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Abstract

Our paper intersects two topics in growth theory: the growth maximizing gowemhsize and
the role of social capital in development. We modify a simple OLG framework tsgdacing
two key features: endogenous growth and a role for public officials in nrimgtehe public ex-
penditures for intermediate goods and services supplied to private fiuhbc Bfficials have the
opportunity to steal a fraction of public resources under their own chsubject to a probability
of being caught and pay a fine. Hence, not all tax revenues raisige yovernment reach private
firms, as a fraction of them is being diverted by public officials, thus haimgperowth. Under
certain conditions on parameters, our main result establishes that, if treopiytonf detection or
the fine charged on public officials who are caught stealing, or botheaser, then an increase of
the tax rate is required in order to maintain an optimal growth rate, providedldwathe number
of public officials is increased as well. As both the probability of detectionthedine positively
depend on the Social Capital level, we conclude that maximum growth raesiapatible with
Big Government size, measured both in terms of expenditures and pubti@lsffionly when
associated with high levels of Social Capital.

Keywords: Social Capital, Endogenous Growth, Government size, Stochastic Oldélmo
JEL classification: C61, 041, N9, R5

1 Introduction

The present paper intersects theoretically two topicsamgr theory: the growth maximizing govern-
ment size and the role of Social Capital in development. Cxstng marginal benefits of government
expenditures and increasing distortions due to taxatipic&jly leads to an inverted U relationship
between growth and government size (Facchini and Melki 2tibwn in the literature as B.A.R.S.
curve (Barro 1989, 1990; Armey and Armey 1995; Rahn and Fox;198dlly 1998, 2003). Although
the theoretical approach appears sound and generallytadcise optimal point from a quantitative
perspective is very debated. Several empirical works dictlear cut the point over the optimal gov-
ernment size, typically measured as government expeerdiiative to GDP. Often in this context the
European Nordic Countries (ENB)ith large Governments and significant growth rates arentalse
outliers or as counter examples to dismiss the entire approa
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We believe that another stream of literature that goes uthdevast and debated title of Social
Capital could contain important contributions to this defamong the many definitions of Social
Capital one could find, we adhere to the one of Guiso et al. (RGfdmely “those persistent and
shared beliefs and values that help a group overcome theidiereproblem in the pursuit of socially
valuable activities”. This definition of Social Capital asicness is particularly attractive and in line
with the empirical literature where several proxy of civees appear to be related with development
and government efficiency. The literature shows that grexteticipation to civic life and high levels
of moral stigma for uncivic behavior are important factasseiplain corruption and Government
efficiency (Bjgrnskov 2003). In particular we believe thaigl unwritten social norms might affect
the behavior of public officials. However, we depart from gtandard modeling approach which
include some utility costs in the utility function due to gdcstigma, as for example in Guiso et al.
(2004). Our idea, instead, is that a society with high lew#lsivicness is one where corruption
and rent seeking behaviors are not tolerate easily. Higlalsoapital as understood as high trust
in people and institutions as well as great level of paréitgn in civic life are thought to foster
reporting of public officials’ wrongdoings to public autltees by whistle blowers. Therefore, a
positive relationship between the probability of beingedétd—or the fine to be paid in case of
detection—of dishonest public officials and the degree witoess is expected. We consider this
approach as complementary to the utility one and somehawebgsosed to criticism implied by an
ad-hoc form of utility function.

In more detail, we modify a simple OLG framework (Chapt. 3 infBand Sala-i-Martin 2004) by
introducing two key features: endogenous groath Barro (1990) type and a role for public officials
in monitoring the public expenditures for intermediate g®and services supplied to private firms.
Specifically, there are two types of workers, private woskemployed in competitive production
sector behaving in a standard fashion, and public offici&is have the opportunity to steal a fraction
of public resources under their own control, subject to atipegprobability of being caught and pay
a fine. As a consequence, not all the stock of tax revenuesdrhisthe Government reaches private
firms as intermediate goods and services, since a fractianbeing diverted by public officials,
thus hampering growth.

As expected, we find that the endogenous growth rate of theoaapis affected by the probability
of detection and the fine paid by those public officials wholsigg caught. Moreover, as in Barro
(1990), along the BGP the output growth rate turns out to beneeried U-Shaped function of the
tax rate, thus establishing uniqueness of the optimal texwéth respect to growth. By performing
comparative dynamics on the optimal tax rate, our main tetwws that, under certain conditions,
if the probability of detection or the fine charged on publitctals who are caught stealing, or both,
increase, then an increase of the optimal tax rate is redjuirerder to keep the growth rate at its
maximum level, provided that also the share of public waskam the total workforce is adjusted
(increased) as well. As both the probability of detectiod #re fine positively depend on the Social
Capital level, we conclude that maximum growth rates are diije with Big Government size
(both in terms of expenditures and public officials) only wlassociated with high levels of Social
Capital. When Social capital is low the growth maximizing goweent size shrinks and vice versa.
Social Capital therefore could be the missing dimension aattog for the controversial empirical
results on this issue as well as for the ENC case. Accorditiget@resent model, the highest growth
rates experienced by the ENC, despite their well abovesbeage OECD countries’ Government
size, it could be explained by their highest level of Socigbi@d, which in turn affects the behavior
of public officials and thus the efficiency of Government ashale

