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Abstract 

This paper deals with the diffusion of innovations in a multi-technology setting. High up-front costs 

of adoption, heterogeneity among potential adopters, network interactions, information feedbacks 

and subsidy policies are reproduced by an agent-based percolation model of multi-technology 

diffusion. In our model a new technology incorporated in a final product ready to be 

commercialized may spread in a market of heterogeneous consumers who decide whether to adopt 

it or not depending on both the net benefit from adoption and on locally available information. A 

new desirable technology, characterized by a high up-front cost of adoption, may not be able to 

overcome the obstacles to its diffusion despite potential future cost reductions. It may fail to spread 

in the market because of the pressure from its competitors (i.e. other technologies that serve a 

similar function) or because heterogeneity among potential adopters confine the spread of useful 

information to isolated sub-communities. We ask if a subsidy policy would trigger a self-sustained 

diffusion of a desirable technology. We run the model in two specific network topologies: bi-

dimensional regular lattice and small world network. We show that a) information feedbacks and 

learning economies give raise to a positive feedback loop almost independently on the topology of 

the network: more information feedbacks →  decrease in price →  higher probability of conquering 

potential adopters →  more information feedbacks etc; b) market dominance depends on the 

probability of the initial adopters to belong to an expanding cluster  which is a function of both the 

network topology and heterogeneity of potential adopters; c) in a multi-technology setting a subsidy 

policy should be set not only according to future costs reduction and heterogeneity but also to 

competition and technologies interdependence: reaching the necessary critical mass of diffusion 

may depend on how successfully the overall spread of other undesirable technologies is prevented. 

 

JEL classification: C61; H23; O32; O33 

 

Keywords: Multi-technology diffusion; Learning economies; Percolation; Networks; 

Heterogeneous agents; Adoption subsidies; eco-innovations 
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1. Introduction 

This research explores the realm of economics of innovation by investigating specifically the phase 

of diffusion. High up-front costs of adoption, epidemic-like contagion mechanisms, locally 

available information and heterogeneity are among the barriers to frictionless diffusion (see 

Stoneman, 2002). Although the waves of innovation look diverse depending along the coast of 

which territory they rise and fall, nonetheless they all seem to be driven by learning curve costs 

reduction. By drawing on successful applications of percolation theory to the diffusion of 

innovations (Antonelli, 1996; Solomon et. al, 2000; Silverberg Verspagen, 2005; Frenken et al., 

2006; Honhisch et al., 2008; Cantono and Silverberg, 2009), we develop an agent-based percolation 

model of multi-technologies diffusion, we explore the relation between learning economies and 

information feedbacks and we propose reflections about some necessary features of a subsidy 

policy devoted to support the spread of a desirable new technology. 

In this paper we mainly focus our attention on the specific problem of the diffusion of new 

technologies that exhibit initial high upfront costs and are characterized by learning economies (i.e. 

costs reduction attainable in the future). We treat the emergence of innovations as exogenous and 

we investigate demand-side factors. We assume that a certain technology has been already 

incorporated into a new product and sold to final consumers. Although there might be adopters 

willing to pay more for an innovation (i.e. potential adopters are heterogeneous), a new desirable
2
 

technology may not be able to overcome the obstacles to its propagation. Public authorities may be 

called to sustain its diffusion at the early stages of its deployment. We model the case of short-term 

and long-term adoption subsidies and we investigate their impact on the diffusion of desirable 

technologies. 

