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1 Introduction

This paper deals with the problem of analyzing the behavior of an agent-based (AB) model.
The problem is similar to the one faced by any modeling methodology: the researcher sets up
the rules of the game, but does not know in advance the implications of those rules. Actually,
it is in this uncertainty about the model outcomes, and about the relationship between the
model outputs and the model inputs, that rests the value of having a model. However, the
techniques to gain understanding about the model behavior differ substantially across modeling
methodologies, and they remain quite under-explored in the AB modeling literature. In nuts,
in a simulation model only inductive knowledge about its behavior can be gained, by repeatedly
running the model under different samples from the parameter space.

The analysis of this inductive evidence has to confront with the a priori unknown stochas-
tic properties of the model. The easiest case is when, for any values of the parameters, the
model is stationary and ergodic: in these circumstances it is generally possible, with a reason-
able number of experiments, to characterize both the equilibrium properties of the model and
the adjustment dynamics to the equilibria. On the other hand, non-stationarity renders the
analytical concepts of equilibrium and adjustment dynamics inapplicable, while non-ergodicity
might hinder the same possibility of fully describing the behavior of the model. A preliminary
analysis to discriminate between these cases is therefore necessary, and it can only be done by
statistical testing. In the chapter we provide examples of the tests that can be used to detect
both stationarity and ergodicity.

These properties in turn affect the types of subsequent analyses that can be performed,
and the interpretation of the results. The techniques that are used to describe the relationships
between the different variables of the model are referred to in general terms as sensitivity analysis
(SA). Although a complete survey of these techniques is outside the scope of this chapter, we
briefly describe them and offer an example of how they can be applied to a specific AB model.

The chapter is structured as follows: section 2 presents a simple characterization of AB mod-
els as recursive systems, which allows to discuss the differences with other modeling strategies
and provides an analytical framework for discussing the problem of interpreting the model out-
comes. Section 3 describes how it is possible to characterize the model in terms of its (statistical)
equilibria. The following section 4 surveys the main techniques to perform such experiments,
that fall into the broad discipline of SA. Finally, section 5 offers our conclusions.

2 AB models as recursive systems

A rather common misunderstanding about simulations is that they are not as sound as math-
ematical models. Computer simulations are, according to a popular view, characterized by
an intermediate level of abstraction: they are more abstract than verbal descriptions but less
abstract than “pure” mathematics. This is nonsense. Simulations do consist of a well-defined
(although not concise) set of functions, which relate inputs to outputs. These functions describe
a fully recursive system and unambiguously define the macro dynamics of the system. In this
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respect, AB models are no different from any other model: they are logical theorems saying
that, given the environment and the rules described by the model, outputs necessarily follow
from inputs. As any other model, they provide sufficiency theorems: the environment and the
rules are sufficient conditions to obtain the results, given the inputs. The resort to computer
simulations is only an efficient way —given some conditions— to obtain the results.

Let us start from the following general characterization of dynamic micro models. At each
time t an agent i, i ∈ 1 . . . n, is fully described by some state variables xi,t ∈ <k.1 Let the
evolution of her state variables be specified by the difference equation:

xi,t+1 = f i(xi,t,x−i,t,θi, ξi,t). (1)

where ξi,t are stochastic terms. The behavioral rules may be individual-specific both in the
functional form f i(.) and in the parameters θi, and may also depend on the state x−i of all
agents other than i.2 The set of structural equations (1), defined at the individual level, specifies
the data generating process (DGP) of the model.

At any point in time, the system is in a stateXt = (xi,t) which is the matrix of all individual
states. By replacing eq. (1) in the definition above, we obtain

Xt+1 = F (Xt,θ, ξt), (2)

the transition equation of the system.
Often, we are interested in some aggregate (observable) statistics of our economy. A vector

of aggregate variables Y t is defined as a function over the state of the system, that is as a
projection from X to Y :

Y t = G(Xt,κt). (3)

where κt are extra random terms that accounts for measurement errors and other shocks to
the observables, if any. This is the measurement equation, which together with the transition
equation forms the state space representation of the system.

The question is whether it is possible to solve equation (3) for each t, regardless of the
specification adopted for fi(.), and the answer is that a solution can always be found, which
traces the stochastic evolution of Y t back to the initial state of the system and the values of
the parameters. Expliciting this relationship is complicated because of the random terms ξ and
κ that enter at every stage. As the behavioral rules fi and the transformation function G need
not to be linear, these random terms cannot be netted out by taking expectations. Therefore,
the only way to analyze the mapping of (X0,θ) into Y t is by means of Monte Carlo analysis,
by simulating the model for different initial states and values of the parameters, and repeating
each simulation experiment many times to obtain a distribution of Y t.

However, because digital computers are deterministic machines, it is possible to further pin
down the formalization above.3 In a digital computer random terms are not truly random:
they are generated by an algorithm which produces sequences of numbers that resemble the
properties of random numbers. Accordingly, these numbers are referred to as pseudo-random,
and the algorithm is called random number generator. Each sequence is identified by a seed
(the so-called random seed) which guarantees reproducibility, and which is either user-defined or
taken from some environmental variable (as the computer clock). Therefore, the random terms

1Categorical variables can be indexed with integer values (e.g. 0 for unemployed, 1 for employed).
2Here and in the following we use “behavioral rules” and similar terms in a loose sense that encompasses the

actual intentional behaviors of individuals as well as other factors such as technology etc.
3Analog computers exist in which continuously variable physical quantities, such as electrical potential, fluid

pressure, or mechanical motion, are used to represent (analogously) the quantities in the problem to be solved.
Answers to the problem are obtained by measuring the variables in the analog model. Analog computers are not
deterministic, as physical quantities cannot be measured with absolute precision. Though digital computing has
taken the lead, analog computers have been widely used in simulating the operation of aircraft, nuclear power
plants, and industrial chemical processes.
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ξ and κ are a deterministic function of one or more random seeds s, and equations (2)-(3)
reduce to

Xt+1 = F (Xt,θ, s) (2′)

Y t = G(Xt, s). (3′)

Now, define Z0 = {X0, s} as the initial conditions of the system, which include the initial
state plus the random seeds. By iteratively substituting Xt+1 with Xt using (2′), we get

Xt = F (F (· · ·F (Z0,θ) · · · ))
= F t(Z0,θ) (2′′)

Y t = G
(
F t(Z0,θ)

)
. (3′′)

The law of motion (3′′) uniquely relates the value of Y at any time t to the initial conditions of
the system and to the values of the parameters, and is known as the input-output transformation
(IOT) function. The word “function” is appropriate here, as any particular input given to the
computer model will lead to only one output (different inputs might lead to the same output,
though).

From a practical point of view, knowledge of the IOT function can be obtained by Monte
Carlo analysis, by simulating the model for different initial states, parameter values, and random
seeds.

Given this framework, it is easy to discuss the alleged differences in terms of “mathematical
soundness” between analytical models and computer simulations. In analytical models, the
behavioral rules (1) typically have a simple structure, with either limited or global interaction,
and heterogeneity is kept to a minimum. Functional forms are often linear (or linearized). Ag-
gregation is performed on selected variables by taking expectations over the stochastic elements,
which are conveniently specified. On the contrary, an AB model poses little restrictions on the
specification of equation (1), but this freedom comes at two prices: (i) the modeler has to exert
self-discipline in order to stick with the KISS (keep it simple, stupid) principle and connect
with the existing literature, and (ii) the equation for the macro dynamics (3′′) can easily grow
enormous, hindering any attempt at symbolic manipulation. Nevertheless, the functions (3′′)
are completely specified. It is thus possible to explore their local behavior by analyzing the
artificial time series produced by the simulation.

