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Transitivity matters. Norms Enforcement and diffusion using
different neighborhoods in CAs.

Bertazzi, I.*

ABSTRACT

The study of norms' self-enforcement and diffusion is one of the most acknowledged application of
ABMs.  Peer  pressure,  limited  knowledge  and  communication  channels  are  some  of  the  most
accounted elements in this kind of modelization,  and for these same reasons, cellular automata
models are very popular for the subject. 

A very interesting model in this ambit is Centola, et al. (2005). "The Emperor's New Clothes", the
popular fable, is used as example of a society where stable compliance to a norm that the majority
does not want to observe is made possible by the presence of a committed minority that triggers
compliance cascades through peer-pressure.

This paper, starting from the original code, unfolds the concept of "cascade” phenomena. Changing
the order of procedure and especially the neighborhood structure is not only a way to test results
robustness;  the transitivity structure of  two different  neighborhoods (Von Neumann and Moore
neighborhood),  on  which  the  local  rule  is  constructed,  develops  completely different  emergent
results, under similar initial conditions. Results from this work give insights on how code design
strongly changes outcomes interpretation, in particular the concepts of “cascade” and “diffusion”.

KEYWORDS: Cellular Automata, Norms, Diffusion, Cascades, Model Replication.

SEC 1. INTRODUCTION
This paper, starting from the original code of Centola et al. (2005), a very simple and powerful CA
model  of  social  interaction,  as  presented  in  section  2,  unfolds  the  concept  of  "cascade”  and
“avalanche”  phenomena,  widely used in  the field.  The contribution of  the  present  paper  is  the
analysis of the evidences that changing the order of procedures and the neighborhood structure is
not only a way to test results robustness, but it also shows that transitivity of local structure and the
choice between two different kinds of neighborhoods (Von Neumann and Moore neighborhoods)
matters, in other words, the possible number of cells considered in the evaluation of the transition
rule of the CA  develop completely different emergent results under similar initial conditions. The
modifications taken into account are explained in section 3. Results from this work, as interpreted in
the  forth  and  fifth  sections,  give  insights  on  how  code  design  strongly  changes  outcomes
interpretation, in particular the concept of “cascade”. The elucidation on the model and on the work
addressed in the paper follows the standards of the updated ODD Protocol, as designed by Grimm
et al. (2010).

SEC 2. MOTIVATION AND THE ORIGINAL MODEL
In terms of the updated ODD Protocol, the purpose of this work lies in the area of Replication of
interesting results and simulations, which is an important part of the evolution of simulation as a
tool for social sciences. As pointed out by Axelrod (2003), three important stages of the research
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process  for  doing  simulation  in  the  social  sciences  have  been  considered  more  frequently:
programming,  or  model  design,  results  interpretation,  or  analysis,  and  the  sharing  computer
simulations results. There is, however, another stage of the research process that is virtually never
done: replication. Replication is one of the hallmarks of cumulative science. It is needed to confirm
whether  the  results  of  a  given  simulation  are  reliable  and  robust  in  terms  of  model  design.
Replication can also be useful for testing the robustness of inferences and the model sensitivity to
parameter calibration. 

Moreover, this replication phase is very important for a kind of social simulation as widely use as
CAs are. As first step, here is introduced a general definition of Cellular Automata, than the original
model to be replicated is presented.

A n-dimensional CA consists of: 1. a n-dimensional grid (2-D in our case); 2. cells assume one of a
finite number of possible states;  3.  time advances in discrete  steps; 4.  cells  change their  states
according  to  an  update  rule,  the  state  of  a  cell  in  the  next  period  depends  upon the  states  of
neighboring cells and itself in past period; 5. the transition rules are usually deterministic, like in
this model, but also probabilistic rules are possible; 6. usually, the system is homogeneous in the
sense that the set of possible states is the same for each cell and the same transition rule applies to
each cell, in the present case the possible state that a cell can have depend on the cell's type; 7. the
updating procedure usually consists of applying the transition rule synchronously or selecting cells
randomly, which is the case for the current model.