Since the pioneering work of Griliches (1957), many barriers to innovations diffusion have been 

unveiled (Mansfield, 1961, 1968; David, 1969; Davies, 1979). The models of technology diffusion 

roughly falls in one or the other of the following two categories: epidemic and rank models. The 

essence of epidemic models lies in the contagion mechanism. In a homogeneous population the 

emergence of a technology is exogenously given. As soon as potential consumers are “infected” by 

it, the technology spreads over the entire population. Slowly at the very firsts instants and faster as 

more and more consumers adopt it until it reaches the asymptotic level of cumulative buyers N. The 

merit of epidemic models is that of explicitly considering information contagion. Moreover those 

are disequilibrium models, e.g. models in which the equilibrium cumulative number of adopters is 

reached only at the end of the process. Nevertheless they suffer from the hypothesis of homogeneity 

of population, from the uniformity of benefits and from the intrinsic feature of reproducing an 

autonomous process of diffusion (once the innovation has been adopted by at least one consumer, 

sooner or later it will be adopted by all the others via contagion). 
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 The simplest example of a socially desirable technology is that of eco-innovations. However, it is usually difficult to 

detect which new environmental technologies is the best among the many available. Here we make our life simple by 

assuming the most promising technology is detectable which is hardly the case in reality. Finding a the proper strategy 

in this respect could a relevant topic for future research. 



The economic behaviour and the effects of heterogeneity that lies behind the decision to adopt a 

new technology are instead at the heart of probit or rank models where the profitability and 

arbitrage conditions dictate that a technology is adopted only if benefits exceed costs of adoption 

and only at the moment that assures the highest benefits. However the first and second order 

conditions just stated do not explain the sigmoid path of diffusion, in fact elucidated by exogenous 

costs changes over time. The disadvantage of these kind of models is that of considering the 

individual benefit independently distributed and unrelated to the number of previous adopters. 

In this model epidemic-like contagion mechanisms, heterogeneity, learning economies and policy 

interventions are merged together as in Cantono and Silverberg (2009). Here we extend their model 

to a multi-technology setting and we explore the effects of information feedbacks. In our setting, 

new technologies will spread because of both the dissemination of information and as a 

consequence of the choice of heterogeneous rational consumers distributed as nodes on a network. 

The dissemination of information has been found to be significant in defining the pace of diffusion. 

Rather then treating information as global, we will consider it as local. But the meaning of an 

underlying network might also be understood in the following terms: even when potential adopters 

might be aware of the presence of a new technology, they may still be reluctant to adopt it if they 

think it is difficult to use and/or unreliable. Thus the presence of an underlying network structure 

does not only advance our understanding in terms of the effects of locality. It explicitly allows us to 

take into account the effects of the reduction of risk on commercial transactions when economic 

actors do not solely rely upon market mechanisms (Granovetter, 1985). Moreover we address the 

effects of information feedbacks which arise when potential adopters sample among buyers in order 

to collect information on the new technology: a new technology may be difficult to use and thus it 

may require the collection of additional information. The more buyers of a technology the highest 

the chance that technology would be selected. Information feedbacks have been introduced by 

Arthur and Lane (1994) and have been studied in isolation from learning economies or other self-

reinforcing mechanisms. Finally we show the effects of a subsidy policy over the initial cost of 

adoption and we offer some interesting results which call for mixed strategies. 

The rest of the paper is organized as follow. In Section 2 we illustrate the details of the model. In 

Section 3 we describe the results and we give an interpretation. Section 4 concludes. 

 

2. The Model 

Our model is based on the percolation model of innovation diffusion developed by Cantono and 

Silverberg (2009). Here we extend their model to a multi technology setting. 

Let us locate M potential adopters at each node of a certain network topology. We model two types 

of networks: the two-dimensional regular lattice (where the neighbourhood is represented by the 

four nearest neighbours, i.e. Ising network) and the small world networks (Wattz and 

Strogatz,1998). As opposed to a regular lattice where every node has the same amount of 

neighbours, in a small world the number of neighbours is diverse depending on the node. 



