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ABSTRACT 

By exploiting the EPO universe of patent data, we investigate how inventors’ 

teams recombinant capabilities drive the creation of Green Technologies (GTs). 

Results suggest the importance of recombinant creation patterns in fostering the 

generation of GTs. We also find diverse moderating effects of technological green 

experience and environmental regulation stringency on exploration behaviors. 

Precisely, the positive effect of team’s explorative behaviors is magnified for 

teams lacking technological green experience, even more in regimes of weak 

environmental regulation. Conversely, the effect of explorative behaviors is 

reduced for green experienced teams, especially in regimes of weak 

environmental regulation. Finally, we find positive effects of both team’s previous 

technological green experience and environmental regulation stringency. 

. 

JEL Classification Codes: O31 – O32 

 

Keywords: Recombinant capabilities; Inventors’ teams; Exploration; Exploitation; 

Green Technologies. 

  



1 Introduction 

A wide body of literature has elaborated upon Schumpeter’s seminal intuition that new 

inventions can be the outcome of the recombination of existing knowledge (Schumpeter, 

1939). Accordingly, research in strategy and management has stressed the importance of 

‘recombinant capabilities’ in shaping firms’ innovation performances (Carnabuci and Operti, 

2013; Galunic and Rodan, 1998; Hargadon and Sutton, 1997; Henderson and Clark, 1990; 

Yayavaram and Ahuja, 2008). In a recent study, Carnabuci and Operti (2013) have further 

documented the relevance of ‘recombinant capabilities’. They proposed a refinement of the 

conceptualization by introducing the distinction between ‘recombinant creation’ and 

‘recombinant reuse’, which points to the ability to create combinations using technologies that 

have never been combined before or using technologies that have already proven to work well 

together. They show that the configuration of firms’ intra-organizational network and firms’ 

knowledge diversity can explain the prevalence of recombinant creation rather than reuse. 

While many efforts have been devoted to the understanding of the emergence of the 

different types of recombinant capabilities, few attempts can be found in the literature to 

investigate how these can affect the creation of knowledge in specific technological domains. 

Consistently, this study attempts to fully deploy the explanatory power of the ‘recombinant 

capabilities’ approach to understand the mechanisms behind the generation of new knowledge 

in the field of green technologies (GTs). The present study represents therefore one of the few 

attempts to understand the antecedents of invention of GTs (Del Rio, 2009; Taylor et al., 

2005). 

We investigate how recombinant capabilities drive the generation of GTs, as well as the 

potential moderating effect of environmental policies. More precisely, we investigate whether 

the generation of green patents is driven by explorative (“recombinant creation”) or 

exploitative (“recombinant reuse”) patterns of knowledge recombination, or a mix of both. 

Our focus is on inventor teams’ recombinant capabilities. In line with earlier work (Fleming, 

2001), we develop indicators of recombinant creation and reuse by exploiting the information 

concerning the technological components combined within an inventor team’s patented 

innovations. 

The results reveal an overall prevalence of recombinant creation patterns in the 

generation process of GTs. However, a finer grained analysis suggests that the dynamics at 

stake are somewhat more articulated, due to the relevance of path-dependence dynamics. 



Furthermore, results also confirm the critical role played by environmental policies in 

boosting the generation of GTs and, interestingly, in moderating the effects of different 

recombinant capabilities. Indeed, our results seem to suggest that the more stringent is the 

environmental regulation the more effective is the role of recombinant creation in triggering 

the generation of GTs for teams lacking previous technological experience in the green 

domain. Conversely, for experienced team, the premium of recombinant creation is almost 

absent in regimes of high levels of environmental policy stringency. 

The rest of the paper is organized as follows. Section 2 reviews the background 

literature and proposes our research questions. Section 3 describes the empirical methodology. 

Section 4 discusses the main results, and Section 5 concludes.  



2 Theory and hypotheses 

2.1 Recombinant capabilities and innovation 

Schumpeter (1934) proposes that novelty is brought about in the economy by means of 

combinatorial activity: “To produce means to combine materials and forces within our reach 

[...]. To produce other things [...] means to combine these materials and forces differently” 

(Schumpeter, 1934: 65). Following this seminal intuition, scholars in both economics and 

management of innovation have elaborated upon the concept of knowledge recombination. 

The recombinant growth hypothesis (Weitzman, 1996 and 1998) draws on analytical models 

showing that new ideas are generated through the recombination of existing ideas, under the 

constraint of diminishing returns to scale in the performance of the research and development 

(R&D) activities necessary to apply new ideas to economic activities (Caminati, 2006). The 

economic bearings of this framework have been further articulated by Olsson (2000) who 

introduced a preliminary metrics to account for recombination costs. Olsson and Frey (2002) 

propose the notion of technological space, suggesting that the costs of knowledge 

recombination are a function of knowledge distance. 

Kauffman (1993) elaborates the so called N-K model of recombinant knowledge 

generation, according to which the success of a search process depends on the topography of a 

given knowledge landscape shaped by the complementary relations (K) among the different 

elements (N) of a given unit of knowledge. Fleming and Sorenson (2001) tested the 

implication of this approach, by proposing the existence of a nonlinear relationship between 

the interdependence of the components of the technological landscape and the search. 