To proceed in this analysis, a first step is to choose which variables Y to focus on, and
over which time period. The goal being to understand the behavior of the system, we have to
characterize its regularities.

3 Absorbing and transient equilibria

3.1 Definitions

As we have seen in chapter 2, one important difference between analytical models and AB
models lies in the definition of equilibrium. In analytical models, equilibrium is defined as a
consistency condition in the behavioral equations: agents (whether representative or not) must
act consistently with their expectations, and the actions of all the agents must be mutually
consistent. This is the methodological prescription of rational expectations, and logically op-
erates at an individual level before the state space representation of eqs. (2) and (3). The
system is therefore always in equilibrium, even during a phase of adjustment after a shock has
hit. AB models, on the other hand, are characterized by adaptive expectations, according to
which consistency might or might not arise, depending on the evolutionary forces that shape
the system. An equilibrium can therefore be defined only at the aggregate level and only in
statistical terms, after the macro outcomes have been observed.
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Definition If, in a given time window [
¯
T, T̄ ], an aggregate outcome of the AB model Yt is

stationary, the model is said to have a statistical equilibrium Y ∗(Z0,θ), with respect to Y and
for given initial conditions Z0 and values of the parameters θ.

Stationarity of Yt implies that each observation carries information about some constant
properties of the DGP. By stationarity, here and in the rest of the chapter, we mean weak
stationarity. A stochastic process Yt is (weakly) stationary if E(Yt) = µ, that is, its expected
value is independent of t, and if Cov(Yt, Yt−h) exists, is finite and depends only on h and not
on t. This is different from strict stationarity, which requires that Yt has the same distribution
for every t, and the joint distribution of (Yt, Yt+1, Yt+2, ..., Yt+h) depends only on h and not on
t. Note that strict stationarity does not necessarily imply weak stationarity, as finite variance
is not assumed in the definition of strong stationarity. An example of a stationary process is
white noise yt ∼WN(0, σ2), with4

Cov(yt, yt+h) =

{
σ2 if h = 0

0 if h 6= 0

Note that white noise is stationary but may not be strict stationary.5 Examples of non-
stationary series are the returns in a stock market, where there is clustered volatility (the
variance changes over time); trend stationary series that can be transformed to stationary se-
ries by subtracting a function of time, and difference stationary series that can be transformed
into stationary series by first differentiation.

We distinguish between two types of statistical equilibrium: absorbing and transient.

Definition A statistical equilibrium is said to be absorbing if Y ∗(Z0,θ) is stationary in [
¯
T, T̄ +

τ ], τ →∞.

Definition A statistical equilibrium is said to be transient if Y ∗(Z0,θ) is no longer stationary
in [

¯
T, T̄ + τ ], τ > 0.

Absorbing equilibria are stable regularities of the system: once the system is in an absorbing
equilibrium, it cannot move out. Because the system —conditional on the random seed s—
is deterministic, for any given value of the initial conditions (including random seeds) and the
parameters, there can be at most one absorbing statistical equilibrium Y ∗a . However, there
might be many transient statistical equilibria Y ∗j : for instance, a model can oscillate between
two (or more) transient statistical equilibria.

3.2 Unique and multiple equilibria

The condition under which the model, irrespective of the initial conditions, will always converge
to the same statistical equilibria Y ∗(Z0,θ) = Y ∗(θ) is ergodicity of the time series Yt. Intu-
itively, this means that changing the random seed, or the initialization, of the simulation does
not affect the results, in statistical terms.

Ergodicity is a property that concerns the memory of a process. An ergodic process is
characterized by weak memory, so that as the length of the time series we observe increases, our
understanding of the process increases as well. In a non-ergodic process, by converse, persistence
is so high that little information is provided by analyzing a sub-sample of the process, no matter
how long this time series is.

4We use the lowercase y to denote examples of generic stochastic processes, while we keep the uppercase Y
to refer to the aggregate outcome of an AB model, or in the general discussion.

5A Gaussian white noise, where yt is identically independent distributed (i.i.d.) Gaussian yt ∼ N(0, σ2), is
strict stationary.
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Ergodicity is sometimes defined as

lim
n→∞

1

n

n∑
k=1

Cov(Yt, Yt−k) = 0 (4)

which means that events far away from each other can be considered as almost independent.
This implies that if some event can happen, by waiting for long enough it will happen, regardless
of what has happened in the past or what will happen in the future.

If Yt is ergodic, the observation of a unique time series provides information that can be
used to infer about the model IOT function (3′′): the process is not persistent and in the long
run different time series (produced by the same IOT function) will have the same properties. If
the number of observations of one single time series increases, the information we have about
the IOT function increases as well.

Note that stationarity and ergodicity are different concepts, and one does not imply the
other. A typical example of a stationary non-ergodic process is a constant series. Consider
a process that consists in the draw of a number y1 from a given probability distribution, and
remains constant thereafter: yt = y1 for every t. The process is strictly stationary (yet degen-
erated since yt is extracted from a distribution with mean y1 and variance 0), and non-ergodic.
Any observation of a given realization of the process provides information only on that particu-
lar process and not on the IOT function. An example of a non-stationary but ergodic process,
that will be discussed below, is y(t) = y(t− 1) + u(t), u(t) ∼ N(0, 1).

An implication is that if Yt is ergodic and the model displays one absorbing statistical
equilibrium, this equilibrium is unique and depends only on the parameters: Y ∗a (Z0,θ) = Y ∗a (θ).
Therefore, if the expected value and the variance exist and are finite, the simulated mean
m(Y ∗a ,θ) converges, both over time and over teh replications r, to the theoretical limiting
expected value of the underlying IOT conditional on the parameters used for the simulation,
µ(Y ∗a ,θ):6 If the equilibrium is absorbing, convergence takes place both over time and over the
replications r:

lim
t→∞

mt(Y
∗
a ,θ) = lim

r→∞
mr(Y

∗,θ) = µ(Y ∗,θ) (5)

The properties of the time series generated by the model are constant both in time and across
replications: therefore, they can be inferred from the sample moments.7

Moreover, the transient equilibria, if any, are also invariant across different instantiations of
the model. Across different replications, {Y ∗j,r} ∀j is a sequence of independent and identically
distributed random variables. By the law of large numbers, as the number of replications
increases any simulated moment mr(Y

∗
j ) converges to the theoretical limiting moment of the

underlying DGP conditional on the parameters used for the simulation, µ(Y ∗j ,θ) (if it exists):

lim
r→∞

mr(Y
∗
j ) = µ(Y ∗j ,θ), ∀j. (6)

and the simulated moments of Y ∗j provide reliable information about the theoretical limiting

moments, for t ∈ [
¯
Ti, T̄i].

8

On the contrary, if Yt is stationary but not ergodic, different (absorbing and/or transient)
equilibria are obtained, for the same values of the parameters, depending on the initial con-
ditions. This can be regarded as a case of multiple statistical equilibria.9 In order to gain

6If Yt is strictly stationary, any simulated moment —not only the mean— converges to its theoretical coun-
terpart, if it exists.