Every individual has the chance to choose one technology out of a set of m possible technologies 

that serve a similar function (i.e. they are perfect substitutes). Each individual will become an 

adopter only if both of the following conditions hold: at least one of her neighbours (defined 

according to the network topology) has already bought one of the available technologies; the market 

price of the technology is lower than her reservation price. Reservation prices are distributed 

according to a log-normal distribution, ( )σµθ ,LN≈ . A consumer is allowed to adopt a technology 

only once. The market price of technology i at each simulation time step t, tip , , decreases with the 

increase in the cumulative number of adopters according to: 
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where 0,ip  is the initial price of technology i, 10, =iN  is the number of early birds
3
 per each 

technology i, tiN ,  is the number of cumulative adopters at time t and iα  is the learning coefficient 

specific to each technology. Eq. [1] shows the price dynamics: as the number of adopters increases 

over time, the price of the technology adopted decreases. The learning coefficient represents the 

extent of price decrease due to the rise of units sold / produced. 

Let us define as =0P [ 0,0, ,...., mi pp ] mi ,...,1,0=∀  the vector of the initial market price of the 

technologies at the disposal of potential adopters. And =tP [ tmtt ppp ,,2,1 ,....,, ] the vector of prices 

at each simulation time-step. Depending on the choices of her neighbours, a potential consumer will 

select one technology according to the wheel mechanism. 

In particular, let us the final the level of attractiveness of technology i at time t, tiA , ,as: 

 

titi wA ,, =        [2] 

 

where tiw ,  represents the number of neighbours that have chosen technology i at time t. 

The wheel probability for technology i to be chosen at time t, ti,π , is: 
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The wheel mechanism works in the following way. Suppose to have the values of the cumulative 

distribution for every ti,π . Assume that the cumulative distribution can be depicted on a circle with 

perimeter equal to 1. Distribute the values tts ,1,1 π= , ttts ,2,1,2 ππ += , tttts ,1,2,1,3 πππ ++=  along 

the circle. Draw a random number R from ( )1,0IX ≈ . If R falls in the interval [ ts ,1,0 ] then 
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into a product to be sold to final consumers. 



technology 1 is chosen and afterwards compared to the reservation price. Technology 2 is chosen if 

R falls in the interval ( tt ss ,2,1 , ]. For R in the interval ( tt ss ,3,2 , ] technology 3 will be chosen. 

 

The results of the simulations are presented in the next section. 

 

3. Results and interpretation 

We run the model in networks with a total number of nodes (potential buyers) 10000=M . This 

model does not explain the emergence of an innovation, indeed the number of early birds is an 

exogenous parameter. Throughout the paper, the number of early birds is kept constant and equal to 

1 for each technology ( 10 =N ). We are investigating the process of multi-technology diffusion in 

both a two-dimensional regular lattice and a small world network (with different values of rewiring 

probability). We first describe the results in an environment without learning economies, e.g. 

0=iα  for each technology i. We thus show the effects of learning economies and information 

feedbacks by allowing the learning coefficient to vary ( 5.00 ≤≤ α )
4
. The critical price depends on 

the parameters of the distribution of the reservation price. For a Lognormal distribution with 

parameters 1=µ  and 2=σ , the critical percolation price is 7.1≅cp : without learning economies, 

a technology with an initial price 7.10 >p  never percolates over the entire network. 

The results are described by the Herfindahl Index (H_Index), that is an index of market share. The 

number of technologies is a parameter 3=nP . Thus the H_Index ranges from about 0.33 to 1: the 

lower limit represents a situation of perfect equal share in the market, whereas the upper limit depict 

a situation of perfect dominance of one technology over the others. The results for each parameter 

configuration are averaged over twenty simulation runs to minimize the effects of statistical 

variation. Let us separately illustrate the outcomes of our analysis in a learning economies free 

environment first (3.1). Then we show the relationship between learning economies and information 

feedbacks (3.2). And finally we offer some policy implications (3.3). 

 

3.1 Price Simulations 

All the three technologies have the same initial price and the same number of early birds. In a 

learning economies free Ising network, they end up sharing the market equally: if the network 

structure is a two-dimensional regular lattice, information feedbacks do not emerge. Every 

technology spreads as if it were in a separate island. Figure 1
5
 shows the value of the H_Index 

versus the value of the initial price 0p  for different values of the rewiring probability. In a small 

world network, where potential buyers have the chance of sampling information, and for values of 

0p  around the percolation phase transition, e.g. δδ +<<− cc ppp 0  with 0>δ , the H_Index 

shows signs of inhomogeneity (Figure 1). 