Strategy researchers have developed the implications of the recombinant approach for 

the management of innovation activities within firms and across their boundaries. The 

creation of new knowledge – hence, any kind of novelty – can be represented as a search 

process across a set of multiple existent components (Gavetti and Levinthal, 2000; Katila and 

Ahuja, 2002). Large emphasis has been given in this context to the investigation of the impact 

of recombinant capabilities on firms’ performances (Henderson and Clark, 1990; Galunic and 

Rodan, 1998; Kogut and Zander, 1992).  

The identification of two different and yet complementary dimensions of recombinant 

capabilities, i.e. recombinant creation and reuse, marks an important step forward in the 

understanding of the very dynamics of knowledge creation (Carnabuci and Operti, 2013). 



This advance sheds light on the antecedents of recombinant capabilities, and helps the 

understanding of the tension between exploration and exploitation in organizations (March, 

1991; Katila and Ahuja, 2002). Exploration requires the development of new knowledge, or 

moving away from the existing technological competences (Benner and Tushman, 2002; 

Levinthal and March, 1993), while exploitation builds upon existing knowledge and 

competences and strengthens existing skills, processes, and structures (Abernathy and Clark, 

1985; Benner and Tushman, 2002; Levinthal and March, 1993). 

The organization science literature stresses the importance of inventors’ collaboration 

networks in shaping the propensity to recombinant creation and recombinant reuse (Nerkar 

and Paruchuri, 2005; Paruchuri, 2010). For this reason, our unit of analysis in this study is not 

the individual inventor, but inventors’ teams. Specific recombination patterns indeed emerge 

out of knowledge exchanges amongst inventors working together to develop new 

technological solutions (Hagardon and Sutton, 1997; Obstfeld, 2005). The present analysis is 

thus focused on two aspects characterizing the creation of knowledge in the field of GTs. In 

line with preliminary evidence in previous literature (Dechezlepetre et al., 2014), we firstly 

look at the extent to which inventors’ teams rely on recombinant creation or reuse in the 

generation of GTs. Second, we investigate the role of different policy regulatory frameworks 

in shaping the balance between recombinant reuse and creation, for different levels of 

accumulated knowledge experience. 

2.2 Recombinant creation and reuse for the creation of GTs  

The analysis of GTs has gained momentum in the last two decades, following the well-

known argument set forth by Porter and van der Linde (1995), according to which green 

technical change is likely to enhance both firms’ environmental performances and their 

production efficiency (Ambec et al., 2013). 

As noticed by Del Rio (2009), most studies investigating the determinants of GTs have 

focused on the understanding of the innovation and the diffusion stages, while the early phase 

of invention has not received so far comparable attention. As for the diffusion stage, Ghisetti 

et al. (2015) find that the mastering of diverse knowledge sources enables the adoption of eco-

innovative behaviors. Dechezlepetre et al. (2014) compare knowledge spillovers from dirty 

and clean technologies, finding that clean technologies are largely more cited than the dirty 

ones. They suggest that this evidence could be partially explained by the fact that GTs have 



more general applications, and they are radically new as compared to more incremental dirty 

innovation. 

The extant literature, although still scarce, provides evidence supporting the idea that 

GTs draw upon increased knowledge diversity, as they span across many different 

technological fields and are mostly radical. These characteristics are prevalently associated to 

novelties emerging out of recombinant creation. These arguments lead to the following 

hypothesis: 

H1: The more the inventor team will innovate by creating new technological 

combinations, the higher the probability that they will create new knowledge in the field 

of GTs.  

2.3 Knowledge accumulation 

Individuals are essentially cognitively bounded (Grant, 1996). As an implication, they 

can master only a limited portion of knowledge. From a synchronic viewpoint, this implies 

that knowledge creation is more likely to occur when individuals exchange their bits of 

knowledge. From a dynamic viewpoint it implies a gradual process of specialization, through 

the consolidation of successful innovation routines (Cohen and Levinthal, 1990; Nelson and 

Winter, 1982; Stuart and Podolny, 1996). 

According to the evolutionary approach to knowledge and innovation, the process by 

which inventors accumulate competences over time is such that they become increasingly 

specialized and familiar with a specific set of innovating routines (Nelson and Winter, 1982). 

While this generally positively affects the effectiveness of the invention process, it prevents 

inventors from the exploration of unfamiliar areas of the technology landscape. The invention 

process is path-dependent in that it is constrained by the dynamics of knowledge 

accumulation at the inventor and the team level (Leonard-Barton, 1992). 

The development of core competences in the generation of GTs can therefore make 

exploitation more likely to occur in the creation of new GTs (Prahlad and Amel, 1990). 

Learning dynamics influences the balance between recombinant creation and recombinant 

reuse. The cumulativeness of technological competences enables inventors to successfully 

rely on recombinant reuse, but this can substantially constrain the effectiveness of more 

exploratory strategies embedded in recombinant creation (Ahuja and Lampert, 2001). In other 

words, inventors with sound competence in a specific technology area tend to highly value 



knowledge that is close to their cumulated knowledge, and to devalue more distant knowledge 

(Kim et al., 2012). These arguments lead us to specify the following hypotheses: 

H2: Previous experience in the creation of GTs positively affects the probability to 

generate new GTs.  

