by
fwd. cits. GPP, RSH, ASH and MSH lagged 1-year. Standard errors clustered at the level
of State. All models include a constant, year and geographic dummies (9 Census divisions).

*p<.1,** p<.05 *** p<.01
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Table 14: Effect of GPP for services and task composition on GT-adaptation
stock (2006-2011)

) (11) (111) 1v) V) (VD)
serv GPP 0.031***  0.030***  0.032***  0.017* 0.032***  0.040%**

(0.008) (0.008) (0.008) (0.010) (0.008) (0.009)
RSH 0.003 0.001

(0.007) (0.007)
GPP*RSH 0.003
(0.010)
ASH 0.020** 0.005
(0.009) (0.008)
GPP*ASH 0.033***
(0.010)
MSH -0.018***  -0.006
(0.006) (0.007)
GPP*MSH -0.041%%*
(0.009)
pop density  -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
empl share  -0.000**  -0.000**  -0.000**  -0.000**  -0.000**  -0.000**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
N.of firms  0.000%**  0.000***  0.000***  0.000***  0.000***  0.000***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
R&D empl  2.453 2.444 2.677 2.585 2.762 2.815
(4.653) (4.649) (4.625) (4.649) (4.677) (4.785)
2w 0.192 0.192 0.191 0.194 0.191 0.194
2 o 0.514 0.514 0.519 0.525 0.519 0.523
2 b 0.529 0.528 0.533 0.540 0.534 0.538
N 3851 3851 3851 3851 3851 3851

Dep. Var.: Stock of fractionalized patent families (mitigation and adaptation) weighted by
fwd. cits. GPP, RSH, ASH and MSH lagged 1-year. Standard errors clustered at the level
of State. All models include a constant, year and geographic dummies (9 Census divisions).

*p<.1,** p<.05 *** p<.01
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