As many scholars pointed out, for instance Batten (2000), CAs are important for social simulations
because  of  their  simplicity  in  designing  spacial  interactions,  because  of  their  flexibility  in
applications to social system with agents in an interactive network. 

The Model described in Centola, et al. (2005), called the “Emperor Dilemma Model” is a design for
a  Cellular  Automata  model  to  study  norms,  intended  as  behavioral  rules  with  no  centralized
enforcement mechanism, but a kind of rule that base its diffusion and stability on neighborhood
peer-pressure.  It is an interesting case for replication because it  represents a base for a general
model for unpopular, self-enforcing norms , with a simple simulation algorithm .

The name comes from Hans Christian Andersen’s fable “The Emperor's new clothes”, where there
is a vast majority of people in the population that do not believe that the Emperor clothes exist, but
they say and behave as if they believed it, and the entire mechanism is driven by the presence of a
small  portion  of  the  population  highly  convinced  of  the  “norm”,  a  phenomena  known  as
“Informational Cascade” . 

In  this  2-dimensional  grid,  agents/cells  have two different  Belief  statuses  (+1/-1)  and they can
comply or not comply the norm, as well as enforce it or not, where the norm is supported by few
fanatics and opposed by the majority .

The transition rule (the mechanism by which the cells update their statuses in terms of Compliance
(C(i)) and Enforcement (E(i)), can be summarized as follows:

B i=±1

Ci=
−Bi…if

Bi

N i
∑ j

E j>Si

Bi…otherwise

Ei=
−Bi…if (

Bi

N i
∑ j

E j>S i+k )∧(Bi≠Ci)

Bi…if (S i∗wi>k )

0…otherwise



Where: 
w i=

1−(
Bi

N i

)∑
j

Ci

2

Where  B(i)  represents  the  (given)  belief  over  the  norm;  C(i)  is  the  Compliance;  E(i)  the
Enforcement (both dependent on the j-neighbors state of Enforcement); w(i) can be defined as the
“need for enforcement”, to be intended as the potion of neighbors how behave according to one's
beliefs or not (so, dependent on C(j)); S(i) represents an heterogeneous variable of the “strength of
conviction” to one's own belief, for fanatics this value is fixed at the maximum 1, where for the
others  it  is  uniformly distributed  from zero  to  a  certain  (smaller)  level;  k is  a  global  variable
representing the cost of Enforcement, negatively affecting the adoption of this behavior, both in
terms of E(i) in accordance to one's own belief or in opposition.

In terms of the Update ODD protocol,  Cells structure and type positioning in the 2-D grid are
defined as Entities of the model, their state variables are, of course, all the determinants of their
state in terms of Belief, Compliance and Enforcement. 

One important feature of this model is its lack of content in terms of the norm, leading to a very
wide range of possible applications.

SEC 3. CODE TEST VERSIONS AND VARIABLES 
CALIBRATION

The replication process adopted in this paper explores, starting from some robustness tests,  the
possibility space of some independent variables that were not mentioned in the original paper. In
particular, original results were focused on the effect of the number of fanatics in the population and
their position in the grid, as these initial setting affected the percentage of “normal” opposer to the
norm affected by the informational cascade and ending up enforcing to their neighbors a norm that
they did not like in the first place. In this paper, on the other hand, the focus will be on the type of
outcome  that  originates  from  one  or  other  spacial  knowledge  of  each  cell  (also  called
neighborhood), and on how this is affected by variables calibration.

The replication of the code started from the original code, made publicly available by the authors
and suitable  for  NetLogo 3.* ;  the  process  of  updating  of  the  code for  newer  versions  of  the
program also included the possibility of a much faster algorithm, since the random order of cell
updating of their status has previously to be imposed via looping  algorithm of asking, while it is
featured automatically for up-to-date Netlogo versions (Netlogo 5.1). 