7In other words, the simulated mean of Y , computed either over time or over replications, is a consistent
estimator of the theoretical limiting expected value, for t > T̄ .

8The simulated moments are consistent (over the replications) estimators of the theoretical limiting moments,
for t ∈ [

¯
Ti, T̄i].

9Note the two different flavors of multiple equilibria, over time (different transient equilibria) and over repli-
cations (e.g. different absorbing equilibria, depending on the initial conditions, if the model is not ergodic).
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understanding about the behavior of the model we need to analyze many artificial time se-
ries produced with identical values of the parameters but with different initial conditions, and
describe the distribution of statistical equilibria obtained.10

Note how flexible and powerful this descriptive apparatus is. For instance, a model can show
an absorbing statistical equilibrium for, say, GDP. This means that after an initial adjustment
period up to

¯
T , the GDP series becomes stationary, with constant mean and variance. If the

system receives a transitory shock, it moves away from the statistical equilibrium. However,
once the shock has passed, if the model is ergodic it comes again to the previous steady state,
after an adjustment phase. If we rerun the model and shock it 100 times, it would always
come down to the same equilibrium: its properties are then suited for estimation. Moreover,
it might happen that during the adjustment process some other transformation of the state
of the system, for instance the speed of adjustment to the equilibrium level of GDP, becomes
stationary. This new regularity breaks down when GDP reaches its steady state: it is therefore
a transient statistical equilibrium. Again, if the model is ergodic the properties of the transient
equilibrium are invariant across simulation runs and can be used for estimation.

It is possible that a model displays no absorbing equilibrium for a given variable of interest.
To continue with our example, think of the evolution of GDP, with business cycle fluctuations of
different amplitude and duration, and intermittent crises. This is an interesting case for many
AB modelers, who essentially see the world as a disequilibrium process. Even in such situations
however, it might be possible to find statistical regularities with respect to some other variable,
for instance the distribution of the lenght and depth of recessions. If this is the case, we are back
to equilibrium analysis, and if the model is ergodic we might be able to estimate it. Moreover,
these regularities might be only transient, and vanish as the simulated time goes by (think for
example of the effects of fiscal policies on GDP growth, which are very different depending on
whether the economy is close to full employment or not). Again, if they are stable enough across
different replications of the model, we might use them for estimation. If, on the other hand, the
model exhibits no regularities whatsoever, no matter how the data are transformed, then the
model is not suited for estimation, and one might argue that it is also of limited explanatory
(not to say predictive) help: “everything can happen” is hardly a good theory. So, when AB
researchers speak of disequilibrium or out-of-equilibrium analysis, what they have in mind, we
believe, is really transient statistical equilibrium analysis of some sort, and this is in principle
amenable to estimation.

To recap, understanding whether a simulated time series produced by the model is stationary
and whether it is ergodic is crucial for characterizing the model behavior. The prescription
therefore —following Hendry (1980)— can only be “test, test, test”.

A number of stationary tests are available and can be performed on the simulated time
series. In the Appendix, we describe as an example a non-parametric test for the stationarity
of given moments of a simulated time series. Non-parametric tests are in general more suited
for AB models, as they do not impose structure on the IOT function of the model, which at
this stage of the analysis is still largely unknown. Moreover, the limited power of many non-
parametric tests can in principle be overcome by increasing at will the length of the artificial
time series, something that cannot obviously be done with real data.11

On the contrary, ergodicity is in general not testable in the real data, as we typically have
only one historical time series available. This of course does not mean that the issue must be
ignored in empirical applications: if the real world (“Nature”) is non-ergodic, we cannot use the
observed data to make inference about the real world IOT function, nor about the structure
of the underlying DGP. Indeed, it is difficult to claim that Nature is in facts ergodic and that
present events are not affected by (at least some) event of the past. All the researcher is left

10In many applications Yt may be subergodic, that is, ergodic on subsets of the parameters space. A subergodic
model is conditionally (to a known set of initial conditions) ergodic.

11Computing time can of course be an issue, in practice.
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with in this case are statements about the true DGP that are conditional on the realization of
these past events.12

In an AB model, the function to be described is the model IOT function; fortunately, the
“veil of ignorance” about this function is much lighter than with real data, as the model DGP
–the structural equations (1)– is known, while the real world DGP is unknown. In other words,
the researcher is the God of her artificial world, although a non-omniscient God: she sets up
the rules of the game, but does not know in advance what the results will be. However, she
can re-play her artificial worlds at will, thus generating new time series that can provide more
information on the behavior of the system.

This difference has an important implication: the ergodic properties of a simulation model
are in principle testable, as we can produce as many time series as we wish, as long as we
wish. And they should be tested, as we cannot content with conditional statements on initial
conditions in understanding our system behavior: real initial conditions being in some sense
legitimized by history, while the initial conditions chosen by the experimenter being often more
arbitrary.

In the Appendix, we suggest an application of the same non-parametric test used for sta-
tionarity for testing ergodicity of the artificial time series generated by an AB model.

3.3 Implications of the stationarity and ergodicity analyses

To summarize, if the model is ergodic — with respect to an outcome Y and for given values of
the structural parameters θ— each simulated time series Yt can be used to characterize the IOT
function, at the given values of the parameters, once “enough” time is passed to wash away the
memory of the initial conditions. If, in addition, the model is also stationary in a given time
interval, the time series can be used to characterize the (absorbing or transient) equilibria of
the system.

On the other hand, if the model is non ergodic, each time series Yt is only informative of
one possible outcome, given the values of the parameters. Then, multiple runs of the model
should be used and variation across runs exploited in order to characterize, in distributional
terms, the properties of the system at the sampled values of the parameters.

A natural question then arises whether it is more convenient to always treat the model
as non-ergodic, and examine the outcomes of multiple runs –i.e. many “short” time series–
rather than only one “long” time series. The answer is that it is often important to charac-
terize the equilibrium of the system, that is its stationary behavior, possibly after a prolonged
phase of adjustment: analyzing “long” time series allow to test for stationarity and identify the
equilibrium.

A second remark concerns the fact that the stationarity / ergodicity analysis below is only
valid locally, i.e. for specific values of the parameters: the model DGP can be stationary or
ergodic for some values of the parameters, and non-stationary or non-ergodic for some other
values.13. Hence, in principle the analysis should be repeated for every sampled point of the
IOT function, assuming by a continuity argument that the results also hold in between different
points in the parameter space. When the form of the model DGP induces to expect some
discontinuity in the behavior of the system for specific values of the parameters, these values
should be included in the experimental design and hence duly explored. More in general, the
choice of the points in the parameter space to be sampled, together with the overall design of
the experiments14 that are performed in order to gain understanding about the IOT function,
is the focus of sensitivity analysis.

12Whether this is satisfactory or not depends on the objectives of the analysis.
13See the examples in the Appendix
14(Box et al., 1978; Kleijnen and van Groenendaal, 1992)

7



4 Sensitivity analyis of model output

The statistical techniques to analyze the behavior of the IOT function are called sensitivity
analysis (SA). SA represents not only the final step in analyzing the model behavior, but can
also be regarded as an essential step in the model building process itself, since it provides the
analytical tools which allow to simplify the model structure by identifying its nonrelevant parts.