This short paper proceeds as follows. In Section 2 we fogmatroduce the OLG framework
by describing in detail the competitive firms’ optimal s&gies, the static general equilibrium with

2A survey on this large literature is beyond the scope of thjsep (for a survey see,g, Alesina and Giuliano 2013).
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Government transfers to the firms, and the optimal behaviboth private and public workers. The
latter results allow for a definition of general equilibridhat takes into account the (optimal) “steal-
ing” choices made by the public employees. In Section 3 wadéfie optimal dynamics of physical
capital that take into account the cheating behavior ofipudfficials, characterize the BGP, and es-
tablish the main result that determines the positive mariotty relationship between Social Capital
and Government size, expressed both in terms of taxati@hden share of public workers, necessary
to keep growth at its maximum rate. In Section 4 we discuss@enical example that illustrates our
main result. Section 5 as usual concludes, while all mathieal@roofs are gathered in the Appendix.

2 The Model

We consider a OLG model. Each individual belonging to thik cohort lives for two periods: in
the first period, when she is young, she works either in theafior in the public sector and she
consumes and saves part of her wage, net of taxes. In thedspeoad, when she is old, she does not
work but she consumes what she saved in the first period plerests net of taxes. We assume that
in the economy the population is constant over time. In ea&clog@ we havel. young workers, with

L a large number, of whicli,; are employed in the public sector ahd in the private sector, with

L = L, + L,. Moreover, in each period the economy is populated.tojd individuals belonging to
the previoug — 1 cohort, so that, at each timethe total population igL.

Each individual has the same logarithmic instantaneoligydtinction, « (¢) = In ¢, and the same
(constant) pure rate of time preferenbe< 8 < 1. All young individuals inelastically supply one
unit of labor either to private firms or to the Government. Share of workers employed in the public
sector is constant and equalXo= /L, whereas the share employed in the private sector is again
constant and equal tbo— A\ = Ly/L, with0 < X\ < 1.

2.1 Firms

Following Barro (1990) we assume that the Government suppiiermediate goods and productive
servicesG to private firms financed through a distortionary tax, wittetd@ < = < 1, on the total
national income( is assumed to be non excludable but rival and subject to ctiogecaused by its
use by both private and public workers; hence only the shate~ /L of GG turns out to be available
to each single firm. The representative private firm behagawpetitively and produces a composite
consumption good according to a Cobb-Douglas technologyatdirm+ output is given by

Y; = QKZOC (gLi)lia’

wheref is some positive constant indicating the (exogenous) w@olgical level,K; is physical cap-
ital, L; is the number of workers employed,is the share of intermediate goods and productive
services provided by the Government available to firard0 < o < 1 is the physical capital factor
share.

Assuming, for simplicity, that capital does not depreci&be given K;, L; andg firms maximize

profit when
K af T =r (2)
aY; a l—«
o7 = (1 —a)bkig ™ =, 2)



wherek; = K;/L; is the firm4 capital-labor ratioy is the market (gross) return to capital, ands
the market (gross) wage. As all firms are equal, they choassatme capital-labor ratié; = K/ Lo,
where K denotes aggregate capital; the production function casnltlelaggregated:

Y:e@(ﬁv g, ®3)
Ly
which, in per worker terms (private plus public workers)ctmes
_ L2 K “ l—a __ L K “ l—a __ l-a 70 1-«a
y=02 (1) d=sa-n (£ 7)) g mou-n ey @

wherey =Y/L, k= K/L,and(1 — \) = Ly/L.
In equilibrium, the net return on capital, is equal tor = (1 — 7)r, wherer is given by (1) and,
in view of (4), can be rewritten in per worker terms as

_ 9y _ - ja-1 1-a Y
rfakfoﬁ(l A) kY g =ay, (5)
while the net wage of a private employee (and public offidmBqual tow = (1 — 7)w, wherew is
given by (2) and, in view of (4), can be rewritten in per wortenms as
9y

—ara l-a Y
w:m:(l—a)ﬁ(l—)\) k%qg —(1—04)1_)\ (6)

so that the per worker gross private output is givemby- w (1 — \) = y.
It's worth noticing that ify andk grow at the same rate, thens constant over time and also the
wagew will grow at the output (capital) rate.

2.2 Government and the Static General Equilibrium

Government employs, = L— L, public officials to monitor the public expenditures for inteediate
goods and services used by the private firms as input of thedugtion process. Public official’s
wage is the same of the private worker’s one and it is paid eyabvernment using taxes. We assume
Government has a balanced budget. Total tax revenues aaétedi = 7Y whereY =Y + Ljw

is the total taxable national income. The public admintgiraspends such amount in intermediate
goods and services to private firms and in public officialsges that is,

T:T}N/ZTY—FTLlU):é—FLl’w,

whereG denotes thgotentialamount of resources to be devoted to the firms as intermegtaes
and services, which is given by

G=17Y+71Liw—Liw=7Y —(1—-71)Lw. (7

However, intermediate goods and services that actualghréems are noty butG = [1 — E (s)] G,
as public officials will steal on average the shiirgs) of public resources committed to that scope.
Moreover, taking into account the effect of congestionydhé share

G [-E®)C

ITTT L

will eventually enter the production function of each firmigsut.