In general it can be stated that: 
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.Schrattenholzer, 2000). 
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- In a learning economies free Ising network information feedbacks have a negligible impact; 

- in a small world network, long distance links slightly increases the chance for a technology 

to dominate; however their effects is confined to values of 0p  around the percolation phase 

transition and only at low levels of the rewiring probability (Figure 2). The increase in the 

rewiring probability, when learning economies are not at work, is that of increasing the 

number of islands of diffusion (Figure 3 and 4). 

 

3.2 Learning Economies Simulations 

Percolation might take place also when cpp >0 , provided that learning economies are high enough 

to drive 0p  down to cp  before the process gets stuck. In Figures 5, 6, 7 and 8 and in Table 1, we set 

cpp 30 ≅  and we let the learning coefficient α  to vary. 

Figure 5 shows the H_Index versus the rewiring probability for different values of alpha. The 

combined effect of learning economies and information feedback may drive a technology to market 

dominance. For high values of the learning coefficient ( 2.0≥α ) the H_Index does not depend on 

the network structure: changes in the rewiring probability do not significantly influence the 

H_Index. The curve 1.0=α  shows more variability with the increase in the rewiring probability. 

Figure 6 shows an increase in the H_Index around 2.0≅α . At that level of α , and for those values 

of the parameters, there is the percolation phase transition: as the series of figures show (Table 1), 

for a given high initial price, diffusion takes place at values of 2.0≥α . For values of alpha around 

the percolation phase transition information feedback effects appear. While failures dominate at low 

levels of the learning coefficient (documented by the small number of successful runs at 1.0=α , 

Table 1)
6
. 

The results given so far might be influenced by a small sample bias. Although they seem to be 

stable enough, further runs should be implemented. Moreover the Herfindahl Index describes the 

relative dominance of a technology but it does not reflect how much the process of diffusion was 

successful. 

Finally, we would like to discuss in more details how learning economies and information 

feedbacks mechanisms interact with each other with the support of graphical tools. Figures 7 and 8 

shows some interesting features of the diffusion process: 

- The effect of susceptibility at p: at an initial price 0p far from the critical price cp , the 

probability for a seed of falling in a non expanding cluster is very high, especially if the 

rewiring probability is low. This means that in addition to the self-reinforcing mechanisms 

of both learning economies and information feedbacks, market dominance is also a result of 

the susceptibility condition that depends on both the network structure and, indirectly 

through the critical density, on the distribution of reservation price. 
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 The high value of the H_Index at low levels of alpha ( 2.0<α ) is also influenced by many cases of unsuccessful 

diffusion. Whereas, those around the phase transition ( 25.0=α ) and over are supported by a higher number of 

realizations (Table 1). 

 



- With the increase in the rewiring probability, the effect of learning economies is more 

evident: this is due to the fact that long range links can partly overcome the obstacles 

eventually encountered at the beginning of the propagation process. 

- The increase in the rewiring probability boosts learning economies: sampling and learning 

effects origin a positive feedback loop: more information feedbacks →  decrease in price →  

higher probability of conquering potential hubs →  more information feedbacks etc. 

 

3.3 Policy Simulations: an informative exercise 

We investigate the effects of a subsidy policy that supports the spread of a technology characterized 

by an initial high up front cost, potential learning economies and environmental desirability. Would 

a limited subsidy policy trigger a self-sustaining process of diffusion of that technology? 