The  next  sections  will  describe  the  variable  taken  into  account  in  this  replication  process
(neighborhoods and clustering, cost variable and code versions), and it is classifiable in the ODD
update Protocol both as Process overview and Design concepts, in particular the Basic Principles,
the Interaction mechanism and the Stochasticity present in the model. The last part of section 3 is
dedicated to the presentation of the results obtained.

Sub Sec 3.1 Environment: Neighborhood and clustering
Both the original model and this replication explore the different possibilities in the position of the
small fanatic minority, which can be placed clustered or dispersed randomly in the grid.

During  the  first  replications,  there  emerged intuitively a  possible  difference  in  outcomes  for  a
particular variable of CAs, the number and the position in space of the cells that are included in the
transition  rule  evaluation  of  a  single  cell,  also  called,  neighborhood  structure  of  the  CA.
Traditionally, two types of very popular neighborhood structure are used for 2D cellular automata,



Von Neumann and Moore. 

1

The two structures have a formal definition for any N-dimensional CA, which can be found in Kari
(2004):

The  Von  Neumann  neighborhood  contains  relative  offsets  y⃗  that  satisfy
‖y⃗‖1⩽1  where 

‖( y1, y2 ,… yd)‖1=|y1|+|( y2)|+…+|( yd)|

is the Manhattan norm. This means that cell in location x⃗  has 2d + 1 neighbors:
the cell itself and the cells at locations x⃗±e⃗ i  where e⃗ i=(0,…,0,1,0,…0)  is the
i-th  coordinate  unit  vector.  The  Moore  neighborhood  contains  all  vectors

y⃗=( y1 , y2 ,…, yd)  where each y i  is −1, 0 or 1, that is, all y⃗∈ℤ
d  such that

‖y⃗‖∞⩽1  where 

‖( y1 , y2 ,…, yd)‖∞=max {|y1|,|y2|,…,|yd|}

is the max-norm. 

An important differential feature of the two structures for 2D CAs is the transitivity of the neighbor
relationship. As shown in the picture, Von Neumann 4-neighbor structure is not transitive in the
sense that a cell's neighbors are not neighbors to each other, whereas it is the case for Moore 8-
neighborhood.  This  feature,  although  mentioned  in  the  original  paper,  is  not  object  of  careful
inquiry in the original illustration of the results. Here this element, combined with the following
illustrated  tests  and  calibrations,  reveals  itself  to  be  crucial  in  the  deep  comprehension  of  the
dynamics of this model; this is particularly important if the social element of this simulation is taken
into account, as developed in the forth section. 

Sub Sec 3.2 Procedures orders
As in many applications of CAs to social simulations, the agents represented as cells in the grid of
this model are designed as so-called “zero intelligence agents”, to say, they to not have any learning
process, no maximization function or expectation over the outcome. Their behavior is completely
deterministic and depending on a certain transition rule just based on neighbors state. 

This consideration raises an interesting question concerning the order of application of the three
different parts that constitute the specific transition rule of this model. As previously explained, the
procedures that are evaluated by each agent at every time step are:

1 Immage from Allouche, Courbage, and Skordev (2001). 



- Determination of compliance C(i) based on neighbors' enforcement values E(j).

- Determination of the need for enforcement w(i), based on neighbors' behavior in terms of C(j)

- Determination of enforcement (the message sent to neighbors for the next time-step) E(i), also
based on E(j).

