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Abstract

Our paper intersects two topics in growth theory: the growth maximizing government size and
the role of social capital in development. We modify a simple OLG framework by introducing
two key features: endogenous growth and a role for public officials in monitoring the public ex-
penditures for intermediate goods and services supplied to private firms. Public officials have the
opportunity to steal a fraction of public resources under their own control, subject to a probability
of being caught and pay a fine. Hence, not all tax revenues raised bythe Government reach private
firms, as a fraction of them is being diverted by public officials, thus hampering growth. Under
certain conditions on parameters, our main result establishes that, if the probability of detection or
the fine charged on public officials who are caught stealing, or both, increase, then an increase of
the tax rate is required in order to maintain an optimal growth rate, provided thatalso the number
of public officials is increased as well. As both the probability of detection andthe fine positively
depend on the Social Capital level, we conclude that maximum growth rates are compatible with
Big Government size, measured both in terms of expenditures and public officials, only when
associated with high levels of Social Capital.

Keywords: Social Capital, Endogenous Growth, Government size, Stochastic OLG model
JEL classification: C61, O41, N9, R5

1 Introduction

The present paper intersects theoretically two topics in growth theory: the growth maximizing govern-
ment size and the role of Social Capital in development. Decreasing marginal benefits of government
expenditures and increasing distortions due to taxation typically leads to an inverted U relationship
between growth and government size (Facchini and Melki 2011), known in the literature as B.A.R.S.
curve (Barro 1989, 1990; Armey and Armey 1995; Rahn and Fox 1996; Scully 1998, 2003). Although
the theoretical approach appears sound and generally accepted the optimal point from a quantitative
perspective is very debated. Several empirical works did not clear cut the point over the optimal gov-
ernment size, typically measured as government expenditure relative to GDP. Often in this context the
European Nordic Countries (ENC)1 with large Governments and significant growth rates are taken as
outliers or as counter examples to dismiss the entire approach.

∗Dept. of Economics, Business, Mathematics and Statistics “Bruno de Finetti”, Universit̀a degli studi di Trieste,
Piazzale Europa 1, 34127 Trieste (Italy);gaetano.carmeci@deams.units.it

†Dept. of Political and Social Sciences, Università degli studi di Trieste, Piazzale Europa 1, 34127 Trieste (Italy);
luciano.mauro.ts@gmail.com

‡Dept. of Economics and Statistics “Cognetti de Martiis”, Universit̀a di Torino, Lungo Dora Siena 100 A, 10153
Torino (Italy);fabio.privileggi@unito.it

1Sweden, Norway and Denmark.
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We believe that another stream of literature that goes underthe vast and debated title of Social
Capital could contain important contributions to this debate.2 Among the many definitions of Social
Capital one could find, we adhere to the one of Guiso et al. (2011), namely “those persistent and
shared beliefs and values that help a group overcome the freerider problem in the pursuit of socially
valuable activities”. This definition of Social Capital as civicness is particularly attractive and in line
with the empirical literature where several proxy of civicness appear to be related with development
and government efficiency. The literature shows that greater participation to civic life and high levels
of moral stigma for uncivic behavior are important factors to explain corruption and Government
efficiency (Bjørnskov 2003). In particular we believe that those unwritten social norms might affect
the behavior of public officials. However, we depart from thestandard modeling approach which
include some utility costs in the utility function due to social stigma, as for example in Guiso et al.
(2004). Our idea, instead, is that a society with high levelsof civicness is one where corruption
and rent seeking behaviors are not tolerate easily. High social capital as understood as high trust
in people and institutions as well as great level of participation in civic life are thought to foster
reporting of public officials’ wrongdoings to public authorities by whistle blowers. Therefore, a
positive relationship between the probability of being detected—or the fine to be paid in case of
detection—of dishonest public officials and the degree of civicness is expected. We consider this
approach as complementary to the utility one and somehow less exposed to criticism implied by an
ad-hoc form of utility function.

In more detail, we modify a simple OLG framework (Chapt. 3 in Barro and Sala-i-Martin 2004) by
introducing two key features: endogenous growthà la Barro (1990) type and a role for public officials
in monitoring the public expenditures for intermediate goods and services supplied to private firms.
Specifically, there are two types of workers, private workers employed in competitive production
sector behaving in a standard fashion, and public officials who have the opportunity to steal a fraction
of public resources under their own control, subject to a positive probability of being caught and pay
a fine. As a consequence, not all the stock of tax revenues raised by the Government reaches private
firms as intermediate goods and services, since a fraction ofit is being diverted by public officials,
thus hampering growth.

As expected, we find that the endogenous growth rate of the economy is affected by the probability
of detection and the fine paid by those public officials who arebeing caught. Moreover, as in Barro
(1990), along the BGP the output growth rate turns out to be an Inverted U-Shaped function of the
tax rate, thus establishing uniqueness of the optimal tax rate with respect to growth. By performing
comparative dynamics on the optimal tax rate, our main result shows that, under certain conditions,
if the probability of detection or the fine charged on public officials who are caught stealing, or both,
increase, then an increase of the optimal tax rate is required in order to keep the growth rate at its
maximum level, provided that also the share of public workers on the total workforce is adjusted
(increased) as well. As both the probability of detection and the fine positively depend on the Social
Capital level, we conclude that maximum growth rates are compatible with Big Government size
(both in terms of expenditures and public officials) only when associated with high levels of Social
Capital. When Social capital is low the growth maximizing government size shrinks and vice versa.
Social Capital therefore could be the missing dimension accounting for the controversial empirical
results on this issue as well as for the ENC case. According tothe present model, the highest growth
rates experienced by the ENC, despite their well above-the-average OECD countries’ Government
size, it could be explained by their highest level of Social Capital, which in turn affects the behavior
of public officials and thus the efficiency of Government as a whole