We differentiate between short-term and long-term policy. A short-term policy is a policy that last 

for 4 simulation time-steps, whereas a long-term policy lasts for 8 simulation time-steps. There are 

three technologies competing for market share: technology 1, 2, 3. Technology 1 represents the 

“green” technology (for instance fuel cell stationary heating system), characterized by a high up-

front cost ( 60 =p ) and a relatively high learning coefficient ( 2.0=α ). Technology 2 (for instance 

photovoltaic technology) is characterized by a lower initial price ( 20 =p ) and weaker learning 

( 1.0=α ). Technology 3 (as an example technology 3 might represent a traditional fossil fuel-based 

energy technology) has a low initial price ( 10 =p , infact lower than cp ) but cannot benefit from 

learning economies ( 0=α ). Suppose it is possible to detect the most promising green technology 

and let it be technology 1. Assume the public authority wants to support it with a 50% constant 

subsidy over the initial cost of adoption, i.e. 5.01 =s  and: 
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Would this limited static subsidy policy trigger technology 1 to market dominance, and if yes, under 

which conditions? Let us illustrate the cases of a short-term and long-term policy. 

- Short-term policy: Figures 9, 10, 11, 12, 13, show the extent of diffusion for each simulation 

run performed (in total 10 runs). Figure 9 shows the extent of diffusion in a regular lattice 

(the rewiring probability is equal zero) and without subsidies. As expected, technology 3, 

the one with the lowest initial price, always win. In this case, technology 1 suffers because 

of the criticality or susceptibility discussed above. While technology 2, although potentially 

successful, does not have time enough to reach the critical mass ( i.e. it does not benefit 

from its potential learning economies) and thus it does not spread. Figure 11 depicts 

diffusion when a subsidy policy to technology 1 is implemented. As the figure shows there 

is not much difference between this case and the previous one: the subsidy policy is not 

sufficient. The following figures (11, 12, 13) show the extent of diffusion for the three 
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technologies at different levels of the rewiring probability (0.05, 0.1, 0.2). Despite an 

increase in the rewiring probability and thus and increase in the chances of information 

feedbacks effects, the short-term subsidy policy is still insufficient: technology 1 does not 

even conquer the 10% of the market. 

- Long-term policy: let us see the results in the case of a long-term policy. The parameters are 

the same as before, as well as the organization of the figures (Figure 14 – rewiring 

probability RP = 0 and Technology 1 is subsidized, 5.01 =s ; Figure 15 – RP = 0.05; Figure 

16 – RP = 0.1; Figure 17 – RP = 0.2). The only change is related to the length of subsidies: 

we are implementing now a subsidy policy to technology 1 that last for 8 simulation time-

steps. The situation for technology 1 looks slightly better, however the number of successful 

realizations is still very low: technology 1 seems destined to fail. 

The policy exercise that we just presented leads to some reflections. Arbitrarily setting the level of 

subsidy does not guarantee the success of a technology, no matter how much desirable it is. The 

amount of subsidies, which is even budget-constrained (one important aspect which we do not deal 

with), should be set according to the combination of mechanisms at work: a mixed strategy, where 

taxes obstruct the diffusion of undesirable technologies (technology 3 in our simple example) is 

probably the winner one. Moreover a dynamic subsidy strategy should be considered: relatively 

high up-front costs should be faced by high subsidy provided at the outset of the innovation and it is 

likely the case that they will be less and less necessary over the late stages of the propagation 

process. Finally, our simple model gives decision makers (though it does it in an approximate way 

and depending on available empirical evidence) the opportunity to test whether a technology is 

potentially successful or not and it contributes to identify potential wastes of resources. 

 

4. Conclusions 

In this paper we analyzed the dynamics of diffusion paths in a multi-technology setting. We 

developed a percolation model of multi-technology diffusion by extending the stand-alone 

technology model developed by Cantono and Silverberg (2009). We accounted for learning 

economies, included heterogeneity and rationality, illustrated the effects of information spreading 

and possibly described an economic system not exclusively grounded on market mechanisms. We 

proposed some reflections about static adoption subsidy policies and, hopefully, paved the way for 

further research in this direction. 