=1 =E(s)][ry — (1 —7) du] (8)
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Substitutingg as in (8) into (4) and using (6) yields
y=01—=N" k=01 =Nk 1 —E ()] “[ry— (1 —7) ]

11—\

1—)\)—(1—7)(1—a))\]1a
1— A\

=0k Yy L—E(s)] " [r(1=X) = (1—7)(1—a) N,

—0(1—- Nk [1—E(s)" " {Ty —1-TA1-a) L} h

—0(1— Nk 1 —E(s)]" {T(

from which it turns out that per worker private output is alan function of per worker capital:
y=02[1-E(s)] 7 [F(1-X) - (-1 (1-a)\ " Fk €)

that is, our economy resembles the features of a typi&l’‘model. In order to be defined, the RHS
of (9) requires the following assumption.

A. 1 Parametersy, A and 7 must satisfyr (1 —A) — (1 —7) (1 —a) A > 0, which may be conve-
niently rewritten ag1 — a\) 7 — (1 — a) A > 0, that is, the following condition must hold:

(I—a)A
1 —a\
Substitutingy as in (9) into (8) and using again (6) shows th&tirns out to be linear ik as well:

T >

g=[1-E@)] |ry-(1-m)A(1-a) ;7
(1 E(s)] 7(1=M\) —1(1_—)\7) (1—a) /\y
—F[1-E(s)"[(1 =N —(1—7)(1—a) N (1— X\ "k (10)
Similarly, from (5) and (9) it is immediately seen that théerest rate is given by
r:a% —afi[1—E(s) = [r(1=XN—(1—7)(1—a)\ =, (11)
while, from (6) and (9) it is easily seen that the gross mankae is given by
w= _(11—_01)3, N R ) ol Gl ) <11__TA> LN a2

Note that, if the average share of public resources stolgoublic officials,E (s), is constant, then
the interest rate in (11) and the gross wage in (12) turn out to be constant amtearl function of
per worker capital respectively. We shall see in the nexi@es that this is actually the case.

Let us denote by = G/ L the per worker supply of intermediate goods and servicesnpially
available to firms, and by the amount of public resources under the control of eachipoficial
that enter her intertemporal budget constraiet, before the public official takes a decision on what
portion of it she is ready to steal. Then, by (7), (6), and (9),

B [r_1-n-a)
1=, "3 Umne= gy Y
ot E T U SR DA AR, 13)

21—\



Clearly, agj, g, w andgq are all linear functions of per worker capital,if E (s) is constant through
time they all will grow at the same rate. Moreover, note thatratiow/q is always a constant:
B (I—a)A
(1= N)-(1-7)(1—a)A

< (14)
q
2.3 Private Employees

At each given time all young private employees in thiiecohort solve the same deterministic two-
period maximization problerh:

maic (Inciy + Blnegygq) (15)
C1t = Wy — Ty

S.t. ’ _ 16

{ Cop1 = (14 Tp1) 24, (16)

wherec; , andc, 1 denote consumption in the first and second period respégtivedenotes the
asset amount (saving) to be chosen, whilg > 0 is the net of taxes interest rate, amd> 0 is the
net of taxes wage earned. They are defined as(1 — 7)r andw = (1 — 7) w, where the the tax
rate0 < 7 < 1, as well as the gross interest ratand gross wage in (11) and (12) respectively, are
taken as exogenously given.

After replacingc; , andc, ;11 according to the constraints (16) into the objective funrti{15),
the FOC with respect to the assetyields the optimal individual saving as a fraction of the wag:

g _pl—1)

= Wy = Wy.
1+8 " 1+8 °

It is well known that the “canonical” OLG model with logarithc utility yields an optimal saving
amount which is independent of the (net) interest rate (see Section 9.3 in Acemoglu, 2009).

17)

Tt

2.4 Public Officials

Unlike private workers, each public official has the oppnitiyito divert a fractior) < s < 1 of the
amountg of public resources under her own control as given in (13)l, @shd such amount to their
individual asset when she is young at timeDuring the same initial period in her life, but after she
took her optimal decision on how much to steal, she may gegladay the authorities, in which case
she must give back the whole amount stolen and pay afine0 per unit of resource stolen. The
probability of being caught i8 < p < 1, constant through time.