This short paper proceeds as follows. In Section 2 we formally introduce the OLG framework
by describing in detail the competitive firms’ optimal strategies, the static general equilibrium with

2A survey on this large literature is beyond the scope of this paper (for a survey see,e.g., Alesina and Giuliano 2013).
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Government transfers to the firms, and the optimal behavior of both private and public workers. The
latter results allow for a definition of general equilibriumthat takes into account the (optimal) “steal-
ing” choices made by the public employees. In Section 3 we define the optimal dynamics of physical
capital that take into account the cheating behavior of public officials, characterize the BGP, and es-
tablish the main result that determines the positive monotonicity relationship between Social Capital
and Government size, expressed both in terms of taxation level and share of public workers, necessary
to keep growth at its maximum rate. In Section 4 we discuss a numerical example that illustrates our
main result. Section 5 as usual concludes, while all mathematical proofs are gathered in the Appendix.

2 The Model

We consider a OLG model. Each individual belonging to thet-th cohort lives for two periods: in
the first period, when she is young, she works either in the private or in the public sector and she
consumes and saves part of her wage, net of taxes. In the second period, when she is old, she does not
work but she consumes what she saved in the first period plus interests net of taxes. We assume that
in the economy the population is constant over time. In each period we haveL young workers, with
L a large number, of whichL1 are employed in the public sector andL2 in the private sector, with
L = L1 + L2. Moreover, in each period the economy is populated byL old individuals belonging to
the previoust− 1 cohort, so that, at each timet, the total population is2L.

Each individual has the same logarithmic instantaneous utility function,u (c) = ln c, and the same
(constant) pure rate of time preference,0 < β < 1. All young individuals inelastically supply one
unit of labor either to private firms or to the Government. Theshare of workers employed in the public
sector is constant and equal toλ = L1/L, whereas the share employed in the private sector is again
constant and equal to1− λ = L2/L, with 0 < λ < 1.

2.1 Firms

Following Barro (1990) we assume that the Government supplies intermediate goods and productive
servicesG to private firms financed through a distortionary tax, with rate 0 < τ < 1, on the total
national income.G is assumed to be non excludable but rival and subject to congestion caused by its
use by both private and public workers; hence only the shareg = G/L of G turns out to be available
to each single firm. The representative private firm behaves competitively and produces a composite
consumption good according to a Cobb-Douglas technology, sothat firm-i output is given by

Yi = θKα
i (gLi)

1−α ,

whereθ is some positive constant indicating the (exogenous) technological level,Ki is physical cap-
ital, Li is the number of workers employed,g is the share of intermediate goods and productive
services provided by the Government available to firm-i, and0 < α < 1 is the physical capital factor
share.

Assuming, for simplicity, that capital does not depreciate, for givenKi, Li andg firms maximize
profit when

∂Yi

∂Ki

= αθ

(

g

ki

)1−α

= r (1)

∂Yi

∂Li

= (1− α) θkα
i g

1−α = w, (2)
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whereki = Ki/Li is the firm-i capital-labor ratio,r is the market (gross) return to capital, andw is
the market (gross) wage. As all firms are equal, they choose the same capital-labor ratio,ki ≡ K/L2,
whereK denotes aggregate capital; the production function can thus be aggregated:

Y = θL2

(

K

L2

)α

g1−α, (3)

which, in per worker terms (private plus public workers), becomes

y = θ
L2

L

(

K

L2

)α

g1−α = θ (1− λ)

(

L

L2

K

L

)α

g1−α = θ (1− λ)1−α kαg1−α (4)

wherey = Y/L, k = K/L, and(1− λ) = L2/L.
In equilibrium, the net return on capital,r̄, is equal tōr = (1 − τ)r, wherer is given by (1) and,

in view of (4), can be rewritten in per worker terms as

r =
∂y

∂k
= αθ (1− λ)1−α kα−1g1−α = α

y

k
, (5)

while the net wage of a private employee (and public official)is equal tow̄ = (1 − τ)w, wherew is
given by (2) and, in view of (4), can be rewritten in per workerterms as

w =
∂y

∂ (1− λ)
= (1− α)θ (1− λ)−α kαg1−α = (1− α)

y

1− λ
(6)

so that the per worker gross private output is given byrk + w (1− λ) = y.
It’s worth noticing that ify andk grow at the same rate, thenr is constant over time and also the

wagew will grow at the output (capital) rate.

2.2 Government and the Static General Equilibrium

Government employsL1 = L−L2 public officials to monitor the public expenditures for intermediate
goods and services used by the private firms as input of their production process. Public official’s
wage is the same of the private worker’s one and it is paid by the Government using taxes. We assume
Government has a balanced budget. Total tax revenues are equal to T = τ Ỹ whereỸ = Y + L1w
is the total taxable national income. The public administration spends such amount in intermediate
goods and services to private firms and in public officials’ wages, that is,

T = τ Ỹ = τY + τL1w = G̃+ L1w,

whereG̃ denotes thepotentialamount of resources to be devoted to the firms as intermediategoods
and services, which is given by

G̃ = τY + τL1w − L1w = τY − (1− τ)L1w. (7)

However, intermediate goods and services that actually reach firms are not̃G butG = [1− E (s)] G̃,
as public officials will steal on average the shareE (s) of public resources committed to that scope.
Moreover, taking into account the effect of congestion, only the share

g =
G

L
=

[1− E (s)] G̃

L
= [1− E (s)] [τy − (1− τ)λw] (8)

will eventually enter the production function of each firm asinput.
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Substitutingg as in (8) into (4) and using (6) yields

y = θ (1− λ)1−α kαg1−α = θ (1− λ)1−α kα [1− E (s)]1−α [τy − (1− τ)λw]1−α

= θ (1− λ)1−α kα [1− E (s)]1−α

[

τy − (1− τ)λ (1− α)
y

1− λ

]1−α

= θ (1− λ)1−α kαy1−α [1− E (s)]1−α

[

τ (1− λ)− (1− τ) (1− α)λ

1− λ

]1−α

= θkαy1−α [1− E (s)]1−α [τ (1− λ)− (1− τ) (1− α)λ]1−α ,

from which it turns out that per worker private output is a linear function of per worker capital:

y = θ
1

α [1− E (s)]
1−α

α [τ (1− λ)− (1− τ) (1− α)λ]
1−α

α k, (9)

that is, our economy resembles the features of a typical ‘AK ’ model. In order to be defined, the RHS
of (9) requires the following assumption.