Let us briefly summarize the main results. In a two-dimensional regular lattice and a learning 

economies free environment, information feedbacks do not arise. In a small world network, long 

distance links slightly increase the chance for a technology to dominate; however their effects is 

confined to values of 0p  around the percolation phase transition and show up only at low levels of 

the rewiring probability. The increase in the rewiring probability, when learning economies are not 

at work, is that of increasing the number of islands of diffusion. At an initial price far from the 

critical price, the probability for a seed of falling in a non expanding cluster is very high, especially 

if the rewiring probability is low. This means that in addition to the self-reinforcing mechanisms of 



both learning economies and information feedbacks, market dominance is also a result of the 

susceptibility condition that depends on both the network structure and, indirectly through the 

critical density, on the distribution of reservation price. The combined effects of learning economies 

and information feedbacks give rise to a self-reinforcing mechanism only in the imminence of the 

percolation phase transition: more information feedbacks →  decrease in price →  higher 

probability of conquering potential hubs (or simply potential adopters in the Ising network) →  more 

information feedbacks etc. 

We finally investigates the implications of a subsidy policy. In particular whether a subsidy policy 

would trigger a self-sustained process of diffusion of a desirable technology with high initial up-

front costs. Competition and technologies interdependence are essential elements: the same subsidy 

policy useful to trigger a self-sustained process of diffusion of a stand-alone technology might not 

be enough when many technologies are competing in the same market. It is not only a matter of 

reaching the critical mass, but also a matter of time: if we want a socially desirable technology to 

diffuse in the market, it is also necessary to prevent the spread of other undesirable ones. The 

question is not only on whether is better to tax the old technology or to subsidized the new one, but 

which combination of taxes and subsidies should be implemented. In this paper we investigated the 

effects of a static policy strategy. 

A challenge left to future research is that of validating the results against real historical data on the 

one hand, and of collecting information on the empirical values of the parameters in order to 

produce policy forecasts on the other. The latter may be a difficult task. Learning economies have 

been widely analyzed and empirically measured (see for instance McDonald and Schrattenholzer, 

2000). But the characterization of the network topology may be harder as well as the identification 

of potential adopters’ heterogeneity. Although the policy implications of our model may be of help 

to decision makers, nonetheless the amount of available data needed to configure our system might 

not be sufficient. 

Another limitation of our model consists in the assumption of a static distribution of adopters’ 

willingness to pay, for in reality it is both likely to display a dynamic character and hardly 

independent on future expectations. This issue is, in our opinion, as relevant as the empirical 

validation. 

Finally, although we contribute to the literature by showing the dynamics of multi-technology 

diffusion in different network topologies, our network structure is still static and thus does not allow 

either for endogenous or for sudden emergence of both new consumers and new technologies. 
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Appendix 

 

 

Figure 1: Average H_Index versus the initial price for different values of the rewiring probability (RP). The 

critical percolation price pc is around 1.7 

 

Figure 2: Average H_Index versus the rewiring probability for an initial price=0, 1, 2. 
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Figure 3: diffusion of the three technologies (red, green, blue) over the network with a rewiring probability = 

0.05. All the technologies have an initial price pt < pc 

 

Figure 4: diffusion of the three technologies (red, green, blue) over the network with a rewiring probability = 0.2. 

All the technologies have an initial price pt < pc. 

 



 

Figure 5: Average H_Index versus the rewiring probability for different values of alpha 

 

Figure 6: Average H_Index versus alpha for different values of the rewiring probability 
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ONLY CASES IN WHICH DIFFUSION TAKES OFF ARE CONSIDERED HERE

Herfindhal Index versus RP, alpha =0.1

(all the rest was less than 200)
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Herfindhal Index versus RP, alpha =0.2
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Herfindhal Index versus RP, alpha =0.3
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Herfindhal Index versus RP, alpha =0.4
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Herfindhal Index versus RP, alpha =0.5
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Table 1: in the series of figures we show the value of the H_Index (vertical axis) versus the rewiring probability 

(horizontal axis) for each run. Each figure describe the situation at a certain level of the learning coefficient, 

starting from alpha = 0.1 to alpha = 0.5. 