At each given time all young public officials solve the same stochastic twagzemaximization
problem?#

{max} E(lncis+ Blncary) (18)
ey = Wy — T + (1 — 2¢) qu5e — 20 f @S¢
S.t. Cott1 = (1 + 'Ft—i-l) Ty (19)
0 < St < 1,

whereE denotes time expectationg; , andc, ;1 denote consumption in the first and second period
respectivelyz; denotes the asset amount (saving) to be choséhe share of public resources under

3As all individuals are the same, we drop the indéxdicating each of them.
4As all individuals are the same, we drop the inderdicating each of them.
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control, ¢;, that will be stolen at time, f = 1 + ¢ > 1 is the amount that must be returned to the
Government in the event of being caught, while again > 0 is the net of taxes interest rate, and
w; > 0 is the net of taxes wage earned. The latter are the same a&sdhpsvate employees and are
defined ag = (1 — 7)r andw = (1 — 7) w.

The indicator function; is associated to probabiligyof being caught at timeis defined as

. { 1 with probabilityp (20)

0 with probability 1 — p,

and it is unknowni(e., it is a random variable) at the time in which the (optimal¥iden is taken
uponz, ands;, but it is revealed before the instant in which the amayntis being consumed;
therefore, the first constraint in (19) is truly random bueets only the consumptios , of young
public officials, as the consumptien,,, in the old age is fully determined by the interest ratg ,
which is deterministic and exogenously given, and by thdaghon savings:;, which has already
been taken{z},, is a process of i.i.d. Bernoulli random variables such thdt; = 1) = p, where
0 < p < 1 corresponds to the probability that each public official wé caught to steal in the period
between her optimal decisions and her consumption. In etbeds, the amount of consumption in
the old age¢, 11, is not being affected by the realization of the random \deia, one period before
(in the young age), as the decision on the optimal savirtas been taken before the administration
controls take place, and cannot be modified. We admit thatisha quite strong assumption, but, if
on one hand it is useful to simplify the analysis, on the otreerd we consider unrealistic that each
public official must wait until retirement to know whethereshas being caught or she can get it free.

We assume thay; is exogenously given according to (13) and that public affscmaximize their
total expected utility independently from each other. Mwex, the Bernoulli process is assumed to
be i.i.d. both over time and across public officials.

After replacingc, ; andcs ;11 according to the constraints (19) into the objective fumt{18),
the problem can be rewritten as

maX{xt,St} {(1 - p) In (th — Tt + qtst) + pln (wt — Ty — thSt) (21)
+6 In [(1 + ft—',—l) l’t]}
st0<s <1.

Assuming an interior solution;, > 0,0 < s, < 1, FOC on (21) yield the following optimal individual
saving, which turns out to be the same as that in (17) for f@iwerkers:

B Bl-T)
= Wy =

1+ 4 1+ p
while the optimal individual stealing choicg turns out to be a fraction of the ratio /¢;:

L—p(f+l)@ _ D—p(f+D0-Tw
1+8)f a (1+8)f o (23)

Recall from (14) that the ratio between the (exogenous) wadéa) and the amount of public
resources under the control of each public official in (1®sstant. Hence, as public officials are all
equal ands; in (23) depends only on parametétsr, p, f plus the exogenous variables andg;, we
have just established the next result, that will be crucidhe following analysis

Wy, (22)

Ly

St =

Proposition 1 Under Assumption A.1, if

| - p(f+ 1)+ (14 8)f](1—a)A
Py M T G DAt (L B) F(L—aN)

then the following hold.

(24)



i) At each timet, all public officials steal the same amoufit = s constant through time, which,
according to (23) and (14) is given by

A+B)flr(l=A)—-(1-7)1—-a))
ii) Therefore, also the average theft is constant through tiine,) = s, andy;, ¢, w;, ¢;, being all
linear functions of per worker capitat;, grow at the same constant rate whenever the economy
features sustained growth.

iil) The optimal theft defined in (25) is decreasing jn f and.

3 Aggregate Equilibrium and Growth

Under the assumption that all agents have logarithmicytilne optimal savings; of everybody,
either private worker or public official, are the same andgven by (22). Assuming that savings
of young agents at timeéare employed as physical capital in time- 1 by private firms [see eqn.
(3.105) in Barro and Sala-i-Martin, 2004], we can exploitlthear, ‘AK”, structure of the production
process in our economy discussed at the end of Section 21thtediately compute the BGP growth
rate:

B _B(I—T)w
k’t+1—$t——1+6 t
_ﬁ(l_T)(l_O‘) LU _E(s le“T N (] — N a0
= T+ 3 O=[L—E(s)) = [T(1=AN)—-(1Q=7)Q—a)A] = (1=-A) k
_BA-TA—a)pr e a1
= 13 0o (1—s) o [t(1=N—-(1-7)A=a)A = (1-XA) Kk
=W (71, ) ky, (26)

where in the second equality we used (22), in the third (1&)e fourth condition (25) of Proposition
1 establishing thdk () is constantE (s) = s, while in the last equality we emphasize the dependence
on parameters and\ of the constan, defined as

6(1—04)9%(1—7')
(1 _'_5) (1 - )‘) (27)

1—a

l-p(f+1) o
X {r(l A) [1+ e (1—-7)(1 a))\} ,
because in the sequel we will focus on comparative dynanaissdon the tax rateand the share of
workers employed in the public sector= L, /L, parameters that can be both interpreted as proxies
of “Government size”. Note that the term in curly bracketsagtainly positive because it is the result
of the product(1 — s) [ (1 — ) — (1 — 7) (1 — &) A\] under the same exponerit, — «) /«, where
[T(1—=A)—(1—=7)(1—a)) > 0under Assumption A.1 and — s) > 0 under condition (24) of
Proposition 1.