A. 1 Parametersα, λ and τ must satisfyτ (1− λ) − (1− τ) (1− α)λ > 0, which may be conve-
niently rewritten as(1− αλ) τ − (1− α)λ > 0, that is, the following condition must hold:

τ >
(1− α)λ

1− αλ
.

Substitutingy as in (9) into (8) and using again (6) shows thatg turns out to be linear ink as well:

g = [1− E (s)]

[

τy − (1− τ)λ (1− α)
y

1− λ

]

= [1− E (s)]
τ (1− λ)− (1− τ) (1− α)λ

1− λ
y

= θ
1

α [1− E (s)]
1

α [(1− λ)− (1− τ) (1− α)λ]
1

α (1− λ)−1 k. (10)

Similarly, from (5) and (9) it is immediately seen that the interest rate is given by

r = α
y

k
= αθ

1

α [1− E (s)]
1−α

α [τ (1− λ)− (1− τ) (1− α)λ]
1−α

α , (11)

while, from (6) and (9) it is easily seen that the gross marketwage is given by

w =
(1− α) y

1− λ
= (1− α) θ

1

α [1− E (s)]
1−α

α

[τ (1− λ)− (1− τ) (1− α)λ]
1−α

α

1− λ
k. (12)

Note that, if the average share of public resources stolen bypublic officials,E (s), is constant, then
the interest rater in (11) and the gross wage in (12) turn out to be constant and a linear function of
per worker capital respectively. We shall see in the next sections that this is actually the case.

Let us denote bỹg = G̃/L the per worker supply of intermediate goods and services potentially
available to firms, and byq the amount of public resources under the control of each public official
that enter her intertemporal budget constraint,i.e., before the public official takes a decision on what
portion of it she is ready to steal. Then, by (7), (6), and (9),

q =
G̃

L1

=
g̃

λ
=

τy

λ
− (1− τ)w =

[

τ

λ
− (1− τ) (1− α)

1− λ

]

y

= θ
1

α [1− E (s)]
1−α

α

[τ (1− λ)− (1− τ) (1− α)λ]
1

α

λ (1− λ)
k (13)
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Clearly, asy, g,w andq are all linear functions of per worker capital,k, if E (s) is constant through
time they all will grow at the same rate. Moreover, note that the ratiow/q is always a constant:

w

q
=

(1− α)λ

τ (1− λ)− (1− τ) (1− α)λ
(14)

2.3 Private Employees

At each given timet all young private employees in thet-cohort solve the same deterministic two-
period maximization problem:3

max
{xt}

(ln c1,t + β ln c2,t+1) (15)

s.t.

{

c1,t = w̄t − xt

c2,t+1 = (1 + r̄t+1) xt,
(16)

wherec1,t andc2,t+1 denote consumption in the first and second period respectively, xt denotes the
asset amount (saving) to be chosen, whiler̄t+1 > 0 is the net of taxes interest rate, andw̄t > 0 is the
net of taxes wage earned. They are defined asr̄ = (1− τ) r andw̄ = (1− τ)w, where the the tax
rate0 < τ < 1, as well as the gross interest rater and gross wagew in (11) and (12) respectively, are
taken as exogenously given.

After replacingc1,t andc2,t+1 according to the constraints (16) into the objective function (15),
the FOC with respect to the assetxt yields the optimal individual saving as a fraction of the wage w̄t:

xt =
β

1 + β
w̄t =

β (1− τ)

1 + β
wt. (17)

It is well known that the “canonical” OLG model with logarithmic utility yields an optimal saving
amount which is independent of the (net) interest rater̄t+1 (see Section 9.3 in Acemoglu, 2009).

2.4 Public Officials

Unlike private workers, each public official has the opportunity to divert a fraction0 ≤ s ≤ 1 of the
amountq of public resources under her own control as given in (13), and add such amount to their
individual asset when she is young at timet. During the same initial period in her life, but after she
took her optimal decision on how much to steal, she may get caught by the authorities, in which case
she must give back the whole amount stolen and pay a fineϕ > 0 per unit of resource stolen. The
probability of being caught is0 < p < 1, constant through time.

At each given timet all young public officials solve the same stochastic two-period maximization
problem:4

max
{xt,st}

E (ln c1,t + β ln c2,t+1) (18)

s.t.







c1,t = w̄t − xt + (1− zt) qtst − ztfqtst
c2,t+1 = (1 + r̄t+1) xt

0 ≤ st < 1,
(19)

whereE denotes timet expectation,c1,t andc2,t+1 denote consumption in the first and second period
respectively,xt denotes the asset amount (saving) to be chosen,st the share of public resources under

3As all individuals are the same, we drop the indexi indicating each of them.
4As all individuals are the same, we drop the indexj indicating each of them.
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control,qt, that will be stolen at timet, f = 1 + ϕ > 1 is the amount that must be returned to the
Government in the event of being caught, while againr̄t+1 > 0 is the net of taxes interest rate, and
w̄t > 0 is the net of taxes wage earned. The latter are the same as those of private employees and are
defined as̄r = (1− τ) r andw̄ = (1− τ)w.