H3: The positive association between recombinant creation and the generation of GTs 

is mitigated by inventors’ teams’ previous experience in the creation of new GTs. 

2.4 Regulatory frameworks  

In view of the so-called ‘double externality problem’ (Jaffe et al., 2005; Rennings, 

2000), the extant literature analyzing the determinants of GTs has intensively the inducement 

mechanisms set forth by the implementation of stringent environmental regulatory 

frameworks (Porter, 1991; Frondel et al., 2008; Del Rio, 2004; Horbach et al., 2012; Jaffe and 

Palmer, 1997; Johnstone et al., 2010; Newell et al., 1999; Lanjouw and Mody, 1996; Popp et 

al., 2010; Rennings and Rammer, 2011; Acemoglu et al., 2012; Ghisetti and Quatraro, 2013). 

The ‘double externality’ problem provides policymakers with a key role in the stimulation of 

research efforts towards the generation of new GTs. The so-called inducement hypothesis 

maintains that when environmental degradation becomes costly for firms due to the design of 

stringent regulatory frameworks, firms prefer to invest resources to improve the 

environmental performance of their production process, rather than to pay to pollute. While 

the empirical evidence regarding the effects of different policy tools amongst sectors and 

countries is mixed (Horbach et al., 2012; Peters et al., 2012), the extant literature almost 

unanimously agrees on the key role of regulatory frameworks in triggering the generation of 

new GTs. This effect passes mainly through the creation of new markets for green technology 

producers and through the advancement of knowledge in the green domain. Moreover, as a 

general result for specific policy tools, demand-pull policies seem to benefit more mature 

green technologies, while technology-push policies seem to affect both more and less mature 

technologies . 

Few studies have recently explored the link between modes of innovation and demand-

side policies, with particular attention to deployment policies. Since the year 2000 on, 

deployment policies have become central in the design of policy architecture aiming at 

boosting the diffusion of GTs. Indeed, in a rising number of countries, resources dedicated to 

deployment policies by far exceed the incentives for R&D activities (references). Following 

the inducement hypothesis, most of the aforementioned studies are based on the assumption 



that deployment polices, by creating new market niches, are likely to foster exploitative 

learning due to the necessity for suppliers of GTs to meet rapidly increasing demand (e.g. 

Nemet, 2009). Few studies stress that, by enhancing exploitative search strategies, 

deployment policies could reduce technological diversity in an industry – rather than 

stimulating the search for radically new technological solutions – even contributing to the 

emergence of lock-ins into more mature, non-necessarily superior, technological trajectories 

(with respect to the PV industry, see: Menanteau, 2000; Sandén, 2005; Sartorious, 2005; van 

den Heuvel and van den Bergh, 2009).  

Hoppmann et al. (2013) provide theoretical and empirical grounds to the link between 

deployment policies and the tension between exploration and exploitation. Based on 

comparative evidence from 9 leading firms in the photovoltaic module industry, they argue 

that deployment policies are likely to yield differential effects in terms of firms’ exploration 

vs. exploitation strategies, according to both the rate of policy-induced market growth and the 

maturity of firms’ technological competences. More precisely, market growth constitutes an 

incentive to invest in exploration for both firms pursuing more mature and firms pursuing less 

mature technologies. However, in the balance between exploitation and exploration, the latter 

by far dominates the former, when firms  face high rates of market growth. Thus we 

hypothesize that: 

H4: Stringent regulatory frameworks positively affect the probability to generate new 

GTs.  

H5: The positive association between recombinant creation and the generation of GTs 

is enhanced by the availability of stringent regulatory frameworks, especially for teams 

with no previous green competences. 

3 Data, variables and methodology 

3.1 Data  

Our study sample includes all the patents filed in at the European Patent Office (EPO), 

from 1995 to 2009.
1
 The main dataset we exploit comes from PatStat and is maintained by the 

CRIOS Center for Research on Innovation, Organization and Strategy
2
. It provides the 

                                                             
1
 We are aware about traditional pros and cons of using patent data (to be extended). 

2
 For a complete description of the data supplied by the CRIOS Center for Research on Innovation, Organization 

and Strategy, see Coffano and Tarasconi (2014). 



inventors’ identity information disambiguated with the Massacrator© Algorithm (Lissoni et 

al., 2006; Pezzoni et al., 2012). 

3.2 Variables 

3.2.1 Dependent variable 

Patents are classified as green on the basis of the two main worldwide existent 

classifications: 1) The World Intellectual Property Organization “WIPO IPC green 

inventory”, an International Patent Classification that identifies patents related to the so-called 

“Environmentally Sound Technologies” and scatters them into their technology fields, with 

the caveat that it is not the only possible classification of green technologies and, as with other 

available classifications, it presents some drawbacks (Costantini et al., 2013); 2) The OECD 

Indicator of Environmental Technologies (OECD, 2011), based on the International Patent 

Classification (IPC), which features seven environmental areas, i.e. (a) general environmental 

management, (b) energy generation from renewable and non-fossil sources, (c) combustion 

technologies with mitigation potential, (d) technologies specific to climate change mitigation, 

(e) technologies with potential or indirect contribution to emission mitigation, (f) emission 

abatement and fuel efficiency in transportation, and (g) energy efficiency in buildings and 

lighting. We combine both classifications in order to define the dependent variable (Green). 