This is the original model's order of procedure (which I will call version 1.0);  since the order of
these steps is  mainly arbitrary, because of the zero intelligence characteristic of the agents,  the
following procedure orders are also tested, as the all possible combinations of orders, leading to
different patterns in the results:

Version 1.1 Version 1.2 Version 1.3 Version 1.4 Version 1.5

W(i)
C(i)
E(i)

W(i)
E(i)
C(i)

C(i)
E(i)
W(i)

E(i)
W(i)
C(i)

E(i)
C(i)
W(i)

Sub Sec 3.3 Cost variable calibration
The value of k, which is fixed by the authors of the original model 0.125, was designed for agents
with eight neighbors, in the way that there is a so-called “threshold” for additional neighbor that
must enforce before a false believer becomes a false enforcer as well. Formalizing this concept:

k = 0.125 s.t. In Moore Neighborhood, for i with B i=−1∧C i=1 (so-called False Compliers), 

∑
j

(neigbors s .t .[E j]=−1)−∑
j

(neigbors s . t .[E j]=1)>k−determinedTreshold⇒ Ei=1

Where the values  of conviction is  uniformly distributed across non-believers population with a
maximum  equal  to  0.38;  together  with  cost,  this  two  variables  form  a  cumulative  uniform
distribution of false enforcement thresholds across the population of disbelievers,  such that,  for
agents  with  Moore  Neighborhood,  if  two  more  neighbors  are  enforcing  compliance  than  are

enforcing deviance in every disbeliever’s neighborhood ( ∑
j

([E j]=−1)−∑
j

([E j]=1)>2 ) , then

about one-third of the disbelievers will  falsely enforce (False Enforcers are the cells who have
B i=−1 but  Ei=1 ).  If  three  more  neighbors  enforce  compliance  than  deviance  (

∑
j

([E j]=−1)−∑
j

([E j]=1)>3 , then about two-thirds of disbelievers will falsely enforce, and

so on.

Cost k Also represents a “tolerance” level for “fanatics” ( B i=1 ), in the sense that, when its level 
are too high, there is no possibility for believers to make any enforcement because this action is too 
“expensive”; in fact:

Ei=1  for B i=1 [and also s i=1 ] i.i.f:

s i∗wi>k => w i>k  

This represents the percentage of neighbors who are in accordance or not in accordance to the
fanatics' believe. For example in Moore Neighborhood, a level of k=0. 125 represents a “tolerance”
of 1 neighbor non complying for the agent to enforce (if there are two or more neighbors non
complying, Ei will be 1), and so on as k increases.

All these considerations, and the behavior sensibility to k calibration, call for a careful exploration
of the possibility space of cost variable.



Sub Sec 3.4 Simulation Experiments Results
The following plots represent the outcome of several run of the different simulation, each point
represents a counting of different types of cells after 500 time-steps;  red dots are the number of
False Enforcers ( B i=−1∧Ei=1 ), where green dots are Non Compliers ( B i=−1∧C i=−1 ). In
each line a different code version is represented.

First plots are regarding Moore Neighborhoods experiments (the first line of the title refers to the
code  version,  M  is  for  Moore  and  VN  is  for  Von  Neumann),  than  Von  Neumann's  follow,
highlighting  the  deep  difference  in  the  two  outcomes.  The  first  series  depicts  a  very  specific
outcome possibility space,  with a 100% False Enforcers for small  k levels,  and two coexisting
scenarios for higher k – a totality of Non Compliers or a totality of False enforcers as before. 





The following second series of plots is, on the contrary, based on Von Neumann, non Transitive
neighborhoods. The shape and position of red and green dots (i.e. the number of False Enforcers
and Non Compliers after 500 runs of each simulation) is completely different than the previous
case, absolutely not unique in the possible emerging landscapes. 







The most evident result is the huge difference between 4 and 8- neighborhoods. For small k levels,
the plots  show the presence of a  unique outcome for any run for 8-neighborhood case,  with a
totality of cells that turned to Ei=1 state ("false-enforcers"); as k gets close to 0.5 the outcome is
no more unique, but two possible states are present, with no middle point outcome: one is a fully-
compliant/enforcers result, the other is a completely non-compliant/non-enforcers grid.

On the other hand, 4-neighborhood experiments present a chaotic, non unique possible outcome, for
small levels of cost, and a non-compliant/non-enforcers resolution as k increases.