The indicator functionzt is associated to probabilityp of being caught at timet is defined as

zt =

{

1 with probabilityp
0 with probability1− p,

(20)

and it is unknown (i.e., it is a random variable) at the time in which the (optimal) decision is taken
uponxt and st, but it is revealed before the instant in which the amountc1,t is being consumed;
therefore, the first constraint in (19) is truly random but affects only the consumptionc1,t of young
public officials, as the consumptionc2,t+1 in the old age is fully determined by the interest rater̄t+1,
which is deterministic and exogenously given, and by the choice on savingsxt, which has already
been taken.{zt}∞t=0 is a process of i.i.d. Bernoulli random variables such thatPr(zt = 1) = p, where
0 < p < 1 corresponds to the probability that each public official will be caught to steal in the period
between her optimal decisions and her consumption. In otherwords, the amount of consumption in
the old age,c2,t+1, is not being affected by the realization of the random variablezt one period before
(in the young age), as the decision on the optimal savingxt has been taken before the administration
controls take place, and cannot be modified. We admit that this is a quite strong assumption, but, if
on one hand it is useful to simplify the analysis, on the otherhand we consider unrealistic that each
public official must wait until retirement to know whether she has being caught or she can get it free.

We assume thatqt is exogenously given according to (13) and that public officials maximize their
total expected utility independently from each other. Moreover, the Bernoulli process is assumed to
be i.i.d. both over time and across public officials.

After replacingc1,t andc2,t+1 according to the constraints (19) into the objective function (18),
the problem can be rewritten as

max{xt,st} {(1− p) ln (w̄t − xt + qtst) + p ln (w̄t − xt − fqtst)
+β ln [(1 + r̄t+1) xt]} (21)

s.t.0 ≤ st ≤ 1.

Assuming an interior solution,xt > 0, 0 < st < 1, FOC on (21) yield the following optimal individual
saving, which turns out to be the same as that in (17) for private workers:

xt =
β

1 + β
w̄t =

β (1− τ)

1 + β
wt, (22)

while the optimal individual stealing choicest turns out to be a fraction of the ratiōwt/qt:

st =
1− p (f + 1)

(1 + β) f

w̄t

qt
=

[1− p (f + 1)] (1− τ)

(1 + β) f

wt

qt
. (23)

Recall from (14) that the ratio between the (exogenous) wage in (12) and the amount of public
resources under the control of each public official in (13) isconstant. Hence, as public officials are all
equal andst in (23) depends only on parametersβ, τ, p, f plus the exogenous variableswt andqt, we
have just established the next result, that will be crucial in the following analysis

Proposition 1 Under Assumption A.1, if

p <
1

1 + f
and τ >

[1− p (f + 1) + (1 + β) f ] (1− α)λ

[1− p (f + 1)] (1− α)λ+ (1 + β) f (1− αλ)
, (24)

then the following hold.
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i) At each timet, all public officials steal the same amountst ≡ s constant through time, which,
according to (23) and (14) is given by

s =
[1− p (f + 1)] (1− τ) (1− α)λ

(1 + β) f [τ (1− λ)− (1− τ) (1− α)λ]
. (25)

ii) Therefore, also the average theft is constant through time,E (st) ≡ s, andyt, gt, wt, qt, being all
linear functions of per worker capital,kt, grow at the same constant rate whenever the economy
features sustained growth.

iii) The optimal thefts defined in (25) is decreasing inp, f andτ .

3 Aggregate Equilibrium and Growth

Under the assumption that all agents have logarithmic utility, the optimal savingsxt of everybody,
either private worker or public official, are the same and aregiven by (22). Assuming that savings
of young agents at timet are employed as physical capital in timet + 1 by private firms [see eqn.
(3.105) in Barro and Sala-i-Martin, 2004], we can exploit thelinear, ‘AK ’, structure of the production
process in our economy discussed at the end of Section 2.2 to immediately compute the BGP growth
rate:

kt+1 = xt =
β (1− τ)

1 + β
wt

=
β (1− τ) (1− α)

1 + β
θ

1

α [1− E (s)]
1−α

α [τ (1− λ)− (1− τ) (1− α)λ]
1−α

α (1− λ)−1 kt

=
β (1− τ) (1− α)

1 + β
θ

1

α (1− s)
1−α

α [τ (1− λ)− (1− τ) (1− α)λ]
1−α

α (1− λ)−1 kt

= Ψ(τ, λ) kt, (26)

where in the second equality we used (22), in the third (12), in the fourth condition (25) of Proposition
1 establishing thatE (s) is constant,E (s) ≡ s, while in the last equality we emphasize the dependence
on parametersτ andλ of the constantΨ, defined as

Ψ(τ, λ) =
β (1− α) θ

1

α (1− τ)

(1 + β) (1− λ)

×
{

τ (1− λ)−
[

1 +
1− p (f + 1)

(1 + β) f

]

(1− τ) (1− α)λ

}
1−α

α

,

(27)

because in the sequel we will focus on comparative dynamics based on the tax rateτ and the share of
workers employed in the public sector,λ = L1/L, parameters that can be both interpreted as proxies
of “Government size”. Note that the term in curly brackets iscertainly positive because it is the result
of the product(1− s) [τ (1− λ)− (1− τ) (1− α)λ] under the same exponent,(1− α) /α, where
[τ (1− λ)− (1− τ) (1− α)λ] > 0 under Assumption A.1 and(1− s) > 0 under condition (24) of
Proposition 1.