[FIGURE 1 ABOUT HERE] 

3.2.2 Patent-based knowledge-search indicators 

We calculate the team recombinant creation variable (Exploration) in three steps.  

First, for each patent, we calculate three technological knowledge indicators relying on 

the IPCs contained in their backward citations: technological-knowledge variety (IE), 

knowledge coherence (COH), and cognitive distance (CD) (see BOX1 in the Appendix for a 

complete description of the mechanics behind the calculation of the indicator).  

Second, we assign to each inventor listed in the focal patent document the average value 

of IE, COH, and CD she accumulated in her previous patenting activity, up to time (� − 1). 
For each inventor �  we thus define: ���,
�� = ∑ ����

� ; ����,
�� = ∑ �����
� ; ���,
�� = ∑ ����

� . 
The numerators are the sums of the observed values of IE, COH and CD; N is the total 

number of patents filed by inventor � up to time (� − 1). Then, we assign the average values 

of IE, COH, and CD of each inventors to the inventors’ team of the focal patent. 

By focusing the analysis at the inventors’ team level, the combination of these 



indicators allows us to capture the complexity of the knowledge search behavior behind the 

generation of an invention. However, only precise combination of the values of the three 

indicators can be interpreted as the evidence of an explorative behavior (recombinant 

creation). Precisely, an explorative behavior is positively correlated with IE and CD, and 

negatively correlated with COH (Krafft et al ., 2014). Thus, we perform principal component 

analysis using IE, COH, and CD at the team level, in order to provide a synthetic indicator of 

knowledge search behaviors characterizing the technological portfolio of the inventors’ team. 

[TABLE 1 ABOUT HERE] 

 The analysis identifies only one dominant component with eigenvalue above one. It 

captures the 43% of the total variance. It is positively correlated with IE and CD, and 

negatively correlated with COH (Table 1). Thus, we consider the dominant component as 

representative for explorative behaviors (recombinant creation). The dummy Exploration 

equals one if the score of the component for the focal patent is above the component average 

value, zero otherwise. 

3.2.3 Team green experience and environmental policy stringency 

As for the team green experience, we define a dummy team green experience that 

equals one if the team has at least one patent in green technologies in its patent stock, up to t-

1, zero otherwise.  

As for the policy stringency variable, we include in the analysis the OECD 

Environmental Policy Stringency Index (EPS), which is a country-specific and 

internationally-comparable measure of the stringency of environmental policy. OECD defines 

“stringency” as the degree to which environmental policies put an explicit or implicit price on 

polluting or environmentally harmful behavior. The composite index is based on the degree of 

stringency of 14 environmental policy instruments, primarily related to climate and air 

pollution and it ranges from 0 (not stringent) to 6 (highest degree of stringency). It covers 28 

OECD and 6 BRIICS countries for the period 1990-2012 (Botta and Kozluk, 2014). The level 

of the index is assigned to each observed patent on the basis of the applicant’s country of 

residence. The dummy Stringent policy equals 1 if the index is above its average value, zero 

otherwise. 

3.2.4 Control variables 

As for the controls, we account for a comprehensive set of variables at the level of the 

inventors’ team and the applicant. At the level of the team, we control for several 



characteristics: i) the number of inventors; ii) the number of previous patents (stock); iii) 

share of granted patents; iv) share of triadic patents; v) number of backward citations. At the 

level of the patent applicant we control for i) the number of previous patents; and ii) previous 

green experience (dummy). Finally, we control also for patent priority-year dummies, country 

dummies (based on the applicant’s residence address), OST7 technology dummies (assigned 

on the basis of the team’s previous patenting activity). Tables 2 and 3 show the descriptive 

statistics. 

[TABLE 2 ABOUT HERE] 

[TABLE 3 ABOUT HERE] 

3.3 Methodology 

 

We test the theoretical arguments and the research questions proposed in Section 2 with 

a series of nested regression models. First, we estimate the effect of team recombinant 

creation (Exploration)
3
, environmental policy stringency (Stringent policy), and team green 

experience (Team green experience) on the probability to observe a patent p with green 

technological content. We control for an extensive set of variables characterizing the 

inventors’ team, the patent applicant, and the calendar year (Equation 1). 

Pr(� ��! = 1)" = # + %��&'()*+��), + %-.�*�,/0,�	')(�23 + %450+6	/*00,	0&'0*�0,20 +
	7��!5 �8. + 9"	  [Equation 1] 

Second, in order to investigate the potential moderating effects of environmental policy 

stringency and team green experience on team recombinant creation, we extend the model in 

equation 1 by testing for all the possible interactions (Equation 2). 