More in details, SA can be defined as “the study of how uncertainty in the output of a
model can be apportioned to different sources of uncertainty in the model input” (Saltelli et al.,
2004). Such definition reflects the modeler’s imperfect knowledge of the system, i.e. imperfect
knowledge of the IOT function. By means of SA the relative importance of the parameters in
influencing the model output can be assessed. This also allows to identify possible interactions
among the input factors and hence critical regions in the input factor space, with respect to the
conditions of most sensitivity of the model output to some specific factors.

4.1 Settings for SA

There exist three main settings for SA, namely factor screening, local SA, and global SA (Saltelli,
2000).

1. Factor screening aims at designing experiments to identify the most influential factors in
models characterized by a large number of inputs. Often, only a few input factors have
a significant effect on the model output. Screening experiments can be used to rank the
input factors in order of importance. The experiments are generally one-at-time (OAT)
designs, which evaluate the main effect of changes in single factors (Daniel, 1973), as well
as factorial experiments, which evaluate both the main effects and the impact of factor
interactions.15

2. Local SA focuses on the impact of small variations in the input factors around a chosen
nominal value (base point). It generally assumes linear input-output relationships and
involves the evaluation of the partial derivatives of the output functions with respect to
the input factors. The experiments are generally OAT designs.

3. Global SA involves the estimation of the factor probability density functions, investigates
the role of their scale and shape, and allows for the simultaneous variation of all factors
over the whole factor space. The sensitivity is measured over the entire range of each
input parameter. Global SA is particularly relevant for AB models as linear OAT sen-
sitivities are ill-suited for nonlinear models characterized by high factor interaction and
input uncertainty of various order of magnitude (Cukier et al., 1973).

4.2 Strategies for SA

Different SA strategies may be applied, depending on the setting. Moreover, given the manifold
purposes of SA, a preliminary characterization of its objectives is essential. In particular, of
fundamental importance is the adoption of the most suitable measure of sensitivity depending
on the desired definition of factor importance. In fact, each importance measure generally
produces its own factor ranking. Most measures rely on variance decomposition formulas of
the model output with respect to the input factors, since the variance is generally regarded
as a proxy for uncertainty.16 In choosing the appropriate sensitivity measure, a model-free

15In particular, full factorial designs and fractional factorial designs are commonly adopted. A full factorial
design is applied when the factors assume discrete values and considers all possible combinations of values across
all factors, allowing to assess both the main effects and the impact of factor interactions. A fractional factorial
design consists of a carefully chosen subset of the experimental runs of the corresponding full factorial design.

16Other measures can also be used, e.g. entropy (Saltelli et al., 2000)
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approach should be followed, i.e. choosing a sensitivity measure which is independent of the
model characteristics, such as linearity, monotonicity, additivity.

(Saltelli et al., 2008) describe four basic strategies, together with some associated sensitivity
measures, namely factor prioritization, factor fixing, factor mapping, and metamodeling.

1. Factor prioritization identifies as the most influential the factor Xi causing on average,
keeping its distribution fixed, the greatest reduction in the variance of the output Y . The
associated sensitivity measure is the first-order sensitivity index Si of Xi on Y , i.e. the
average partial variance of Y conditional on the distribution of Xi. In formulas,

Si = (VXi
(
EX−i (Y |Xi)

)
/V (Y ) (7)

where X−i indicates all factors but Xi. The numerator represents the variance, over all
possible values of Xi, of the conditional expectation of Y taken over all factors but Xi.
The denominator is the unconditional variance of Y .

2. Factor fixing aims at simplifying the model by fixing the factors which do not appreciably
affect the output in their range of variation. This has to be evaluated taking into account
both the first-order effect Si, which describes the direct effect of Xi on Y , and the higher-
order effects, which describe the impact of the interactions between Xi and the other input
factors. The sum of all-order effects due to Xi is called the total effect ST i and represents
a suitable sensitivity measure in this setting. Considering the case of a three-factor model
Y = f(X), where X = (X1, X2, X3), the first-order effect of X1 on Y is labeled S1; the
second-order effects of X1 on Y are S12 and S13, respectively representing the effect of the
interactions between the couples of factors (X1, X2) and (X1, X3); finally, the third-order
effect S123 measures the impact of the interaction among all terms. The total effect of X1

on Y is given by ST1 = S1 + S12 + S13 + S123.

3. Factor mapping concerns the analysis of critical regions in the output distribution, such
as threshold areas. It aims at identifying the factors producing realizations of Y into
the critical range, rather than those driving the variance of the model output. A useful
mapping method is the so called Monte Carlo filtering (Rose et al., 1991), which provides
Monte Carlo realizations of Y corresponding to different sampled points in the input factor
space. Next, it filters the realizations into two subsets depending on whether they belong
or not to the critical region. Then, statistical hypothesis testing is performed to check
whether the two subsets represent samples from the same distribution. An input factor is
identified as important if the distribution functions of the generated samples prove to be
statistically different (Saltelli et al., 2004).

4. Metamodeling, or model approximation, aims at identifying an approximation of the IOT
function, i.e. a simple relationship between the input factors and the model output that
fits the original model well enough. This simplification is due to regularity assumptions
that allow to infer the value of the output at untried points in the input space, based on
information from nearby sampled points. Hence, a surrogate model is identified, which
contains the subset of the input factors accounting for most of the output variability.
Clearly, this approach generally misses relevant high-order interaction terms and fails in
the case of heavily discontinuous mapping.

This list of SA strategies is not exhaustive and other strategies can be defined, depending
on both the specific objective of the SA and further considerations about the model under
investigation, e.g. its computational burden, the number of input factors and their theoretical
interactions, other features such as linearity, monotonicity, additivity.17

17Also, many software products for SA exist; (Chan et al., 2000) offer a brief review of some of them.
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4.3 SA and AB modeling: some applications

The literature provides just a few examples of SA applied to AB modeling. (Kleijnen et al.,
2003) assess the soundness of design of experiments techniques when carefully applied on a
small subset of input factors. As an example, (Happe, 2005) and (Happe et al., 2006) propose
a combined design of experiment and metamodeling setting applied to AgriPoliS, a spatial and
dynamic simulation model developed to investigate the impact of agricultural policies on regional
structural change. At first, a full factorial design is used to investigate both the first- and second-
order effects of some selected factors on a target response variable. The stochastic nature of the
model is faced by running a number of Monte Carlo experiments for each experiment. Then,
the simulation output is analyzed by both graphical methods and metamodeling. In particular,
an additive polynomial metamodel is estimated to assess the statistical significance of the main
effects and the two-factor interactions. A stepwise Ordinary Least Squares procedure is applied
to isolate and exclude those factors characterized by low significance levels. Similarly, (Lynam,
2002) adopts a fractional factorial design to investigate the mean effects of a selection of factors
in a multi-agent model.

Another SA application to AB modeling is described in (Deffuant et al., 2002). The authors
propose an AB model of innovation diffusion to investigate the effects of incentives for the
conversion to organic farming in a French department. They explore the huge parameter space
and evaluate factor importance by a decision tree approach (Breiman et al., 1984) on a composite
error, which estimates the deviance between the real and the simulated data on the number of
adopters and their proximity to the initial organic farmers. In particular, their SA algorithm
selects the factors and the values corresponding to the smallest deviance by defining a learning
set. It identifies the regions in the parameter space which are compatible with the real data.
Hence, this represents an example of SA in the factor mapping setting.