The linear difference equation of per worker physical capital defined in (26) immediately yields
the positive growth rate of the economy,

γ (τ, λ) = Ψ (τ, λ)− 1, (28)

provided that parametersα, β, θ, λ, τ , f andp are such thatΨ(τ, λ) > 1. The growth rateγ (τ, λ)
in (28) is constant an thus characterizes the only possible BGP on which the economy jumps imme-
diately starting fromt = 0.
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Proposition 2 Under Assumption A.1 and the assumptions of Proposition 1 the following hold.

i) For any fixed admissible pair(τ, λ) the economy growth rateγ (τ, λ) defined in (28) is an increas-
ing function of both the probability of detectionp and the finef .

ii) For any fixed0 < λ < 1, the economy growth rateγ (·, λ) defined in (28) is an inverted U-shaped
function of the tax rateτ and admits one unique interior maximum point,0 < τ ∗ (λ) < 1, which
is itself function of all parameters according to

τ ∗ (λ) =
[1− p (f + 1)] (1− α)λ+ (1 + β) f (1− α)

[1− p (f + 1)] (1− α)λ+ (1 + β) f (1− αλ)
. (29)

iii) Under the following further restrictions:

α >
(√

5− 1
)

/2 ≃ 0.618 and
1− p (f + 1)

(1 + β) f
<

α2 + α− 1

α (1− α)
(30)

the growth rateγ (τ, λ) defined in (28), considered as a function of both parametersτ andλ,
admits one unique (interior) stationary point(τ ∗, λ∗) with coordinates

τ ∗ =
(2α− 1) (1 + β) f − [1− p (f + 1)] (1− α)

α (1 + β) f − [1− p (f + 1)] (1− α)
(31)

λ∗ =
(α2 + α− 1) (1 + β) f − [1− p (f + 1)]α (1− α)

(2α− 1) {α (1 + β) f − [1− p (f + 1)] (1− α)} . (32)

iv) Both stationary valuesτ ∗ andλ∗ in (31) and (32) are increasing functions of both the probability
of detectionp and the finef .

Clearly, assumptions (30) are necessary to have a positive numerator in the expression forλ∗ in
(32); in the proof it is shown that the same conditions imply that the denominator is positive as well.
Note that the second condition in (30) holds iff andp are large enough, provided that they satisfy the
first condition in (24) of Proposition 1.

Unfortunately, it is not possible to establish concavity ofΨ(τ, λ), and thus of
γ (τ, λ) = Ψ (τ, λ) − 1, directly; however, graphic inspection shows that, for reasonable values
of parameters in their admissible ranges, it should be [see,e.g., Figure 1(a) in the next Section].
Nonetheless, we do not really need to know that the unique stationary point(τ ∗, λ∗) with coordinates
given by (31) and (32) is a global maximum point: assuming that the economy adopts the (optimal)
tax rateτ ∗ as in (31) and the Government employs a shareλ∗ as in (32) of total labour, part (iv)
of Proposition 2 establishes that, if parameterp or f , or both, increase, then there exist a direction
originating from(τ ∗, λ∗) along which, in order to keep the growth rateγ (τ, λ) = Ψ (τ, λ) − 1 in
(28) at its maximum level, an increase of the optimal tax rateτ ∗ is required, provided that also the
shareλ∗ is adjusted (increased) as well according to (32). In other words, although we are not able
to prove that for different values ofp andf conditions (31) and (32) describe the upper envelope of
the functionγ (τ, λ) = Ψ (τ, λ) − 1 (but we conjecture they do, as it will be illustrated throughan
example in the next section), part (iv) of Proposition 2 provides a criterion to follow (by adjusting
the share of public employees,λ∗) in order to keep the (positive) monotonicity that links theoptimal
tax rateτ ∗ to increases in the Social Capital—represented by increasesin eitherp or f , or both—
that is found in empirical data. As both parametersp andf can be considered as proxy measures
of the level of Social Capital, we have thus shown that an increase of Social Capital requires larger
levels of both the tax rateτ ∗ and the share of public employeesλ∗ in order to keep the growth rate
γ (τ ∗, λ∗) = Ψ (τ ∗, λ∗)− 1 at its maximum.
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4 A Numerical Example

To carry out a numerical example we set the following parameters’ values:

β = 0.3, α = 0.67, θ = 10.6.

The individual discount rate value is compatible with some 30 years time-horizon for a generation to
be employed either in the private or in the public sector, thephysical capital factor share value clearly
satisfies the first condition in (30), and the technology parameter value guarantees reasonable values
of the growth rate defined in (28) around its maximum points, as it will be shown below.

Note that the second condition in (30) of Proposition 2 can bereformulated as a lower bound for
the probability of detectionp given the finef according to:

p >
1

1 + f

[

1− (α2 + α− 1) (1 + β) f

α (1− α)

]

.

Joining this condition with the first condition in (24) of Proposition 1 yields the following open
interval as feasible range for the probability of detectionp for any given value of the finef :

p ∈
(

1

1 + f

[

1− (α2 + α− 1) (1 + β) f

α (1− α)

]

,
1

1 + f

)

,

whose endpoints, when considered as functions of the finef for givenα andβ values, are two hyper-
bolas, the former laying strictly below the latter wheneverf > 0, while they collapse into the same
pointp = 1 whenf = 0. The right endpoint is strictly positive for anyf > 0, while the left endpoint
intersects the horizontal axis on the point

f0 =
α (1− α)

(α2 + α− 1) (1 + β)
,

that is, on the valuef0 = 1.43 whenα = 0.67 andβ = 0.3.
We focus on how changes in the probability of detectionp affect the growth rate functionγ (τ, λ) =

Ψ (τ, λ)−1 defined in (28), paying special attention to its maximum point γ (τ ∗, λ∗) with coordinates
τ ∗ andλ∗ given by (31) and (32). To this purpose, we fix the value of the fine atf = f0 = 1.43, so to
have the largest possible range for thep values, given by the intervalp ∈ (0, 0.41). Similar results are
obtained for increasing values of the finef for a fixed probabilityp, or for increasing values of both
f andp; we omit these types of illustration. Under these assumptions—i.e., for β = 0.3, α = 0.67,
θ = 10.6 andf0 = 1.43 fixed—we consider seven values for the probability of detection p in the range
(0, 0.41) and compute the coordinatesτ ∗ andλ∗ according to (31) and (32), plus the corresponding
maximum growth rate valueγ (τ ∗, λ∗), for each probability value considered. The results are reported
in Table 1, where the monotonic increasing pattern of both the optimal tax rateτ ∗ and optimal share
of public employeesλ∗, as well as the corresponding maximum value of the growth rate γ (τ ∗, λ∗),
predicted by Proposition 2 is clearly evident as the probability of detectionp increases.