Pr(� ��! = 1)" =
# + %��&'()*+��), + %-.�*�,/0,�	')(�23 + %450+6	/*00,	0&'0*�0,20 + %:�&'()*+��), ∗
.�*�,/0,�	')(�23 + %<�&'()*+��), ∗ 50+6	/*00,	0&'0*�0,20 + %=�&'()*+��), ∗
.�*�,/0,�	')(�23 ∗ 50+6	/*00,	0&'0*�0,20 + +%>.�*�,/0,�	')(�23 ∗
50+6	/*00,	0&'0*�0,20 + 	7��!5 �8. + 9" [Equation 2] 

We apply OLS estimations, although the results are robust to Logit estimations. 

                                                             
3
 From here on we alternatively define the variable “exploration” as either team explorative strategy or team 

recombinant creation. 



4 Results 

As a starting point of the analysis, we estimate six nested models (Table 4). In columns 

1, 2, 3, and 4 we estimate the effect of, respectively, exploration (recombinant creation), team 

green experience, and stringent environmental policy, including country, technological area 

and calendar year dummies. In column 5 we add team characteristics as further controls. 

Finally, in column 6 we also account for applicant characteristics. 

[INSERT TABLE 4 ABOUT HERE] 

Results reveal that adopting an explorative behavior shows a premium on the 

probability of observing a patent with green technological content, confirming hypothesis 1 

stated in Section 2. Precisely, adopting an exploration behavior increases such probability of 

observing a green patent by 1.32% (column 6). Moreover, environmental policy stringency 

has a positive effect (+1.49%), as well as the team green experience dummy variable 

(+33.6%). Hypothesis 2 and 4 are thus confirmed. Interestingly, what emerges is the 

prominent role of the team green experience in driving the probability of observing a GT. 

As for the controls, the number of inventors positively impacts the probability of 

observing a GT, as well as the number of team’s backward citations, and the applicant’s green 

previous experience. On the contrary, the team’s stock of patents, the team’s share of granted 

and triadic patents, and the applicant’s stock of patents, show a negative effect.  

[INSERT TABLE 5 ABOUT HERE] 

In Table 5 we estimate 6 regression models adding sequantially a set of interactions that 

allow us to test for moderating effects of both team green experience and stringent 

environmental policy on team’s explorative behavior. The same model estimated in Table 4, 

column 6, represents our baseline model in Table 5, column 1. In columns 2,3,4, and 5 we 

sequentially add to the baseline model all the possible double interactions. Finally, in column 

6 we add the triple interaction between team exploration behavior, stringent environmental 

policy, and team green experience variables. The marginal effects of the team exploration 

behavior, taking into account the moderating effects of green experience and policy 

stringency, are presented in Table 6. 

[INSERT TABLE 6 ABOUT HERE] 

We find that adopting an explorative behavior fosters the probability of observing a 

green patent in contexts of low team green experience. Interestingly, the marginal effect is 



higher when the stringency level of environmental policy is weak (+3.1%). Conversely, for 

teams showing higher levels of green experience, the marginal effect of adopting an 

exploration behavior is negative, namely exploitative behaviors are more effective in 

generating a GT. Moreover, this effect is magnified when the environmental policy stringency 

is weak (-3.55%). As for the controls, the effects are consistent with the ones estimated in 

Table 4. 
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5 Conclusions 

The present study aims at capturing the effect of diverse knowledge recombination patterns, 

mastered by inventors’ teams, as important drivers for the generation of green technologies (GTs). 

Evidence shows a positive premium of adopting explorative patterns in the generation of GTs, 

confirming the hypothesis 1 we propose in section 2. Moreover, we find positive effects of both 

team’s previous technological green experience and environmental regulation stringency, 

confirming, respectively, hypotheses 2 and 4. We also find diverse moderating effects of 

technological green experience and environmental regulation stringency on exploration 

behaviors. Precisely, the positive effect of team’s explorative behaviors is magnified for teams 

lacking technological green experience, even more in regimes of weak environmental regulation. 

Conversely, the effect of explorative behaviors is reduced for experienced teams, especially in 

regimes of weak environmental regulation. Both hypotheses 3 and 5 are thus confirmed, showing 

a complex architecture behind the generation process of GTs. 

Policy implications are multiple. Firstly, in contexts where the level of advance of green 

technological knowledge is scarce, exploration modes reveal their relevance in boosting GTs. 

Building proper levels of green technological infrastructures is by far the most important driver 

for boosting GTs. However, this is a long term, not easy to achieve, goal. Thus, by incentivizing 

explorative behaviors, policy makers could boost GTs more rapidly in contexts of weak green-

technological infrastructures. Interestingly, in cases of no previous team green experience, when 

explorative behaviors are combined with high levels of stringency, the total effect is magnified. 

Thus, the importance of combining environmental stringency with innovation policies (oriented 

towards new niches and explorative technologies) is the most effective strategy for 

countries/sectors where the green technological infrastructure is weak. 