 

Figure 7: At a low value of the rewiring probability and with an initial price higher than the percolation price, 

the chance for a seed to fall in an expanding cluster is very low, even with high learning economies. The 

technology in red conquered all the market. The technology in blue just conquered a bunch of buyers, whereas 

the process of diffusion could not even start for the technology in green. 

 

Figure 8: The increase in the rewiring probability slightly increases the chance for a technology to reach a 

considerable diffusion, although this is not true for each of the technologies. Indeed the process of diffusion for 

the technology in red could not even start. 



 

Figure 9: Extent of diffusion (cumulative buyers, CB, vertical axis) at each run (horizontal axis) in the absence of 

subsidies in a regular lattice; alpha=[0.2, 0.1, 0] and p0=[6, 2, 1] for technology 1, 2 and 3 respectively. 

 

Figure 10: Extent of diffusion (cumulative buyers, CB, vertical axis) at each run (horizontal axis) in the presence 

of subsidies in a regular lattice; a short-term policy (4 simulation time-steps) is applied to only technology 1; 

s=0.5; alpha=[0.2, 0.1, 0] and p0=[6, 2, 1] for technology 1, 2 and 3 respectively. 

 

Figure 11: Extent of diffusion (cumulative buyers, CB, vertical axis) at each run (horizontal axis) in the presence 

of subsidies in a small world network with rewiring probability = 0.05; a short-term policy (4 simulation time-

steps) is applied to only technology 1; s=0.5; alpha=[0.2, 0.1, 0] and p0=[6, 2, 1] for technology 1, 2 and 3 

respectively. 
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Figure 12: Extent of diffusion (cumulative buyers, CB, vertical axis) at each run (horizontal axis) in the presence 

of subsidies in a small world network with rewiring probability = 0.1; a short-term policy (4 simulation time-

steps) is applied to only technology 1; s=0.5; alpha=[0.2, 0.1, 0] and p0=[6, 2, 1] for technology 1, 2 and 3 

respectively. 

 

Figure 13: Extent of diffusion (cumulative buyers, CB, vertical axis) at each run (horizontal axis) in the presence 

of subsidies in a small world network with rewiring probability = 0.2; a short-term policy (4 simulation time-

steps) is applied to only technology 1; s=0.5; alpha=[0.2, 0.1, 0] and p0=[6, 2, 1] for technology 1, 2 and 3 

respectively. 

 

Figure 14: Extent of diffusion (cumulative buyers, CB, vertical axis) at each run (horizontal axis) in the presence 

of subsidies in a regular lattice; a long-term policy 8 simulation time-steps) is applied to only technology 1; s=0.5; 

alpha=[0.2, 0.1, 0] and p0=[6, 2, 1] for technology 1, 2 and 3 respectively. 
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Figure 15: Extent of diffusion (cumulative buyers, CB, vertical axis) at each run (horizontal axis) in the presence 

of subsidies in a small world network with rewiring probability = 0.05; a long-term policy (8 simulation time-

steps) is applied to only technology 1; s=0.5; alpha=[0.2, 0.1, 0] and p0=[6, 2, 1] for technology 1, 2 and 3 

respectively. 

 

 

Figure 16: Extent of diffusion (cumulative buyers, CB, vertical axis) at each run (horizontal axis) in the presence 

of subsidies in a small world network with rewiring probability = 0.1; a long-term policy (8 simulation time-

steps) is applied to only technology 1; s=0.5; alpha=[0.2, 0.1, 0] and p0=[6, 2, 1] for technology 1, 2 and 3 

respectively. 

 

 

Figure 17: Extent of diffusion (cumulative buyers, CB, vertical axis) at each run (horizontal axis) in the presence 

of subsidies in a small world network with rewiring probability = 0.2; a long-term policy (8 simulation time-

steps) is applied to only technology 1; s=0.5; alpha=[0.2, 0.1, 0] and p0=[6, 2, 1] for technology 1, 2 and 3 

respectively. 
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