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Academic inventors and the antecedents of green technologies.  

A regional analysis of Italian patent data 
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Abstract 

This work investigates the generation of green technologies (GTs) in Italian NUTS 3 regions 

across time, by focusing on the knowledge generation mechanisms underlying the creation of 

green patents. Firstly, we hypothesize that inventions in non-green technological domains 

positively influence the generation of GTs, because the latter occur as the outcome of a 

recombination process among a wide array of technological domains. Secondly, we hypothesise 

that the involvement of academic inventors in patenting activity bears positive effects on the 

generation of GTs, because they are able to manage the recombination across different 

technological domains. Thirdly, we explore the interaction effect between academic inventors’ 

involvement and non-green technologies to investigate whether the former are especially 

relevant in presence of higher or lower levels of the latter. We estimate zero-inflated negative 

binomial, spatial durbin and logistic regressions on a dataset of 103 Italian NUTS 3 regions for 

which we collected patent and regional data for the time span 1998-2009. The results suggest 

that both academic inventors and spillovers from polluting technologies bear positive direct 

effects on the generation of GTs; moreover, we find that academic inventors compensate for 

low levels of spillovers.  
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1 Introduction 

A wide body of literature has investigated the determinants of the generation and 

adoption of green technologies (GTs) (Barbieri et al., 2016). The main motivation behind these 

studies can be found in the well-known Porter hypothesis, according to which firms introducing 

GTs in their production processes will obtain the twofold advantage of increasing their 

productivity and improving their environmental performances (Porter and van der Linde, 1995; 

Carrión-Flores and Innes, 2010; Carrión-Flores et al., 2013). A major economic issue is 

represented in this context by the so-called “double externality” problem. Green technological 

knowledge shares the same features of knowledge as an economic good, leading to market 

failures and therefore to suboptimal investments in green R&D. In addition, GTs are a source 

of another externality that is related to the improvement of environment quality (Rennings, 

2000).  

In this framework, according to the inducement hypothesis, stringent regulatory 

frameworks drive firms’ adoption of GTs. This in turn contributes to the creation of a market 

for GTs, providing the economic incentive to suppliers for the generation of green inventions 

(Popp, 2002; Taylor et al., 2005; Popp, 2006; Fischer and Newell, 2008; Popp et al., 2009; 

Nemet, 2009; Popp, 2010; Acemoglu et al., 2012; Johnstone et al., 2012; Hoppmann et al., 

2013). For these reasons, most of the extant literature has focused on the relevance of policy 

intervention as a determinant of both the generation and adoption of GTs. Somewhat less 

attention has instead received the investigation of the dynamics underlying the generation of 

GTs.  

In this paper, we intend to fill this gap and shed new lights on the antecedents of green 

inventions (del Rio González et al., 2009). By opening the black box of GTs, we extend the 

existing literature in many directions. Firstly, we investigate the extent to which non-green 

technologies can have an impact on the generation of GTs. Recent contributions indeed stress 

that the generation of GTs is more likely to occur as the outcome of a recombination process 

spanning across a wide array of technological domains (Dechezlepetre et al., 2013). More 

specifically, the combination of green technological domains with non-green ones seems to be 

a particularly fruitful condition for the generation of new GTs through hybridization (Zeppini 

et al, 2011). 

Secondly, and related to the previous point, we study the role of academic scientists 

when involved in patenting activity. In fact, it has been shown that scientists are more likely to 
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generate patents that span technological boundaries, suggesting that academic inventors are 

better able to manage the recombination across different, and not necessarily related, 

technological domains (Gruber et al., 2013). These arguments lead us to hypothesise that the 

stock of non-green patents and the involvement of academic scientists positively influence the 

generation of green patents. Finally, we also explore the interplay between the impact of 

academic inventors and that of non-green technologies on the generation of GTs, with the aim 

of investigating the extent to which the former are particularly relevant in presence of higher or 

lower levels of spillovers from non-green technologies. 