Secondly, as well as for other kinds of innovations, path dependence plays a crucial role 

also for GTs. Moreover, especially in regimes of weak environmental regulation, there seems to 

be a premium for recombinant reuse behaviors (exploitation) for teams showing previous green 

experience. This combination of effects could be harmful in terms of possible emergence of 

technological lock-ins. Proper innovation policies aiming at boosting systemic variety and 

exploration strategies are thus suggested in contexts of high green-technological specialization. 
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Further extensions 

First, we split the sample according to the specific technological macro areas characterizing 

the observed patent (OST7) and we estimate separated regressions for each sub-sample. The 

estimated marginal effects of the team exploration behavior for each one of the sub-samples are 

reported in Table A1 and graphically represented in figure A1 (see Appendix). We find interesting 

sector specificities that we are trying to properly interpret. 

Second, we split environmental policies between demand-pull and supply-push, and we are 

testing for differential effects of different levels of stringency for both policy tools. What we expect 

to observe is that i) when demand tools are stringent, there is an exploration premium for teams 

without previous green technological experience; ii)  when supply tools are stringent, there is an 

exploration premium for both teams. 

Third, we split our sample between radical and incremental focal patents and we estimate 

our model for the two groups. What we expect to observe is that there is an exploration premium in 

the generation process of GTs for both groups, larger for teams pursuing radical technologies, 

showing low previous green experience, and facing stringent supply-oriented regulatory 

frameworks. 
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7 Figures and Tables 

 

Figure 1: Total number of patents and shares of green patents by year 

 

Table 1: Principal Component Analysis 

 Component number  1 2 3 

Coherence -0.67 0.02 0.74 

Variety 0.54 -0.67 0.51 

Cognitive Distance 0.51 0.74 0.44 

        

Eigenvalues 1.28 0.95 0.77 

Cumulative Perc. of total variation 0.43 0.74 1 
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Table 2: Descriptive statistics 

  obs. mean sd min max 

Dependent variable           

Green dummy 706943 0.172 0.377 0.00 1.00 

            

Variables of interest (lagged t-1)           

Exploration (Dummy) 706943 0.547 0.498 0.00 1.00 

High Variety (Dummy) 706943 0.471 0.499 0.00 1.00 

High Coherence (Dummy) 706943 0.424 0.494 0.00 1.00 

High Cognitive Distance (Dummy) 706943 0.499 0.500 0.00 1.00 

Policy stringency (Dummy) 706943 0.554 0.497 0.00 1.00 

Team green experience (Dummy) 706943 0.355 0.478 0.00 1.00 

            

Team controls (lagged t-1)           

n. of inventors 706943 3.253 2.209 1.00 60.00 

Team experience (Stock of patents) 706943 20.841 143.995 1.00 4259 

Share of granted patents 706943 0.514 0.379 0.00 1.00 

Share of triadic patents  706943 0.531 0.386 0.00 1.00 

Number of backward citations 706943 90.719 380.153 1.00 19043 

            

Applicant controls (lagged t-1)           

Applicant patenting experience (Stock of patents) 706943 1193 3444 0.00 34855 

Applicant green experience (Dummy) 706943 0.706 0.456 0.00 1.00 

 

Table 3: Percentage of green patents. Conditional mean for each of variables of interest. 

variables High Low diff Pvalue 

Exploration (Dummy) 0.167 0.178 0.011 0.00 

High Variety (Dummy) 0.164 0.18 0.015 0.00 

High Coherence (Dummy) 0.166 0.18 -0.014 0.00 

High Cognitive Distance (Dummy) 0.17 0.174 0.004 0.00 

Policy stringency (Dummy) 0.187 0.154 -0.033 0.00 

Team green experience (Dummy) 0.389 0.053 -0.34 0.00 

obs: 706943         
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Table 4: Probability of observing a green patent. OLS estimation. 

variables  
(1) 

Pr(green) 
(2) 

Pr(green) 
(3) 

Pr(green) 
(4) 

Pr(green) 
(5) 

Pr(green) 
(6) 

Pr(green) 

Variables of interest (lagged t-1)             

Exploration t-1 (Dummy) 0.0131***     0.0205*** 0.0134*** 0.0132*** 

Stringent policy t-1 (Dummy)   0.0168***   0.0144*** 0.0135*** 0.0149*** 

Team green experience t-1 (Dummy)     0.345*** 0.345*** 0.353*** 0.336*** 

              

Team controls (lagged t-1)             

n. of inventors         0.00509*** 0.00480*** 

log(Stock of patents)         -0.0272*** -0.0258*** 

Share of granted patents         -0.00506*** -0.00546*** 

Share of triadic patents          -0.00739*** -0.00758*** 

log(Number of backward citations)         0.00397*** 0.00458*** 

              

Applicant controls (lagged t-1)             

log(1+Stock of patents)           -0.00876*** 

Applicant green experience (Dummy)           0.0773*** 

              

Other controls             

Country dummies (Applicant) yes yes yes yes yes yes 

OST7 dummies (Team) yes yes yes yes yes yes 

Calendar year dummies yes yes yes yes yes yes 

Constant 0.128*** 0.128*** 0.130*** 0.117*** 0.120*** 0.107*** 

              

Observations 706,943 706,943 706,943 706,943 706,943 706,943 

R-squared 0.064 0.063 0.219 0.220 0.224 0.228 
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Table 5: Probability of observing a green patent. OLS estimation. Interactions. 