Figure 1(a) shows the three-dimensional graph of the growthrateγ (τ, λ) defined in (28) as a
function ofτ andλ for f0 = 1.43 andp = 0.20: it clearly exhibits ‘concavity’ traits, with, according
to the fourth row of Table 1, a unique global interior maximumpoint reached on the pair(τ ∗, λ∗) =
(0.4299, 0.2937) and with valueγ (τ ∗, λ∗) = 0.0173, corresponding to an optimal growth rate of
around1.7%. Figure 1(b) presents an attempt to draw an imaginary upper envelope curve in the three-
dimensional space(τ, λ, γ) of the seven maximum points defined by the three values listedin the last
three columns of Table 1 by ideally joining the seven red dotsin the figure, each corresponding to the
maximum growth rate value for the graph ofγ (τ, λ) determined by the seven values of the probability
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p τ ∗ λ∗ γ (τ ∗, λ∗)
0.05 0.3581 0.0827 0.0031
0.10 0.3839 0.1587 0.0059
0.15 0.4078 0.2288 0.0106
0.20 0.4299 0.2937 0.0173
0.25 0.4503 0.3539 0.0262
0.30 0.4694 0.4100 0.0373
0.35 0.4872 0.4623 0.0509

TABLE 1: optimal values for the tax rateτ∗ and the public employees shareλ∗ according to (31) and (32), and
the corresponding maximum growth rateγ (τ∗, λ∗) according to (28), for seven feasible values of the

probability of detectionp; β = 0.3, α = 0.67, θ = 10.6 andf = f0 = 1.43.

of detectionp in the first column of Table 1. Note that, consistently with part (i) of Proposition 2,
each graph of the growth rate functionγ (τ, λ) plotted in Figure 1(b) is a surface (only partially
reported forp ≥ 0.10 so to emphasize their area close to their maximum points) that lays uniformly
above the other surfaces corresponding to lower values ofp and uniformly below the other surfaces
corresponding to higher values ofp. This feature renders difficult a three-dimensional graphical
representation of the upper envelope of all the functionsγ (τ, λ) asp increases and justifies the choice
of plotting only partial sections of the surfaces [the graphs of the functionγ (τ, λ)] corresponding to
probability values larger than0.10.

τ

λ

γ

0
0.3 0.4

0.4

0.5 0.6

0.6

0.7

0.8

−0.04

−0.02

0.02

(a)

τ

λ

γ 0
0.3 0.4

0.4

0.5 0.6

0.6

0.7

0.8

−0.04

−0.02

0.02

0.04

(b)

FIGURE 1: (a) three-dimensional plot of the growth rate functionγ (τ, λ) = Ψ (τ, λ)− 1 defined in (28) for
f = f0 = 1.43 andp = 0.20; (b) several three-dimensional plots of the same growth rate function—each
uniformly higher then the other—forf = f0 = 1.43 and the seven values ofp listed in the first column of

Table 1, the red dots denote the maximum value for each function.

While the increasing pattern of the single three-dimensional graphs ofγ (τ, λ)—further empha-
sized by their maximum points denoted by red dots, which provide a skeleton for drawing their upper
envelope—clearly confirms part (i) of Proposition 2, the monotonic increasing pattern of both coor-
dinatesτ ∗ andλ∗ established in part (iv) of Proposition 2 asp increases (our main result) can only
be inferred from Figure 1(b). Figure 2 provides a better flavour of part (iv) of Proposition 2 by plot-
ting separately theλ∗ andτ ∗-sections respectively of the growth rate functionγ (τ, λ) for the sevenp
values in the fist column of Table 1: specifically, Figure 2(a)plots the two-dimensional graphs of
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γ (τ, λ∗) as a function of the only variableτ for each optimal valueλ∗ reported in the third column of
Table 1, while Figure 2(b) reports the two-dimensional graphs ofγ (τ ∗, λ) as a function of the only
variableλ for each optimal valueτ ∗ reported in the second column of Table 1. The increasing pattern
of the maximum points, as well as the maximum values, of each curve asp increases is apparent in
both figures. However, from Figure 1(b) we learn that each curve should be projected deeper and
deeper in the third dimension orthogonal to the(τ, γ) and (λ, γ) spaces respectively asλ∗ and τ ∗

increase for larger values ofp; that is, each curve in Figure 2(a) corresponds to larger values ofλ∗,
while each curve in Figure 2(b) corresponds to larger valuesof τ ∗, so that the upper envelope Figure
1(b) develops (increases) toward north-east in the(τ, λ) space.

τ

γ
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−0.15
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−0.05

0.05

(a)

λ

γ
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0.1 0.2 0.3 0.4 0.5 0.6

−0.2

−0.15

−0.1

−0.05

0.05

(b)

FIGURE 2: (a) two-dimensional plots of theλ∗-sections of the growth rate functionγ (τ, λ) = Ψ (τ, λ)− 1
defined in (28) forf = f0 = 1.43 and the seven values of the pairsp, λ∗ listed in the first and third columns of
Table 1; (b) two-dimensional plots of theτ∗-sections of the same growth rate function forf = f0 = 1.43 and

the seven values of the pairsp, τ∗ listed in the first and second columns of Table 1.