The linear difference equation of per worker physical adpiefined in (26) immediately yields
the positive growth rate of the economy,

y(T,A\) =W (1,\) — 1, (28)

provided that parameters 3, 0, A, 7, f andp are such tha¥ (7, \) > 1. The growth ratey (1, \)
in (28) is constant an thus characterizes the only possible 8Gwhich the economy jumps imme-
diately starting from = 0.

U(r,\) =




Proposition 2 Under Assumption A.1 and the assumptions of Propositioe falfowing hold.

i) For any fixed admissible pairr, \) the economy growth rate(r, \) defined in (28) is an increas-
ing function of both the probability of detectigrand the finef.

ii) Forany fixed) < A\ < 1, the economy growth rate(-, ) defined in (28) is an inverted U-shaped
function of the tax rate and admits one unique interior maximum poihg. 7* (A) < 1, which
is itself function of all parameters according to

L—p(f+D)]1-—a)A+(1+8)f(1—a) (29)
LT=p(f+D]AQ-—a)A+(1+8)f(1—aN)

T (\) =

iif) Under the following further restrictions:
Il—p(f+1) oa*+a-—1
<
T+5f ~all-a)

the growth ratey (7, \) defined in (28), considered as a function of both parameteasd ),
admits one unique (interior) stationary poifit*, A\*) with coordinates

(30)

a> (\/5 - 1) /2~0.618 and

L @a-D(+A [ —p(f+1)(1-a) -
a1+ 8) f == p(f+ DI (1—a)
. _@ta-1(+H)f-[1-p(f+D]a(l-a) @)

Qo= D{a(1+8) f-D-p(f+1D](1-a)}

iv) Both stationary values* and \* in (31) and (32) are increasing functions of both the proligbi
of detectiorp and the finef.

Clearly, assumptions (30) are necessary to have a positwmenrator in the expression for in
(32); in the proof it is shown that the same conditions implgttthe denominator is positive as well.
Note that the second condition in (30) holdg iindp are large enough, provided that they satisfy the
first condition in (24) of Proposition 1.

Unfortunately, it is not possible to establish concavity df(7,\), and thus of
v(r,\) = W (r,\) — 1, directly; however, graphic inspection shows that, forsceeble values
of parameters in their admissible ranges, it should be [ggg, Figure 1(a) in the next Section].
Nonetheless, we do not really need to know that the uniqui®stéay point(7*, A*) with coordinates
given by (31) and (32) is a global maximum point: assuming tiva economy adopts the (optimal)
tax rater™ as in (31) and the Government employs a shédras in (32) of total labour, part (iv)
of Proposition 2 establishes that, if parametar f, or both, increase, then there exist a direction
originating from(7*, A*) along which, in order to keep the growth ratér, \) = ¥ (7,\) — 1 in
(28) at its maximum level, an increase of the optimal tax rétés required, provided that also the
share\* is adjusted (increased) as well according to (32). In othendg;, although we are not able
to prove that for different values gfand f conditions (31) and (32) describe the upper envelope of
the functiony (7,\) = ¥ (7, \) — 1 (but we conjecture they do, as it will be illustrated throwagh
example in the next section), part (iv) of Proposition 2 paeg a criterion to follow (by adjusting
the share of public employees;) in order to keep the (positive) monotonicity that links tpimal
tax rater* to increases in the Social Capital—represented by incraasatherp or f, or both—
that is found in empirical data. As both parametem@nd f can be considered as proxy measures
of the level of Social Capital, we have thus shown that an aseeof Social Capital requires larger
levels of both the tax rate* and the share of public employeg&sin order to keep the growth rate
y (T, AF) = W (7%, A*) — 1 at its maximum.



4 A Numerical Example
To carry out a numerical example we set the following paransévalues:
£ =0.3, a = 0.67, 6 = 10.6.

The individual discount rate value is compatible with sorfie/8ars time-horizon for a generation to
be employed either in the private or in the public sectorpifngsical capital factor share value clearly
satisfies the first condition in (30), and the technology petar value guarantees reasonable values
of the growth rate defined in (28) around its maximum poirgst will be shown below.

Note that the second condition in (30) of Proposition 2 canebermulated as a lower bound for
the probability of detectiop given the finef according to:

{1_ (a2+2(—11_)8)+6)f}'

- 1
=157
Joining this condition with the first condition in (24) of Rwsition 1 yields the following open
interval as feasible range for the probability of detectidor any given value of the fing:

( 1 { (a2+a—1)(1+ﬁ)f} 1 )

pE 1— ) )

1+f a(l—a) 1+ f

whose endpoints, when considered as functions of thefffioe givena andj values, are two hyper-
bolas, the former laying strictly below the latter wheneyes 0, while they collapse into the same

pointp = 1 whenf = 0. The right endpoint is strictly positive for any> 0, while the left endpoint
intersects the horizontal axis on the point

a(l—a)
(@®+a—-1)(1+p)

that is, on the valug, = 1.43 whena = 0.67 and = 0.3.