variables  

(1) 

Pr(green) 

(2) 

Pr(green) 

(3) 

Pr(green) 

(4) 

Pr(green) 

(5) 

Pr(green) 

(6) 

Pr(green) 

Variables of interest (lagged t-1)             

Exploration (Dummy) 0.0132*** 0.0280*** 0.0115*** 0.0132*** 0.0242*** 0.0310*** 

Exploration * Team green experience   -0.0413***     -0.0430*** -0.0665*** 

Exploration * Stringent policy     0.00310*   0.00772*** -0.00534*** 

Exploration * Stringent policy * Team green experience           0.0391*** 

Stringent policy * Team green experience       -0.00310* -0.00812*** -0.0306*** 

Stringent policy (Dummy) 0.0149*** 0.0150*** 0.0132*** 0.0158*** 0.0133*** 0.0203*** 

Team green experience (Dummy) 0.336*** 0.359*** 0.336*** 0.337*** 0.365*** 0.379*** 

              

Team controls (lagged t-1)             

n. of inventors 0.00480*** 0.00484*** 0.00479*** 0.00480*** 0.00484*** 0.00483*** 

log(Stock of patents) -0.0258*** -0.0254*** -0.0259*** -0.0258*** -0.0254*** -0.0256*** 

Share of granted patents -0.00546*** -0.00567*** -0.00546*** -0.00549*** -0.00575*** -0.00569*** 

Share of triadic patents  -0.00758*** -0.00773*** -0.00760*** -0.00753*** -0.00765*** -0.00752*** 

log(Number of backward citations) 0.00458*** 0.00442*** 0.00461*** 0.00455*** 0.00442*** 0.00451*** 

              

Applicant controls  (lagged t-1)             

log(1+Stock of patents) -0.00876*** -0.00870*** -0.00876*** -0.00875*** -0.00865*** -0.00868*** 

Applicant green experience (Dummy) 0.0773*** 0.0769*** 0.0773*** 0.0773*** 0.0769*** 0.0769*** 

              

Other controls             

Country dummies (Applicant) yes yes yes yes yes yes 

OST7 dummies (Team) yes yes yes yes yes yes 

Calendar year dummies yes yes yes yes yes yes 

Constant 0.107*** 0.0987*** 0.108*** 0.106*** 0.0993*** 0.0952*** 

              

Observations 706,943 706,943 706,943 706,943 706,943 706,943 

R-squared 0.228 0.229 0.228 0.228 0.229 0.229 

 

Table 6: Exploration marginal effect summary (based on the estimations in Table 5, Column 6) 

Policy stringency 

   high low 

 
Team experience 

high -0.17% -3.55% 

 low 2.56% 3.10% 
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Appendix 

Table A1: Exploration marginal effect by OST7 technological areas. OLS estimations. 

OST7 Technological area 
Obs. 

(%Green) 

Low Str.- 

Low Exp. 

High Str.- 

Low Exp. 

Low Str.- 

High Exp. 

High Str.- 

High Exp. 

Electrical Eng. 
206204 

(15%) 
0.70% 0.31% 8.34% 10.04% 

Instruments 
161548 

(14%) 
1.44% 0.24% -4.41% -2.20% 

Chemicals 
182382 

(17%) 
2.30% 2.14% -2.93% 13.28% 

Pharma 
125810 

(12%) 
-2.60% -2.46% -18.21% -18.72% 

Industrial processes 
126169 

(20%) 
1.51% 1.08% -7.09% -0.65% 

Mechanical Eng. & Trans. 
117698 

(45%) 
-0.34% 0.67% -2.75% 0.98% 

Consumer goods 44346 (12%) 1.55% -0.29% -2.69% -3.48% 

All 
706943 

(17%) 
3.10% 2.56% -3.55% -0.17% 

 

Figure A1: Graphical representation of the Exploration marginal effect by OST7 technological areas 
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Box 1 – Technological Knowledge Indicators 

First, in order to measure the level of technological-knowledge variety (IE) a patent 

reveals, we apply the Information Entropy Index to the co-occurrences of IPC classes contained 

in the backward citations of any observed patent. 4  The index was introduced to economic 

analysis by Theil (1967). Its earlier applications aimed at measuring the degree of diversity of 

industrial activity (or of a sample of firms within an industry) against a uniform distribution of 

economic activities in all sectors, or among firms (Attaran, 1985; Frenken et al., 2007; Boschma 

and Iammarino, 2009). Compared to common measures of variety and concentration, 

information entropy has some interesting properties (Frenken and Nuvolari, 2004). An important 

feature of the entropy measure, which we exploit in our analysis, is its multidimensional 

extension. Consider a pair of events (?@ , AB ), and the probability of their co-occurrence '@B, a 

two-dimensional (total) entropy measure can be expressed as follows (patent and time subscripts 

are omitted for the sake of clarity): 

�(?, A) = 	CC '@B()/-
D

BE�
F 1
'@BG

H

@E�
 

If '@B is assumed to be the probability that two technological classes I and 6, contained in 

the backward citations of a patent, co-occur within the same patent, then the measure of 

multidimensional entropy focuses on the variety of co-occurrences of technological classes 

within patents’ backward citations portfolio. 