4.4 A simple example: SA on a Bass diffusion model with local interaction

To gain further practical intuition in SA, we illustrate a very simple SA exercise based on a
modified AB version of the Bass diffusion model. The classical Bass model (Bass, 1969) describes
the process of adoption of new products by the interaction between actual and potential users. In
particular, the probability of adoption for any potential user at time t depends on an innovation
coefficient p, an imitation coefficient q, and the cumulative distribution function of adoptions
F (t), i.e.

Prt(adoption) = (f(t))/(1− F (t)) = p+ qF (t) (8)

where f(t) is the probability density function of adoptions, and p + q < 1. The innovation
coefficient p measures an external (advertising) effect, the imitation coefficient q represents the
internal (word-of-mouth) effect, and F (t) can be interpreted as a global interaction term. In
fact, this is an aggregated model describing diffusion dynamics in an homogeneous population
in a fully-connected network, where each individual is aware of and influenced by the adoption
behavior of the whole population. The model has an analytical solution,

f(t) =
1− e−(p+q)t

1 + q
pe
−(p+q)t

(9)

and captures the typical S-shaped adoption curve of many products. By reviewing the empirical
work applying the Bass model to new products introduction, (Mahajan, Muller, Bass, 1995)
find the average value of p and q to be 0.03 and 0.38, respectively, with p often less than 0.01
and q in the range [0.3, 0.5].

In the original Bass model, every potential customer is linked to all others by the function
F (t). Alternative formulations of the network structure yield to different diffusion dynamics
(Fibich and Gibori, 2010). In particular, we present the case of a small-world network charac-
terized by an average number n of bidirectional connections per agent. Thus, the probability of
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adoption for the i-th potential user does no more depend on the global interaction term F (t),
but on a local interaction term Ai,t, defined as the share of individuals connected to agent i
who have adopted, i.e.

Pri,t(adoption) = p+ qAi,t (10)

The analysis of this model is particularly simple because its stochastic properties are im-
mediate to check: the model is ergodic, with a deterministic absorbing equilibrium (everybody
eventually adopts) which is achieved in finite time, given p > 0, irrespective of q and n. So,
our interest lies in characterizing how the three input parameters (p, q, n) affect the adjustment
process to the equilibrium, i.e. the adoption dynamics.

The following SA exercise focuses on the effects of the parameters onto two output statistics
Y : the cumulated curve of adoptions and the time of adoption of the 50th percentile of the
population.

Figure 1 shows the sensitivity of the cumulated adoption curve at the variation of one
parameter at time around a reference parameter configuration, i.e. p = 0.03, q = 0.4, n = 5 on
a population of 1,000 agents. To get rid of random effects in the generation of the network,
average results over 50 runs for every triple of parameters are reported. In particular, the
top panel shows how adoption drastically speeds up when the effect of the external influence
increases, for values of p sampled in the range [0, 1] by increasing steps of 0.05; the middle
panel illustrates how the adoption dynamics become more and more similar when the internal
influence is higher, for values of q sampled in the range [0, 1] by increasing steps of 0.05; finally,
the bottom panel shows that the cumulated adoption curves are quite indistinguishable for an
average number of connections per agent greater than 6, for integer values of n sampled in
the range [1, 30]. Hence, n seems to have the weakest effect on the adoption dynamics of the
population (for large n), while p somehow the strongest (for small p).

Similar results are obtained when analyzing the OAT effect of the parameters on the average
time of adoption of the 50th percentile over 50 runs. In fact, the bottom panel of figure 2 shows
a flat distribution for values of n greater than 6. Moreover, the impact on the adoption speed
of high values of q is quite similar, while the 50th percentile adopts in no more than 2 periods
for values of p greater than 0.2.

However, the results of an OAT analysis are local, i.e. they are generally strongly influenced
by the chosen reference point, and give no information about the eventual impact of the inter-
actions among inputs. In order to overcome this limitation, a global analysis is performed by
evaluating a metamodel Y = g(X) on artificial data generated by allowing all parameters to
change. The metamodel imposes a relationship between the inputs X and the output Y with an
arbitrary functional form g, which crucially includes interaction terms (Kleijnen and Sargent,
2000). As an example, we perform a multivariate analysis on 1,000 parameter configurations,
obtained by random sampling the inputs from uniform distributions. In particular, p is sampled
in the range [0,0.2], q in [0,0.8] and the integer n in [1,30].

The preferred specification is an OLS regression of the average time of adoption of the 50th
percentile on a third order polynomial of the innovation coefficient, the imitation coefficient and
the average number of connections per agent, plus the second-order interaction terms between
p and q and between p and n (the remaining second-order and third-order interaction terms,
qn and pqn, turn out to be non significant at the 90% confidence level). Given that pq and pn
are strongly significant (see table 1), the OAT analysis confirms to have just local implications.

Moreover, this metamodeling exercise allows us to quantify and compare the impact of
variations in the parameter values. Starting from our reference point (p = 0.03, q = 0.4, n =
5), a 20% increase in the value of p lowers the average adoption time of the 50th percentile of
about 11%; the same increase in n lowers the adoption time of about 2%, while a 20% increase
in q causes a 8.7% variation in the output.
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Figure 1: OAT analysis: average cumulated adoption curves over 50 runs, obtained by varying p in the range
[0 : .5 : 1] (top panel), q in [0 : .5 : 1] (central panel), and n in [1 : 1 : 30] (bottom panel). Reference parameter
configuration: (pqn) = (0.030.45), 1000 agents.

Furthermore, the exercise confirms a weak impact of variations in n when n is high, e.g.
a 20% increase when n = 20 yields a 2.4% decrease in the average adoption time of the 50th
percentile.

5 Conclusions

The discussion above should warn against the use of AB models as an “easy” way of model
building that simply allows to bypass the difficulties of deriving analytical results. Indeed, given
the higher complexity of AB models (which precludes the derivation of analytical solutions), one
has to expect a lot of work to understand their behavior. To sum up, four stages are involved
in the analysis of an AB model:

1. definition of the output variable(s) of interest, Y ;

2. design of an appropriate experimental design, with the definition of the points in the
parameter space to be explored;

3. analysis of the stationarity / ergodicity properties of the system at the chosen points;

4. sensitivity analysis of the output variables Y with respect to other variables of the model
X and of the structural parameters θ.
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Figure 2: OAT analysis: average time of adoption of the 50th percentile over 50 runs, obtained by varying p in
the range [0 : .5 : 1] (top panel), q in [0 : .5 : 1] (central panel), and n in [1 : 1 : 30] (bottom panel). Reference
parameter configuration: (pqn) = (0.030.45), 1000 agents.

These steps should not be necessarily undertaken in the order specified above, as there may
be feedbacks so that loops might become necessary: for instance, SA could be used to simplify
the model structure (the model DGP), which in turn might affect the choice of the output
variables Y and the design of the experiments. Similarly, finding that the system is non-ergodic
might imply the need to reconsider the design of the experiments, with a higher attention to
the effects of the initial conditions.