We focus on how changes in the probability of detectiaffect the growth rate function(r, ) =
U (1, \) — 1 defined in (28), paying special attention to its maximum peifr*, \*) with coordinates
7*and\* given by (31) and (32). To this purpose, we fix the value of the &tf = f, = 1.43, soto
have the largest possible range for thealues, given by the interval € (0,0.41). Similar results are
obtained for increasing values of the fifi¢or a fixed probabilityp, or for increasing values of both
f andp; we omit these types of illustration. Under these assumptia.e., for 5 = 0.3, a = 0.67,

0 = 10.6 and f, = 1.43 fixed—we consider seven values for the probability of dedegi in the range
(0,0.41) and compute the coordinates and \* according to (31) and (32), plus the corresponding
maximum growth rate value (7*, \*), for each probability value considered. The results arented

in Table 1, where the monotonic increasing pattern of boghojptimal tax rate* and optimal share
of public employees\*, as well as the corresponding maximum value of the grow#ayat*, \*),
predicted by Proposition 2 is clearly evident as the prdiglaf detectionp increases.

Figure 1(a) shows the three-dimensional graph of the groaty (7, \) defined in (28) as a
function ofr and\ for fy = 1.43 andp = 0.20: it clearly exhibits ‘concavity’ traits, with, according
to the fourth row of Table 1, a unique global interior maximpuoint reached on the pafr*, \*) =
(0.4299,0.2937) and with valuey (7%, \*) = 0.0173, corresponding to an optimal growth rate of
aroundl.7%. Figure 1(b) presents an attempt to draw an imaginary upp&i@epe curve in the three-
dimensional spacer, A, ) of the seven maximum points defined by the three values listdt last
three columns of Table 1 by ideally joining the seven red dotke figure, each corresponding to the
maximum growth rate value for the graphofr, \) determined by the seven values of the probability

fo=
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p * Ay (TN
0.05 0.3581 0.0827 0.0031
0.10 0.3839 0.1587  0.0059
0.15 0.4078 0.2288  0.0106
020 0.4299 0.2937  0.0173
025 0.4503 0.3539  0.0262
0.30 0.4694 0.4100 0.0373
0.35 0.4872 0.4623  0.0509

TABLE 1: optimal values for the tax rate' and the public employees shareaccording to (31) and (32), and
the corresponding maximum growth ratér*, A*) according to (28), for seven feasible values of the
probability of detectiom; 8 = 0.3, o = 0.67,0 = 10.6 andf = f, = 1.43.

of detectionp in the first column of Table 1. Note that, consistently withtg@ of Proposition 2,
each graph of the growth rate functionr, \) plotted in Figure 1(b) is a surface (only partially
reported forp > 0.10 so to emphasize their area close to their maximum points$)dia uniformly
above the other surfaces corresponding to lower valugsaoid uniformly below the other surfaces
corresponding to higher values pf This feature renders difficult a three-dimensional grephi
representation of the upper envelope of all the functipfis \) asp increases and justifies the choice
of plotting only partial sections of the surfaces [the gsaphthe functiony (7, \)] corresponding to
probability values larger thain10.

@) (b)

FIGURE 1: (a) three-dimensional plot of the growth rate functiofr, A\) = ¥ (7, \) — 1 defined in (28) for
f = fo=1.43 andp = 0.20; (b) several three-dimensional plots of the same growth rate functiooh—ea
uniformly higher then the other—fof = f, = 1.43 and the seven values pflisted in the first column of

Table 1, the red dots denote the maximum value for each function.

While the increasing pattern of the single three-dimendigrephs ofy (7, \)—further empha-
sized by their maximum points denoted by red dots, whichipesa skeleton for drawing their upper
envelope—clearly confirms part (i) of Proposition 2, the wtomic increasing pattern of both coor-
dinatesr* and \* established in part (iv) of Proposition 2 asncreases (our main result) can only
be inferred from Figure 1(b). Figure 2 provides a better flenaf part (iv) of Proposition 2 by plot-
ting separately the* andr*-sections respectively of the growth rate functipfr, \) for the severp
values in the fist column of Table 1: specifically, Figure 2¢lts the two-dimensional graphs of

11



~ (7, A*) as a function of the only variabtefor each optimal value* reported in the third column of
Table 1, while Figure 2(b) reports the two-dimensional g=sapf~ (7%, \) as a function of the only
variable) for each optimal value* reported in the second column of Table 1. The increasingpatt
of the maximum points, as well as the maximum values, of eachecasp increases is apparent in
both figures. However, from Figure 1(b) we learn that eaclweghould be projected deeper and
deeper in the third dimension orthogonal to t{he~y) and (), ) spaces respectively as and r*
increase for larger values of that is, each curve in Figure 2(a) corresponds to largeregbf)\*,
while each curve in Figure 2(b) corresponds to larger vatdies, so that the upper envelope Figure
1(b) develops (increases) toward north-east intha) space.