Moreover, the total index can be decomposed in a “within” and a “between” part whenever 

the events to be investigated can be aggregated to form smaller numbers of subsets. Within-

entropy (IEW) measures the average degree of disorder or variety within the subsets, between-

entropy (IEB) focuses on the subsets measuring the variety across them. It can be easily shown 

that the decomposition theorem also holds for the multidimensional case. Hence, if one allows 

I	 ∈ 	 .K and 	∈ .L (/ = 1,… , �; 	O = 1,… , P), we can rewrite �(?, A) as follows: 

                                                             
4
 Backward citations have been collected on the basis of the patent’s DOCDB family. IPC classes have been 

truncated at the 4 digits level. 
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�(?, A) = 	�Q +	CCRKL
S

LE�
�KL

T

KE�
 

where the first term on the right-hand-side is the between-group entropy and the second 

term is the (weighted) within-group entropy. In particular, 

�Q = 	CCRKL
S

LE�
()/- F 1RKLG

T

KE�
 

RKL =	C C '@B
B∈UV@∈UW

 

�KL =	C C '��RKLB∈UV@∈UW
()/- 1

'@B RKL⁄  

Following Frenken et al. (2007), we can refer to between-group and within-group entropy, 

respectively, as unrelated technological variety (UTV) and related technological variety (RTV), 

while total information entropy is referred to as general technological variety (TV) . The 

distinction between related and unrelated variety is based on the assumption that any pair of 

entities included in the former generally are more closely related or more similar to any pair of 

entities included in the latter. This assumption is reasonable given that a type of entity (patent, 

industrial sector, trade categories, etc.) is organized according to a hierarchical classification. In 

this case, each class at a given level of aggregation contains “smaller” classes, which, in turn, 

contain yet “smaller” classes. Here, small refers to a low level of aggregation. We can reasonably 

expect then that the average pair of entities at a given level of aggregation will be more similar 

than the average pair of entities at a higher level of aggregation. Thus, what we call related 

variety is measured at a lower level of aggregation (three-digit class within a one-digit macro-

class) than unrelated variety (across one-digit macro-classes). 

Second, we define the knowledge coherence (COH) measure as the average relatedness of 

any technology randomly chosen within the patent’s portfolio of backward citations with respect 

to any other technology present in the technological space (Nesta and Saviotti, 2005, 2006; 

Nesta, 2008). To yield the knowledge coherence index, several steps are required. First of all, we 

calculate the weighted average relatedness YZ [  of technology (  with respect to all other 
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technologies present within the technological space. Such a measure builds upon the measure of 

technological relatedness \[@  (see Nesta and Saviotti, 2005). Following Teece et al. (1994), 

YZ [ is defined as the degree to which technology ( is related to all other technologies I ∈ ( in 

the technological space, weighted by patent count R@
: 
YZ [
 = ∑ \[@R@
@][∑ R@
@][  

Finally the coherence (or relatedness) of the patent’s knowledge base is defined as the 

weighted average of the YZ [ measure: 

 =CYZ [
 × R[
∑ R[
[[]@
 

It is worth stressing that such index implemented by analyzing co-occurrences of 

technological classes within patent applications, measures the degree to which the services 

rendered by the co-occurring technologies are complementary one another. The relatedness 

measure \[@  indicates indeed that the utilization of technology l implies that of technology j in 

order to perform specific functions that are not reducible to their independent use. 

Third, the similarity amongst different types of knowledge can be captured by a measure of 

cognitive distance (CD). A useful index of distance can be derived from the measure of 

technological proximity originally proposed by Jaffe (1986 and 1989), who investigated the 

proximity of firms’ technological portfolios. Subsequently Breschi et al. (2003) adapted the 

index in order to measure the proximity, or relatedness, between two technologies. We follow 

the same approach, but adapting the analysis at the patent level. The idea is that each patent is 

characterized by a vector _  of the `  IPC classes (technologies) that occur in its backward 

citations. Knowledge similarity can first be calculated for a pair of technologies ( and I as the 

angular separation or un-centered correlation of the vectors _[a  and _@a . The  similarity of  

technologies ( and I can  then be defined as follows: 

.[@E ∑ _[a_@abaE�
c∑ _[a-baE� d∑ _@a-baE�
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The idea underlying the calculation of this index is that two technologies I and ( are similar 

to the extent that they co-occur with a third technology `. The cognitive distance between I and ( 
is the complement of their index of similarity: 

e[@ = 1 − .[@ 
Once the index is calculated for all possible pairs, it needs to be aggregated at the patent 

level to obtain a synthetic index of technological distance. This can be done in two steps. First of 

all one can compute the weighted average distance of technology (, i.e. the average distance of ( 
from all other technologies.  

YZ�[
 = ∑ e[@R@�
@][∑ R@�
@][  

Where R@  is the number of patents in which the technology I is observed. The average 

cognitive distance for a patent is obtained as follows: 

�� =CYZ�[�
[ × R[�
∑ R[�
[  
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