5 Conclusions

Using the OLG framework, we have shown that a simple modification of the Barro (1990)’s endoge-
nous growth model, introduced to take into account the possibility that public officials will steal a
fraction of public resources under their own control, is capable of theoretically explain the existence
of high growth rates in the presence of Big Government size. Specifically, we have shown that, under
realistic conditions on parameters’ values, a monotonic increasing relationship exists among the level
of Social Capital (expressed in terms of either the probability to detect cheating public officials or the
fine charged to them), the Government size (expressed both interms of the tax rate and the number
of public employees) and the maximum achievable economic growth rate. Social Capital could thus
be the missing dimension accounting for the controversial empirical results on this issue as well as
for the ENC case. High levels of Social Capital affect the behavior of public officials monitoring
the public expenditures for intermediate goods and services supplied to private firms, and thus the
efficiency of Government as a whole.

Appendix

Proof of Proposition 1. To prove i) we only must show that the optimal thefts in (25) is interior,
that is it satisfies0 < s < 1, and that the argument of the utility in the second term in (21) is strictly
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positive,w̄t − xt − fqtst > 0, whenxt andst are defined according to (22) and (23) respectively,
that is, the optimal choice onxt andst must yield positive consumption in the unlucky event of being
caught.

The former property is a consequence of Assumption A.1 together with condition (24). First
note that Assumption A.1 requires the termτ (1− λ)− (1− τ) (1− α)λ in the denominator of (25)
to be positive, so that, in order to haves > 0 in (25), as the term(1− τ) (1− α)λ is positive
by construction, the term1 − p (f + 1) in the numerator must be positive as well, that is, the first
condition in (24) must hold. To haves < 1 as well we solve

[1− p (f + 1)] (1− τ) (1− α)λ

(1 + β) f [τ (1− λ)− (1− τ) (1− α)λ]
< 1,

which, under Assumption A.1, is equivalent to

{[1− p (f + 1)] (1− α)λ+ (1 + β) f (1− αλ)} τ
> [1− p (f + 1) + (1 + β) f ] (1− α)λ,

which immediately yields the second condition in (24). It iseasily shown that the second condition in
(24) is stronger than Assumption A.1 onτ as, using the fact that the first condition in (24) is equivalent
to 1− p (f + 1) > 0, the inequality

[1− p (f + 1) + (1 + β) f ] (1− α)λ

[1− p (f + 1)] (1− α)λ+ (1 + β) f (1− αλ)
>

(1− α)λ

1− αλ

boils down toλ < 1, which holds by construction.
The latter property follows directly from (22) and (23):

w̄t − xt − fqtst = w̄t −
β

1 + β
w̄t − fqt

1− p (f + 1)

(1 + β) f

w̄t

qt
=

p (f + 1)

1 + β
w̄t,

where the last term is positive wheneverw̄t = (1− τ)wt > 0.
Property ii) is an immediate consequence ofs in (25) being constant and all the discussion in

Subsection 2.2.
Finally, to prove iii), direct computation of∂s/∂p, ∂s/∂f and∂s/∂τ in (25) show that they are

all negative under our assumptions on all parameters.

Proof of Proposition 2. Property i) is established by direct computation of the partial derivatives
with respect top andf of the functionγ (τ, λ) = Ψ (τ, λ) − 1 defined in (28), which turn out to be
both positive.

To prove ii) let

A =
β (1− α) θ

1

α

(1 + β)
and B =

[

1 +
1− p (f + 1)

(1 + β) f

]

(1− α) (33)

so that we can rewriteΨ(τ, λ) in (27) as

Ψ(τ, λ) = A

(

1− τ

1− λ

)

[τ (1− λ)− (1− τ)Bλ]
1−α

α . (34)

Note that under all our assumptions, including the first condition in (24) which implies that1 −
p (f + 1) > 0, the constants in (33) are positive:A,B > 0. The term in square brackets on the RHS
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of (34) is positive because it is the result of the product(1− s) [τ (1− λ)− (1− τ) (1− α)λ] with
[τ (1− λ)− (1− τ) (1− α)λ] > 0 under Assumption A.1 and(1− s) > 0 under condition (24) of
Proposition 1. Specifically, we have:

τ (1− λ)− (1− τ)Bλ > 0 for all 0 < λ < 1 and τL (λ) < τ < 1,

whereτL (λ) is the lower bound in the admissible range forτ defined by the second condition in (24),

τL (λ) =
[1− p (f + 1) + (1 + β) f ] (1− α)λ

[1− p (f + 1)] (1− α)λ+ (1 + β) f (1− αλ)
, (35)

where we stress its dependency onλ. For a given 0 < λ < 1, the problem
max {γ (τ) = Ψ (τ)− 1 : τL (λ) < τ < 1} = max {ln [Ψ (τ)] : τL (λ) < τ < 1} can be written as

max
τL(λ)<τ<1

{lnA+ ln (1− τ)− ln (1− λ)

+
1− α

α
ln [τ (1− λ)− (1− τ)Bλ]

}

,
(36)

where we used (34). FOC on the RHS easily yields the optimal value

τ ∗ (λ) =
Bλ+ (1− α) (1− λ)

Bλ+ 1− λ
. (37)

Using the definition ofB in (33), note that[1− p (f + 1) + (1 + β) f ] (1− α) = (1 + β) fB and
[1− p (f + 1)] (1− α) = (B + α− 1) (1 + β) f , so that, substituting into (35), we get the lower
boundτL (λ) as a function ofB andB as a function ofτL (λ):