As it appears evident in the presented plots, the position of the fanatics affects the point in the cost
(x) axes that constitutes the limit for chaos in VN and the limit for bifurcation. The same kind of
effect happens for the version of the code, to say the procedure order for the different experiments
does not affect the shape of the outcome plots but their sensitivity to the variable k.

This results call for an explanation for the most interesting part of the results, to say, the completely
different outcomes for Moore and Von Neumann neighborhood structure are particularly evident
and require an hypothesis on the mechanism involved, which will be given in next section.

SEC 4. TRANSITIVE NEIGHBORHOOD HYPOTHESIS
Despite  their  apparently  simple  definition,  based  on  local  rules,  CAs  can  show very  complex
dynamical behaviors, even in the case of the so-called elementary CAs, i.e. 1D cellular automata
with two neighbors and two states. An important work on CAs as dynamical systems was done by
Wolfram, who proposes a classification of 1D CAs in four complexity classes, according to the
asymptotic  pattern  generated  by  the  synchronous  dynamics  starting  from  random  initial
configurations2:

1. Any initial configuration converges to a fixed homogeneous state (i.e., all the cells are in the
same state).

2. The limits of initial configurations are cycles, with separated simple stable or periodic 
structures.

3. “Chaotic” or fractal patterns, with arbitrary periods, appear.

2 This classification is empirical and difficult to apply. For example, it has been shown that the membership of a 
given CA even in the simpler class (1) is undecidable. However, this classification is the basis for more rigorous 
classification attempts. An attempt in the formalization of Wolfram's classification scheme has been done by Culik 
and Yu (28) who split CA into three classes of increasing complexity. Unfortunately, membership in each of these 
classes is shown to be undecidable a priori. 



4. Breaking symmetry configurations (as gliders) and long-lived localized patterns appear.

In the light of this idea of classification, the present work will describe the results of Centola et al.
Model as follows, unfolding the “Emergence” point belonging to the updated ODD Protocol3:

• In any procedure specification(1.0, 1.1, 1.2, 1.3, 1.4 and 1.5) Moore Neighborhood structure
displays two possible asymptotic pattern, one for low level of cost (k < 0.3), where Class 1
classification can be seen (unique, fixed homogeneous state of complete compliance and
enforcement to the norm); the second one a bifurcation possibility, where both competing
outcomes are classifiable as Class 1, but at two opposite extremes (complete compliance and
enforcement or defection with no enforcement). The high sensitivity to initial conditions is
the determinant of this behavior, where the heterogeneity of the cells (in terms of strength
s(i)) is the driving variable. 

The position in space of strong believers (clustered or dispersed) influences the level of  k
that allows bifurcations, where clustering allows a stable unique outcome for higher values
of the cost variable, since the “compactness” of the fanatics stabilizes results.

• Also for Von Neumann Neighborhoods the procedure specification does not affect the type
of outcome (according to Wolfram's classification), even though it does change the shape of
the  plots  reporting  the  outcomes.  In  terms  of  classification,  the  kind  of  long-term
distribution of the compliers/enforcers and non-compliers follows a U-shaped curve as  k
increases. For low level of cost and for k > 0.25, a unique, steady state of non compliance
appears,  so  if  cost  is  too  high  the  diffusion  of  compliance  is  not  possible  because  too
“expensive”, while for k levels close to zero the counter-enforcers are possible and so this
cells “resist” to diffusion. This two zones are ascribable to Class 1 asymptotic behavior,
while  in  the  central  part  of  the  cost  interval,  more  interesting  thing  happen,  where  the
outcome can be described as Class 3, chaotic and non predictable. The proposed sorting is
also  endorsed  by  the  absence  of  complete  cascades  of  compliance  in  Von  Neumann
Neighborhood runs of the CA (in no case 100% of cells turns “compliant and enforcer”)

SEC 5. MEANING OF CASCADES AND TRANSITIVITY
The  magnitude  of  the  different  outcomes  that  are  possible  in  the  two  proposed  neighborhood
structure calls for some inquiry over the nature of this difference. I will use the term “cascade” to
depict  the  situation  of  Class  1  outcome,  while  a  certain  “degree  of  diffusion”  fits  better  as
description for the Class 3 outcomes of this model's CA.