Unfortunately, such a complete analysis of the model behavior is very rarely done in the
literature. In particular, stationarity is often simply checked by visual inspection, ergodicity
generally disregarded, and sensitivity analysis at best implemented with a local OAT approach
around a baseline configuration. True, global SA strategies with extensive testing for stationar-
ity and ergodicity at every sampled point are very difficult to implement in large and complex
models, computationally burdensome and characterized by many output variables. On the other
hand, OAT designs around one central configuration (or a limited number of combinations) of
the parameters are generally easier to understand, and reduces the need to test for ergodicity
and stationarity, given the appropriate continuity assumptions: the tests can be performed at
pre-specified intervals of the variable that is allowed to change, assuming that the results also
hold for the other sampled values in between.18

18This can also be done with multi-dimensional designs; however, the identification of an adequate neighbor-
hood of the tested points in which the continuity assumption is supposed to hold becomes more complicated.
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time 50 Coeff. Std.Err.
p -417.18 11.25 ***
p2 2824.05 125.46 ***
p3 7264.88 410.95 ***
q -32.31 2.64 ***
q2 28.86 7.52 ***
q3 -14.66 6.19
n -0.41 0.08 ***
n2 -0.02 11.25 ***
n3 0.0003 0.0001
pq 107.44 4.57 ***
pn 0.92 0.12 ***
cons 30.86 0.51 ***

*** Significant at the .01%

Table 1: Metamodeling: OLS regression on 1,000 different parameter configurations, obtained by random sam-
pling from uniform distributions in the range p [0,0.2], q [0,0.8], n [1,30]. In order to get rid of random effects,
the time of adoption of the 50th percentile is averaged over 50 runs. Adjusted R-squared = 0.84.

These difficulties notwithstanding, the importance of proper formal analysis of AB models
should not be downplayed, if the methodology has to gain full respectability among the scientific
community. Jointly considered, the techniques reviewed here retain a fundamental role in
building and analyzing simulation models; they represent a compelling procedure in model
developing, providing tools that map the input factor space into the prediction space and back,
as well as techniques to evaluate alternative model structures and the relative importance of
each input factor.
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A A stationarity test for AB models

The test which we propose to check stationarity is called Runs Test (or Wald-Wolfowitz test).
The Runs Test was developed by Wald and Wolfowitz (1940) to test the hypothesis that two
samples come from the same population. In particular we employ an extension of the Runs Test
to check the fit of a given interpolating function (Gibbons, 1985). Suppose that we have a time
series and a function of time that is used to describe its trend. If the trend function fits the
time series well, the observations should be randomly distributed above and below the function,
regardless of the distribution of errors. The Runs Test tests whether the null hypothesis of
randomness can be rejected or not. Given the estimated function, a 1 is assigned to any
observation above the fitted line, and a 0 to any observation below the fitted line. Supposing
that the unknown probability distribution is continuous, there is a 0 probability that a point
lies exactly on the fitted line (if, by accident, it does happen, the point has to be disregarded).
The process is then described by a sequence of ones and zeros that represents the sequence of
observations above and below the fitted line. The statistics we use to test the null hypothesis
is the number of runs, where a run is defined as “a succession of one or more identical symbols
which are followed and preceded by a different symbol or no symbol at all” (Gibbons, 1985). For
example in the sequence 1,0,0,1,1,1,0 there are 4 runs: {1},{0,0},{1,1,1} and {0}. The number
of runs, too many or too few runs, may reflect the existence of non-randomness in the sequence.
Following the notation of Wald and Wolfowitz (1940), we define the U -statistic as the number
of runs, m as the number of points above the fitted function and n as the points below the fitted
function. Under the null hypothesis of randomness around the trend, the mean and variance of
the U -statistic are

E(U) =
2mn

m+ n
+ 1 (11)

V ar(U) =
4mn(2mn−m− n)

(m+ n)2(m+ n− 1)
. (12)

The asymptotic distribution of U , as m and n tend to infinity (as the observations tend to
infinity) is a normal distribution.19

To sum up, the Runs test tests the hypothesis that a set of observations is randomly dis-
tributed around a given fitting function; it tests whether the function provides a good represen-
tation of the observed data. The idea is to use the test described above to check the stationarity
of a time series produced by the AB model. The first step is to divide the time series into w
windows (sub-time series). Then we compute the moment of order m for each window:

µm =
1

T

T∑
t=1

Y m
t (13)

If the moment is constant, then the “window moments” are well explained by the moment of
the same order computed over the whole time series (“overall moment”). Here is where the Runs
Test is used: if the sample moments are randomly distributed around the “overall moment”, it
is concluded that the hypothesis of stationarity for the tested moment cannot be rejected. A
strictly stationary process will have all stationary moments, while a stationary process of order
m in this framework means that the first m non-centered moments are constant.

To run the test we have to choose the length of the artificial time series to be analyzed,
together with the length of the windows. Under the null hypothesis, longer windows imply a
better estimation of the subsample moments, but at the same time they imply fewer windows
(given the length of the time series) and a worse approximation of the distribution of runs
toward the normal distribution. The trade off can be solved by using long series and long

19The derivation of the finite sample properties and of the asymptotic distribution of U can be found in (Wald
and Wolfowitz, 1940) and in (Gibbons, 1985).
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windows, a solution which is often feasible in AB models (the only drawback being increased
computational time), while it is generally not at hand with real data.

To describe the properties of the test, we check the stationarity of the first moment (mean)
of an autoregressive function of the first order:

yt = θyt−1 + εt (14)

with θ = 0 (strictly stationary, figure 3 (a)), θ = 0.99 (stationary, figure 3 (b)), and θ =
1(non-stationary, figure 3 (c)), and εt a random error with uniform distribution U(−1, 1).20

We show experiments with different window length s (1,10,50,100,500,1000,5000,10000) us-
ing a time series of 100,000 observations/periods. The performance of the test is evaluated, for
every window length, over 100 Monte Carlo replications of the stochastic process. By changing
the length of the windows we change the number of sub-samples (since the length of the time
series is fixed).

Figure 3 shows the sensitivity of the test to different sample length.
The null hypothesis is that the first moment is constant, and in turn that the sub-time

series moments are randomly distributed around the overall first moment. We set the tolerated
probability of a type I error equal to 0.05: hence, we expect to reject the null hypothesis when
the null is true in 5% of the cases; this happens with both θ = 0 and θ = 0.99. It is interesting to
note that the length of the windows has no influence in the case of a strictly stationary process.
In particular, since every observation has the same distribution, the stationarity can be detected
even when the window length is equal to one. However, if θ = 0.99, longer windows are needed
to detect the stationarity property in order to allow the sub-time series to converge toward the
overall mean; in other words more observations are needed to obtain a good estimation of the
sub-sample moments. Non-stationarity is also simple to detect; the test has full power (it can
always reject the null when the null is false) for all the window lengths but the ones that reduce
the number of windows under the threshold of good approximation of the normal distribution
(the test can detect non-stationarity as long as the number of samples is higher than 50).

As an additional experiment, we analyze a time series produced by an AR(1) process as in
eq. 14 with θ = 0, but with an error term that is distributed as U(−1, 1) in the first part of
the time series and as U(−8, 8) in the second part. Figure 4 shows the distribution of the sub-
sample moments around the overall moments. The test (correctly) does not reject stationarity
for the the first moment, while it refuses the null hypothesis for the second moment.