We employ a knowledge production function (KPF) approach to test our hypotheses: 

we estimate the production of green patents as a function of the stock of non-green patents, 

academic inventors’ involvement and a set of control variables at NUTS 3 and 2 level. The 

latter include industry determinants (i.e. gross value added, industry employment), R&D 

determinants (i.e. total expenditure in research and development, science and technology 

graduates, university expenditure in research and development), local knowledge base 

determinants (i.e. technological variety) and environmental policy determinants (i.e. 

environmental performance). We run our analysis on a panel dataset of 103 Italian NUTS 3 

regions containing patent data covering the period 1998-2009, collected from the OECD Regpat 

databases and combined with the APE-INV Dataset, along with the Cambridge Econometrics 

European Regional Database and with data from the Italian Institute for National Statistics and 

from a national environmental association. 

The rest of the paper is organized as follows. In Section 2 we discuss the literature 

concerned with the generation of green technologies and present our hypotheses. Section 3 

presents the data, the variables construction and the methodology. Section 4 shows the results 

from the econometric analysis. Section 5 provides the conclusions and policy implications of 

this work. 

2 Literature and hypotheses 

2.1 Environmental innovation 

Environmental innovations are defined by Kemp et al (2010:1) as “new or modified 

processes, techniques, systems and products to avoid or reduce environmental damage”. 

Because of their characteristics, environmental innovations bring environmental as well as 

economic benefits to the society, therefore resulting in a win-win situation (Horbach, 2008). In 
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particular, they produce positive spillovers while allowing firms to internalise negative 

environmental effects. This principle is fully developed by the so-called Porter hypothesis, 

according to which firms introducing GTs in their production processes will obtain the twofold 

advantage of increasing their productivity and improving their environmental performances 

(Porter and van der Linde, 1995; Ambec et al., 2013). 

For this reason, a wide body of empirical literature has focused on the drivers of green 

technologies (Barbieri et al., 2016). In these studies, particular attention has been devoted to 

the role of environmental technology policy and to the stringency of environmental regulatory 

frameworks. This interest is rooted in the well-known ‘double externality’ problem, according 

to which private investments in green technologies are sub-optimal because of the externalities 

related to the appropriability conditions of technological knowledge and to the social impact of 

green technologies in terms of improvement to the environment (Rennings, 2000). 

Environmental regulation has proven to yield a positive impact on green technologies. 

The underlying mechanism is based on an inducement effect activated by stringent policy 

frameworks. Firms are pushed to cope with the increase in production costs due to the 

incompliance with the regulation trough the introduction of innovations aiming at improving 

the environmental impacts of production processes, hence meeting the standards set forth by 

policymakers. These dynamics in turn contribute to the creation of a market for GTs, providing 

the economic incentive to suppliers (Jaffe and Palmer, 1997; Popp, 2002; Popp, 2006; Fischer 

and Newell, 2008; Popp et al., 2009; Popp, 2010; Johnstone et al., 2010; Costantini and 

Mazzanti, 2012; Acemoglu et al., 2012; Hoppmann et al., 2013; Costantini et al., 2015).  

According to del Rio González (2009), existing studies have put forth convincing 

evidence on the determinants of green technologies, focusing on the innovation and diffusion 

stages. The literature on the antecedents of green inventions is instead substantially 

underdeveloped at the moment. The notions of recombinant knowledge and collective invention 

can be far reaching in this respect. 

2.2 Recombinant knowledge and the generation of GTs 

The recombinant knowledge approach has gained momentum in the early 2000s, and it 

has profoundly influenced the understanding of the mechanisms underlying the creation of new 

ideas. Based on an intuition of Joseph Schumpeter, scholars in this domain have long argued 

that the process of knowledge generation relies heavily on the recombination of existing 
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knowledge components (Schumpeter, 1939; Nelson and Winter, 1982; Henderson and Clark, 

1990; Weitzman, 1996). These components include ideas, artifacts and any other fundamental 

bit of knowledge that may be used to develop innovations (Fleming and Sorenson, 2004).  