τL (λ) =
Bλ

Bλ+ 1− λ
, and B =

(1− λ) τL (λ)

λ [1− τL (λ)]
. (38)

Using the latter expression forB in in the expression (37) we can write the optimal tax rate as a
function of the lower boundτL (λ) recalled in (35):

τ ∗ (λ) = 1− α + ατL (λ) , (39)

from which, asτL (λ) < 1, it is apparent thatτ ∗ (λ) > τL (λ); while, asα < 1, from (37) it follows
that τ ∗ (λ) < 1 as well, establishing that the unique stationary pointτ ∗ (λ) is interior. Substituting
τL (λ) as in (35) into (39),

τ ∗ (λ) = 1− α +
α [1− p (f + 1) + (1 + β) f ] (1− α)λ

[1− p (f + 1)] (1− α)λ+ (1 + β) f (1− αλ)
,

the expression in (29) is immediately obtained.
To confirm thatτ ∗ (λ) is the unique solution of (36) for fixedλ, first note that, substitutingB

according to the second equation in (38) in the termτ (1− λ)− (1− τ)Bλ, for τ > τL (λ) it holds

τ (1− λ)− (1− τ)Bλ =
1− λ

1− τL (λ)
[τ − τL (λ)] > 0,

moreover, using the first equation in (38) forτL (λ) in the termτ (1− λ)−(1− τ)Bλ, for τ → τ+L (λ)
one has

τ (1− λ)− (1− τ)Bλ → Bλ (1− λ)− (1− λ)Bλ

Bλ+ 1− λ
= 0+,
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so that,

lim
τ→τ

+

L
(λ)

∂

∂τ
ln [Ψ (τ)] = lim

τ→τ
+

L
(λ)

{

− 1

1− τ
+

1− α

α

[

Bλ+ 1− λ

τ (1− λ)− (1− τ)Bλ

]}

= +∞,

implying that(∂/∂τ) ln [Ψ (τ)] > 0 for all τL (λ) < τ < τ ∗ (λ). Next, it holds

lim
τ→1−

∂

∂τ
ln [Ψ (τ)] =

1− α

α

(

Bλ+ 1− λ

1− λ

)

+ lim
τ→1−

(

− 1

1− τ

)

= −∞,

implying that (∂/∂τ) ln [Ψ (τ)] < 0 for all τ ∗ (λ) < τ < 1. This establishes thatln [Ψ (τ)] is
inverted U-shaped functions and thatτ ∗ (λ) in (29) is the unique solution of (36); asln [Ψ (τ)] is a
monotone transformation ofΨ(τ), the same holds true forΨ(τ), and in turn, for the growth rate
γ (τ) = Ψ (τ)− 1 defined in (28), for each fixed0 < λ < 1.

To establish iii) we consider the objective function in (36),

lnΨ (τ, λ) = lnA+ ln (1− τ)− ln (1− λ)

+
1− α

α
ln [τ (1− λ)− (1− τ)Bλ] ,

(40)

as a function of both variablesτ and λ and study it over the open set
{(τ, λ) : (0 < λ < 1) ∧ [τL (λ) < τ < 1]}. As, according to (33),A andB do not depend onτ or
λ, FOC with respect toλ on the RHS of (40) easily yields the critical value

λ∗ =
(1− 2α) τ + (1− α) (1− τ)B

(1− 2α) [τ + (1− τ)B]
,

and pairing it with equation (37) leads to the unique stationary point with coordinates

τ ∗ =
α−B

1−B
, and λ∗ =

2α− 1− αB

(2α− 1) (1−B)
, (41)

which, after replacingB according to (33) and through some algebra, establish (31) and (32). The
two conditions in (30) clearly guarantee that2α − 1 − αB > 0 ⇐⇒ B < 2 − 1/α, which, as
0 < (1− α)2 = α2 − 2α+ 1 ⇐⇒ 2− 1/α < α, in turn, impliesB < α < 1; asα >

(√
5− 1

)

/2 >
1/2 =⇒ (2α− 1) > 0, all these conditions together establish that bothτ ∗ andλ∗ are positive. More-
over,τ ∗ < 1 because0 < α−B < 1−B, whileλ∗ < 1 because2α−1−αB < (2α− 1) (1−B) ⇐⇒
(1− α)B > 0. To check thatτ ∗ > τL (λ

∗), with τL (λ
∗) defined in (35) forλ = λ∗, we first use the

expression ofλ∗ in (41) in the expression forB as in (38) to get

B =
(1− λ∗) τL (λ)

λ∗ [1− τL (λ)]
=

(1− α)BτL (λ)

(2α− 1− αB) [1− τL (λ)]
⇐⇒ B =

α [2− τL (λ)]− 1

α [1− τL (λ)]
.

Next, we replace the last expression forB in the first equation in (41) to get, after some algebra,

τ ∗ =
α−B

1− B
=

1− α (2− α)

1− α
+ ατL (λ) ;

as[1− α (2− α)] / (1− α) + ατL (λ) > τL (λ) is equivalent to1 > τL (λ), which is definitely true,
we have shown thatτ ∗ > τL (λ). Therefore, we conclude that the stationary point(τ ∗, λ∗)with coordi-
nates given by (31) and (32) is an interior point of the open set
{(τ, λ) : (0 < λ < 1) ∧ [τL (λ) < τ < 1]}.

To prove iv) we first verify that both(∂/∂p)B (p, f) and (∂/∂f)B (p, f) are strictly negative
through direct differentiation ofB as in (33) with respect top andf . Finally, using the fact that
(∂/∂p)B (p, f) < 0 and(∂/∂f)B (p, f) < 0, by differentiating the expressions of bothτ ∗ andλ∗

as in (41) with respect top andf it is easily established that that they are all strictly positive, and the
proof is complete.
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