The experiment shows the flexibility and the limits of the test. If the length of the time
series and the number of windows are properly set, the test is highly reliable, with a power
approaching 1. In case non-stationarity is found, standard methods may be used to transform
the series in stationary ones (for example detrending or differentiating the series); the non
parametric test can then be used on the transformed series.

B An ergodicity test for AB models

The test described below is a test of ergodicity of the moment of order m, where we test
its invariance between different replications of the same DGP. To this aim, the Runs test is
used again, but this time in the original version presented in Wald and Wolfowitz (1940) to
test whether two samples come from the same population. Using the notation of Wald and
Wolfowitz, suppose that there are two samples {at} and {bt}, and suppose that they come from
the continuous distributions fa(a) and fb(b). Let Z be the set formed by the union of at and
bt and arrange the set Z in ascending order of magnitude. Eventually, create the set V , that is
a sequence defined as follows: vi = 0 if zi ∈ {at} and vi = 1 if zi ∈ {bt}. We define a run as

20The experiment with θ = 0.99 is shown to “test” the test in an extreme case, where the null and the
alternative hypothesis are nearly indistinguishable from each other.
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in the previous section, and use the number of runs, the U -statistic, to test our null hypothesis
fa(· ) = fb(· ). In the event that the null is true, the distribution of U is independent of fa
(and fb). A difference between fa(· ) and fb(· ) will tend to decrease U . If we define m as the
number of elements coming from the sample {at} (number of zeros in V ) and n as the number
of elements in Z coming from the sample {bt} (number of ones in V ), m+n is by definition the
total number of observations. Under the null, the mean and the variance of the U-statistics are
(11) and (12), if m and n are large, the asymptotic distribution of U is Normal with asymptotic
mean and variance.21 Given the actual number of runs, U , computed over the two samples,
we reject the null hypothesis if U is too low (we test U against its null distribution with the
one-tailed test).

The aim here is to use this test as an ergodicity test, supposing that the process has already
passed a stationarity test. Intuitively, if the process is ergodic the “horizontal” distribution of
moments within one (long enough) time series should be the same as the “vertical” distribution
of moments between different time series, created by different replications of the model.22 To
test the ergodicity of a given moment one long time series is therefore created and divided into
sub-samples. As in the previous section, thinks of 100,000 periods for the entire time series,
divided into 100 sub-samples of 1,000 periods each. The first sample of moments used for the
Runs test (say {at}) is formed by the moments of the 100 sub-samples of this (long) time series.
For the second sample of moments (say {bt} ) we create 100 new time series (by running each
time the simulation model with a different random seed, or with different initial conditions)
of 1,000 observations each and compute the moment of interest in each of them. Given the
two samples of moments we can then apply the Runs test as described above (merge the two
samples, arrange the observations in ascending order and compute the runs over the sequence
of ones and zeros). Under the null hypothesis, the two samples of moments {at} and {bt} have
the same distribution.

The moments in the two samples have to be computed over time series of the same length
(in our example 1,000 periods), because, under the null hypothesis, the variance of the moments
depends on the number of observations over which they are computed. If we used longer time
series to build the second sample we would produce sample of moments with lower variance,
and the Runs test would consider the two samples as coming from different distributions.

As regards the implementation of the test, particular care should be taken when the time
series under analysis converges during the simulation toward an asymptotic mean. Suppose
that we have a time series that converges to a long run mean in a given number of periods and
then stays around that mean for ever. In this case, the stationarity test would correctly deem
the process as stationary (with a sufficient long simulation), but even if the process is ergodic,
the ergodicity test will result in a refusal of the hypothesis with the process being classified as
non-ergodic, since in the time series used to create the second sample of moments the memory
of the initial conditions matters more than in the sub-samples coming from the long time series
used to create the first sample of moments.

As an example, consider a simple AR(1) process yt = 0.99yt−1+ut, where ut ∼ N(1, 1). The
process is ergodic; it starts from zero and converges toward the asymptotic mean E(yt) = 100.23

Figure 5 illustrates the problem: the top and middle panels show the long time series used to
create the first sample of moments and (one of) the short time series used to create the second
sample of moments, respectively; the bottom panel shows the moments computed from then
100 sub-samples of the long time series (dots) and the moments computed from the 100 short
time series (squares). The different effect of the initial conditions in the two series is clearly

21As in the stationarity test we use the exact mean and variance to implement the test.
22Often a replication of a simulation model –an instance of the model producing a stream of artificial data–

is called a “run”. Here, to avoid confusion with the definition of run used by the Runs test –a sequence of equal
values (0 or 1) of an opportunely defined indicator– we use “replication” instead.

23In general, for a process AR(1) yt = θ0 + θ1yt−1 + ut where θ0 represent constant coefficient and uthas zero
mean and a given variance, the asymptotic mean is E(yt) = θ0

1−θ1
.
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visibile, and creates a convergence problem. The ergodicity test will find significant differences
between the two samples, and detect non-ergodicity.

If the series converge toward a long run mean, we have to use its stationary part only for
the ergodicity test (we know the series is stationary, at least from some point onward, from the
stationarity analysis). Often, the stationary part of the series can be identified by simple visual
inspection. For example, to build the second sample we can create a set of time series with
2,000 observations and compute the moments using the last 1,000 observations.

The ergodicity test tells us, for example, whether the first moments of a series can be used
as estimates of the true moment of the IOT. The test have to be replicated for every moment
under consideration.

To check the performances of the test we define the following process:

yt = θyt−1 + ut (15)

where ut ∼ N(l, 1). If l is a random variable extracted at the beginning of the process, the
process mimics a situation in which the starting conditions have an everlasting effect on the
process, and it is not ergodic, as different replications of the process entail different extractions
of l. If by converse l is fixed once and for all, the process is ergodic.

In order to assess the performances of the test, we run 5 experiments of 100 replications
each of the test, in three different settings (θ = 0, θ = .99, θ = 1), both in the case of an ergodic
process (l = l̃ = 0) and in the case of a non-ergodic process (l ∼ U(−5, 5)).24

Figure 6 shows the result. When the process is ergodic (top panel), with θ = 0, θ = 0.99
the test suggests non-ergodicity in about 5% of the cases (this is the chosen level for the type
I error). However, if the process is non-stationary, θ = 1, the test (erroneously) always rejects
ergodicity: this is due to the fact that the test cannot distinguish between non-ergodicity and
non-stationarity.

The bottom panel of figure 6 shows the results for of a non-ergodic process, where an initial
random draw determines the asymptotic mean of the process. The test can detect non-ergodicity
with power 1.

To further clarify how the test works, figure 7 shows the two samples of moments used for
the test for an ergodic (top panel) and a non-ergodic (bottom panel) process. Simple visual
inspection confirms that the two samples come from the same distribution in the case of an
ergodic process, but not in the case of a non-ergodic process (the dots come from the first
sample, while the squares come from the second sample).

Of course, a process may be ergodic in the first moment but non-ergodic in the second
moment or in other order moments.

To analyze the performance of the test with respect to ergodicity in second moments we
use the same framework as before (eq. 15) with ut ∼ N(0, l), extracted at the beginning of the
process. We consider the case of l ∼ U(1, 5) for a non-ergodic process (the variance of the error
changes across different replications), and the case of l = l̃ = 1 for an ergodic process.