0.05 - 0.05-
N 02 03 A% \.6 0.7 N
—0.05- —0.05-
v —0.14 v —0.14
—0.15- —0.15-
—0.2" —0.2"

(a) (b)

FIGURE 2: (a) two-dimensional plots of thg*-sections of the growth rate function(r, A\) = ¥ (7,\) — 1
defined in (28) forf = f, = 1.43 and the seven values of the pagits\* listed in the first and third columns of
Table 1; (b) two-dimensional plots of thé&-sections of the same growth rate function foe f, = 1.43 and

the seven values of the pajsr™ listed in the first and second columns of Table 1.

5 Conclusions

Using the OLG framework, we have shown that a simple modiGoatf the Barro (1990)’s endoge-
nous growth model, introduced to take into account the pdggithat public officials will steal a
fraction of public resources under their own control, isatap of theoretically explain the existence
of high growth rates in the presence of Big Government sizec@ipally, we have shown that, under
realistic conditions on parameters’ values, a monotordmeiasing relationship exists among the level
of Social Capital (expressed in terms of either the probshii detect cheating public officials or the
fine charged to them), the Government size (expressed ba¢hnrs of the tax rate and the number
of public employees) and the maximum achievable econonowiiyrate. Social Capital could thus
be the missing dimension accounting for the controversigdigcal results on this issue as well as
for the ENC case. High levels of Social Capital affect the baraof public officials monitoring
the public expenditures for intermediate goods and seswscgplied to private firms, and thus the
efficiency of Government as a whole.

Appendix

Proof of Proposition 1. To prove i) we only must show that the optimal thefin (25) is interior,
that is it satisfie$) < s < 1, and that the argument of the utility in the second term in (3%trictly
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positive,w, — x; — fq:s¢ > 0, whenz, ands, are defined according to (22) and (23) respectively,
that is, the optimal choice ary ands; must yield positive consumption in the unlucky event of lgein
caught.

The former property is a consequence of Assumption A.1 hagewith condition (24). First
note that Assumption A.1 requires the terril — A\) — (1 — 7) (1 — «) A in the denominator of (25)
to be positive, so that, in order to hage> 0 in (25), as the term{l — 7) (1 — «) A is positive
by construction, the termh — p (f + 1) in the numerator must be positive as well, that is, the first
condition in (24) must hold. To have< 1 as well we solve

1-p(f+ D070 =)
A+ flrA =N -(1-7)(1-a)A

which, under Assumption A.1, is equivalent to

<1,

{I=p(f+D0-a)A+1+p)f(1—-aN)}T
>A=p(f+D+A+5)f1A—-a)A
which immediately yields the second condition in (24). k&sily shown that the second condition in

(24) is stronger than Assumption A.1 eras, using the fact that the first condition in (24) is equintle
tol —p(f+1) > 0, the inequality

-p(f+D)+A+HfA0-a)A  (-a)A
1—p(f+D]1—-a)X+(1+08) f(1—al) 1—al

boils down to\ < 1, which holds by construction.
The latter property follows directly from (22) and (23):

B l—p(f+Dw, _p(f+1)_

— W~ [ = Wy,
1+p A+8)f a 1+p

where the last term is positive whenever= (1 — 7) w; > 0.

Property ii) is an immediate consequencesah (25) being constant and all the discussion in
Subsection 2.2.

Finally, to prove iii), direct computation afs/dp, ds/0f andds/d7 in (25) show that they are
all negative under our assumptions on all paramesers.

Wy — 2y — fqse = Wy

Proof of Proposition 2. Property i) is established by direct computation of theipbderivatives
with respect tg and f of the functiony (7,\) = ¥ (7, A\) — 1 defined in (28), which turn out to be
both positive.

To prove ii) let

B(1—a)bn
(1+5)

so that we can rewrit& (7, \) in (27) as

_ _ 1—p(f+1)
A= and B—|:1+W (1—0&) (33)

m(T,A):AG:;) [r(1—X)—(1—7)BX

11—«
a

(34)

Note that under all our assumptions, including the first dood in (24) which implies thatl —
p(f+1) >0, the constants in (33) are positivd; B > 0. The term in square brackets on the RHS
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of (34) is positive because it is the result of the product s) [r (1 — ) — (1 — 7) (1 — «) A\] with
[T(1—=A)—(1—=7)(1 —a)) > 0under Assumption A.1 and — s) > 0 under condition (24) of
Proposition 1. Specifically, we have:

T(1-=AN)—=(1-=7)BA>0 forall0<A<1 and 7, (\) <7 <1,

wherer;, ()\) is the lower bound in the admissible range fatefined by the second condition in (24),
I-p(f+D+O+H) 0 -a)A
L=p(f+ DI =) A+ (1 +p)f(L—al)

where we stress its dependency on For a given0 < X < 1, the problem
max {y (1) =V (r)—1:7,(\) <7 <1} =max{In[V (7)] : 7z (\) < 7 < 1} can be written as

L (A) = (35)

max {lnA+In(l—7)—In(1—\)