This is not a common use for the term “cascade”, where in many applications of CAs to social and
natural phenomena, it refers to any kind of wide diffusion of some sort of event, as for fire diffusion
in  a  forest  or  sandpile  accumulation.4 Informational  Cascade  is  also  used  in  social  sciences
simulations literature to describe the cases where an individual, having observed the actions of other
individuals,  follows their  behavior regardless of her own preferences or information.  Once this
decision process occurs, her decision conveys no truthful information about her private information
or preferences;  the outcome of this  process is  often referred to  as “pluralistic  ignorance”.  This
second use can be confusing this paper, since it deals with a CA model for social norm diffusion and
stability, where the point of diffusion is precisely working according to a false perception of others'
behavior. For the purposes of this study, however, I want to stress a different point in the use I make
of the word “cascade”, which refers to a stable state of full diffusion, in opposition to a non unique
outcome for the Class 3- type, which I will call “avalanches”. 

3 The Initialization point of the Update ODD Protocol was also cosidered, and it reavealed itself not to be a 
determinant in the simulation results, except for some trivial cases also considered by Centola et al. in their paper.

4 See Malamud and Turcotte (2000)



Along with the idea of Cascades, CAs models in general, both for social and for natural sciences,
display many emergent phenomena, like for example the concept of avalanches or other events that
satisfy a power-law frequency-area distribution.  Some scholars  have labeled this  behavior  self-
organized critical. In self-organized criticality, the input to a complex system is constant; the output
is a series of avalanches that follow a power-law frequency-size distribution. Natural hazards, like
sandpile  accumulation,  forest  fires  and  others  exhibit  a  similar  behavior.  In  this  sense,  Von
Neumann Neighborhood results are here presented differently, where the magnitude of avalanches
(x axes) is plotted in terms of frequency of the avalanches event (y axes). The shape of these curves
is precisely one of a power-law frequency-area distribution, for levels of cost smaller than 0.25.





In a Transitive Neighborhood structure like Moore's, the stability of a cascade is made possible by
the way transition function evaluation works in parallel with neighbors that partially share their
neighbors, while this is not the case when, in Von Neumann neighborhood, each transition function
evaluation works separately, creating different “sphere of influence” for each cell, and allowing for
chaotic  displays  of  states.  In other  words,  summarizing the last  considerations  of this  sections,
Moore neighborhoods lead to the emergence of unique outcome or bifurcation of cascades, where
Von Neumann neighborhoods lead to power-law distributions of avalanches, similarly to natural
hazards.



SEC 6. CONCLUSIVE REMARKS
Simple, spacial models of social interactions and CAs social simulations have quite a long history,
starting from Sakoda (1971) and Schelling (1971), and have had an important impact in the field of
social  sciences,  both  for  their  simplicity  in  the  design  and for  their  interesting  theoretical  and
empirical results.

The specifications of models are, as it is known, important for the outcome, especially for some
chaotic and complex phenomena that display sensibility to initial conditions; although, many of
these  specifications  are  not  taken  as  part  of  the  inquiry,  like  for  example  the  idea  of  the
neighborhood structure and the technical specifications of the procedures.  This features,  on the
contrary, proved themselves to be sometimes crucial independent variable, that have to be carefully
explored for a deep understanding of the outcomes, like in the case of the Centola et al. Emperor
Dilemma Model analyzed in this paper. 

In the case of social CAs models, like this one, transitivity of neighborhood relationships is an
important aspect, like it is shown in Newman and Park (2003). as as well as the exploration of
different  grid structure and spacial  possibilities,  as Flache and Hegselmann (2001) pointed out.
Using ODD Update Protocol, and carefully modifying the original model's code, this paper intended
to contribute to  a  more  robust  convention  in  designing AB Models  and Simulations  for  social
sciences.
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