To test the second moment we simply have to build the first sample using the second moment
of the 100 sub-samples of the long time series, and the second sample using second moment of
the 100 short time series. The test is exactly as above but for the fact that we are comparing
second moments.

Figure 8 is the analog of figure 6, and shows the performance of the test on the second order
moment of an ergodic (top panel) and a non ergodic (bottom panel) process. Only the case of
θ = 0 is considered, corresponding to strictly stationarity, as with θ → 1 (e.g. θ = 0.99) the

24If θ = 0.99, l = l̃ 6= 0 and the starting point is y0 = 0 the process generates time series as in figure 5: we may
therefore reject ergodicity even if the process is ergodic. To solve this convergence problem, as already discussed,
we compute the moments of the second sample (the moments of the 100 replications of the model) by creating
time series of 2,000 periods and computing the moments only in the last 1,000 observations.
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variance of an AR(1) process tends to infinity 25: the test always detects non-ergodicity when
the process is non-ergodic (full power), and rejects ergodicity in 5% of the cases ( (the chosen
level for the type I error) when the process is ergodic:

var(yt) =
σ2u

1− θ2
(16)

Finally, note that when the process is non-ergodic in the second moment but ergodic in the
first moment, as in the bottom panel of figure 8, the ergodicity test on the first order moment
(mean) gives between 20% and 30% of non-ergodicity results. This is because the different
variance of the error implies a different variance in the first moments, so despite the fact that
the different processes have the same mean, the test detects that “something is wrong”.

For completeness, we report the analog of figure 7 for the second moments (figure 9).

25more observations are needed in this case to regain full power

19



References

Bass, F. M. (1969). A new product growth for model consumer durables. Management Science,
15(5):215–27.

Box, G. E. P., Hunter, W. G., and Hunter, J. S. (1978). Statistics for experimenters. An
introduction to design, data analysis and model building. Wiley, New York,.

Breiman, L., Freidman, J. H., Olshen, R. A., and Stone, J. H. (1984). Classification and
regression trees. Chapman & Hall, New York,.

Chan, K., Scott, E. M., and Andres, T. (2000). In Saltelli, A., Chan, K., and Scott, E. M.,
editors, Sensitivity analysis, chapter Software for sensitivity analysis - a brief review. John
Wiley & Sons Ltd., Chichester,.

Cukier, R., Fortuin, C. M., Schuler, K. E., Petschek, A. G., and Schaibly, J. H. (1973). Study
of the sensitivity of coupled reaction systems to uncertainties in the rate coefficients. i theory.
Journal of Chemical Physics, 59:3873–78.

Daniel, C. (1973). One-at-time plans. Journal of the American Statistical Association, 68:353–
60.

Deffuant, G., Huet, S., Bousset, J. P., Henriot, J., Amon, G., and Weisbuch, G. (2002). Agent-
based simulation of organic conversion in allier dpartment. In Janssen, M. A., editor, Com-
plexity and ecosystem management. Edward Elgar, Cheltenham,.

Fibich, G. and Gibori, R. (2010). Aggregate diffusion dynamics in agent-based models with a
spatial structure. Operations Research, submitted.

Gibbons, J. D. (1985). Nonparametric Statistical Inference. Marcel Dekker Inc., New York,
second edition.

Happe, K. (2005). Agent-based modeling and sensitivity analysis by experimental design and
metamodeling: an application to modeling regional structural change. In Proceedings of the
XI International Congress of the European Association of Agricultural Economists.

Happe, K., Kellermann, K., and Balmann, A. (2006). Agent-based analysis of agricultural
policies: an illustration of the agricultural policy simulator agripolis, its adaptation, and
behavior. Ecology and Society, 11(1).

Hendry, D. F. (1980). Econometrics-alchemy or science? Economica, 47(188):387–406.

Kleijnen, J. P. C., Sanchez, S. M., Lucas, T. W., and Cioppa, T. M. (2003). A user’s guide to
the brave new world of designing simulation experiments. CentER Discussion paper, Tilburg
University.

Kleijnen, J. P. C. and Sargent, R. G. (2000). A methodology for the fitting and validation of
metamodels in simulation. European Journal of Operational Research, 1:14–29.

Kleijnen, J. P. C. and van Groenendaal, W. (1992). Simulation a statistical perspective. John
Wiley & Sons Ltd., New York,.

Lynam, T. (2002). Scientific measurement and villagers’ knowledge: an integrative multi-agent
model from the semi-arid areas of zimbabwe. In Janssen, M. A., editor, Complexity and
ecosystem management, pages 188–217. Edward Elgar, New York,.

20



Rose, K. A., Smith, A. P., Gardner, R. H., Brenkert, A. L., and Bartell, S. M. (1991). Param-
eter sensitivities, monte carlo filtering, and model forecasting under uncertainty. Journal of
Forecasting, 10:117–33.

Saltelli, A. (2000). Fortune and future of sensitivity analysis. In Saltelli, A., Chan, K., and
Scott, E. M., editors, Sensitivity analysis. John Wiley & Sons Ltd., Chichester, West Sussex
England.

Saltelli, A., Chan, K., and Scott, E. M. (2000). Sensitivity analysis. Jonh Wiley & Sons Ltd.,
Chichester, West Sussex England.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M.,
and Tarantola, S. (2008). Global sensitivity analysis. The primer. John Wiley & Sons, Ltd.,
Chichester, West Sussex England.

Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M. (2004). Sensitivity analysis in
practice: a guide to assessing scientific models. John Wiley & Sons, Ltd.

Wald, A. and Wolfowitz, J. (1940). On a test whether two samples are from the same population.
The Annals of Mathematical Statistics, 11(2):147–162.

21



(a) Strictly stationary process (θ = 0)

(b) Stationary process (θ = .99)

(c) Non-stationary process (θ = 1)

Figure 3: Rejection rate for the null hypothesis of stationarity (%).
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Figure 4: The dots are the sub-sample moments, the line is the overall moment. The first moments are randomly
distributed around the overall mean (above). The second moments are not randomly distributed around the
overall moments (below).

Figure 5: The long process (above), a short process (middle) and the moments computed from the sub-samples
of the long process (points) and the moments computed from the short processes (squares).
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Figure 6: The performance of the ergodicity test. In the top panel the process is ergodic. In the bottom panel
the process is non ergodic. One experiment is made by testing 100 times the same process using different random
seeds. The experiment is made 5 times for each setting. The graphics displays the number of times the test reject
the null hypothesis of ergodicity.

Figure 7: The test checks whether there is a significant difference between two samples of moments: one coming
from sub-samples of a (long) time series produced by a single replication of the simulation model (dots) and the
other coming from (short) time series produced by multiple replications of the simulation model (squares). Top
panel: an ergodic process. Bottom panel: a non-ergodic process.
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Figure 8: The performance of the ergodicity test on second moments. In the top panel the process is ergodic.
In the bottom panel the process is non ergodic. One experiment is made by creating 100 instances of the same
process with different random seeds. The experiments has been done 5 times.

Figure 9: The test checks whether there is a significant difference between two samples of moments: one coming
from sub-samples of a (long) time series produced by a single replication of the simulation model (dots) and the
other coming from (short) time series produced by multiple replications of the simulation model (squares). Top
panel: an ergodic process. Bottom panel: a non-ergodic process.
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