7L (A\)<r<1 (36)
1 —
+ aaln[T(l ) - (1—7’)3)\]},
where we used (34). FOC on the RHS easily yields the optimakval
ey BA+ (1 —a)(1-2A)
T (\) = By . (37)

Using the definition ofB in (33), note thafl — p(f +1)+ (1+8) f](1—«) = (14 B) fB and
1—p(f+1)](1—-a) = (B+a—1)(1+p)f, so that, substituting into (35), we get the lower
boundr;, (\) as a function ofB and B as a function of, (\):

B

B (=X ()
“ iy ad B=

() AL =\

(38)

Using the latter expression fds in in the expression (37) we can write the optimal tax rate as a
function of the lower bound;, () recalled in (35):

TN =1—a+ar,(N), (39)

from which, asr;, (\) < 1, it is apparent that* (A\) > 7., (\); while, asa < 1, from (37) it follows
that7* () < 1 as well, establishing that the unique stationary peint\) is interior. Substituting
71, (M) as in (35) into (39),

all —p(f+ 1)+ 10+ fIT-a)A
L=p(f+ DL =) A+ (1 +p)f(L—ar)
the expression in (29) is immediately obtained.

To confirm thatr* (\) is the unique solution of (36) for fixed, first note that, substituting
according to the second equation in (38) in the terfh — \) — (1 — 7) BA, for 7 > 7, (\) it holds

TN =1—a+

1—A

T(l—)\)—(l—T)B)\:m[

T—1(N)] >0,
moreover, using the first equation in (38) for(\) inthe termr (1 — A\)—(1 — 7) B\, fort — 7 (\)

one has
BAX(1—=X)—(1—X)BA B

BX+1—-)

T(1—=A)—(1—=7)B\— 0t,
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so that,

im L[ ()] = lim { L +1_O‘{ Batl-A ]}
9 )] = _
T—>T2'()\) T T—>T2'()\) 1—7 o T(1—>\) — (1—7’) B\

= —|—007

implying that(0/07) In [V (7)] > 0 for all 7, (A\) < 7 < 7* (\). Next, it holds

.0 l—a (BAX+1-2A , 1
Jim ()] = —2 ( 11—\ ) - lim (_1—7) -
implying that (0/07)In [V (7)] < 0 for all 7" (A\) < 7 < 1. This establishes that [V (7)] is
inverted U-shaped functions and thét(\) in (29) is the unique solution of (36); s [V ()] is a
monotone transformation of (7), the same holds true fob (7), and in turn, for the growth rate
v (1) = ¥ (1) — 1 defined in (28), for each fixel < A < 1.
To establish iii) we consider the objective function in (36)
Im¥(r,A\)= mA+In(l—7)—In(1—-2A)

a1 BA, (40)

as a function of both variablest and A and study it over the open set
{(r, ) : (0 < A< 1)A[r () <7 <1]}. As, according to (33)A and B do not depend om or
A, FOC with respect ta on the RHS of (40) easily yields the critical value

(1-20)7T+(1—a)(l—7)B
(1-2a)[r+(1—7)B]
and pairing it with equation (37) leads to the unique statigrpoint with coordinates

., «a—DB . 20 — 1 —aB

T=Tp and )\ ~ a0 (-B) (42)
which, after replacing3 according to (33) and through some algebra, establish (31 22). The
two conditions in (30) clearly guarantee that — 1 — aB > 0 <= B < 2 — 1/«, which, as
0<(l-a)=a®>—-2a+1+=2-1/a<a,inturn, impliesB < a < 1;asa > (V5 —1) /2 >
1/2 = (2a — 1) > 0, all these conditions together establish that bdtand \* are positive. More-
over,7* < 1 becaus® < a—B < 1-B, while \* < 1 becaus@a—1—aB < (2a—1) (1 — B) <=
(1 —«) B > 0. To check that™* > 7, (A\*), with 7, (A\*) defined in (35) forA\ = \*, we first use the
expression oA* in (41) in the expression faB as in (38) to get

(1= X) 7 (N) (1 —a) Bt (N al2—1,(N)] -1
B M[1—71,(N)]  Qa—-1—aB)[l—1(N)] = B all =75 (N)]
Next, we replace the last expression #in the first equation in (41) to get, after some algebra,
., a—B 1-a(2-a)

TT1-BT T 1-a
as[l—a(2—a)] /(1 —a)+ar, (A) > 72 ()) is equivalent tal > 7, (A), which is definitely true,
we have shown that* > 7, (\). Therefore, we conclude that the stationary p6irit \*) with coordi-
nates given by (31) and (32) is an interior point of the opent se
{(mA):(0< A< )AL (N <7< 1]}

To prove iv) we first verify that bothid/dp) B (p, f) and (0/0f) B (p, f) are strictly negative
through direct differentiation oB as in (33) with respect tp and f. Finally, using the fact that
(0/0p) B (p, f) < 0and(0/0f) B (p, f) < 0, by differentiating the expressions of both and \*
as in (41) with respect to and f it is easily established that that they are all strictly pesj and the
proof is complete.m

A=

+ arp, (A);
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