These intuitions proved to be particularly fertile and paved the way to several theoretical 

and empirical investigations aimed at assessing the extent to which all components are all alike 

in the recombination process, or rather some of them are better combinable than others. 

Technological relatedness has been indicated as a key driver for the success of knowledge 

recombination. The more the components are related to one another from a technological 

viewpoint, the higher is the probability of success of recombination dynamics, and the higher 

is their impact on innovation and economic performances. Different measures of relatedness 

have been proposed, supporting the validity of these conclusions both at the firm and the 

regional level (Nesta and Saviotti, 2005; Nesta, 2008; Antonelli et al., 2010; Quatraro, 2010 

and 2016; Colombelli et al., 2014). 

Recent contributions have applied the recombinant knowledge framework to advance 

the understanding of the dynamics behind the generation of GTs. Zeppini et al (2011) elaborate 

a model showing that the combination of green technological domains with non-green ones 

seems to be extremely fruitful for the generation of new GTs. This is because the recombination 

allows a paradigm shift from a dominant non-green regime to a clean technology one. Yet, they 

contend that this is a second-best choice when the costs of environmental policy are accounted 

for in their model. In a similar vein, Dechezleprêtre et al. (2013) show that GTs are much more 

cited than non-green technologies, receiving citations from both green and non-green new 

patents. This suggests that GTs have larger combinatorial potential, in view of their wider scope 

of application, as compared to other technologies. Also, they find that technologies stemming 

from the combination between green and non-green technologies outperform 'truly' non-green 

technologies in terms of impact on the generation of GTs. More recently, Corradini (2017) 

show that the entry of regions in green technological domains has an inverted U-shaped 

relationship with the relatedness to the green knowledge accumulated in the area. This result 

also suggests that green knowledge per se is not sufficient to warrant the development of GTs. 

Montresor and Quatraro (2018) explore the differential impact of technological relatedness to 

green and non-green knowledge, showing that both yield positive effects on the local 

emergence of new green specializations, though the magnitude of the impact of non-green 

knowledge is larger than that of GTs.  
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In addition, several examples show that knowledge recombination between green and 

non-green components has been particularly fruitful for the generation of environmentally 

relevant innovations: in the integrated photovoltaic and gas-turbine system, wasted heat is 

collected by photovoltaic devices; in the hybrid car a conventional combustion engine is 

combined with an electric propulsion system (Jaber et al, 2003); photovoltaic films result from 

the combination of thin layer technologies and solar cells (Zeppini et al, 2011).  

These considerations lead us to spell-out our first hypothesis about the impact of cross-

sector spillovers from non-green technological knowledge on the generation of green 

inventions: 

Hp 1: The local availability of non-green knowledge is positively associated to the local 

generation of green knowledge. 

2.3 Academic inventors and green patenting 

The recombinant approach proposes that new ideas emerge out of combination of 

knowledge components dispersed amongst economic agents (Allen, 1983). The generation of 

new technological knowledge requires therefore the command of a wide array of sources and 

competences that can hardly be concentrated in one single individual. Invention dynamics are 

more and more a collective activity, involving the collaboration of different agents able to 

process knowledge inputs from a variety of sources (Scandura, 2017). The importance of 

collective dynamics is confirmed by the evidence about the market increase of teamwork 

organization in knowledge production (Wuchty et al., 2007; Adams et al, 2005; de Solla Price, 

1963). Fragmentation and dispersion of knowledge, division of labor and the knowledge burden 

hypothesis have been proposed as concurrent explanations of this emerging trend (Jones, 2009; 

Agrawal et al., 2016; Teodoridis, 2017).  

The literature on inventors’ teams has investigated the determinants of successful 

teamwork knowledge production. In this framework, the educational background of inventors 

has been found to be one of the most important drivers, particularly whether it is in science or 

engineering (Allen, 1977). According to these studies, academic inventors, because of their 

distinct educational endowment, possess different knowledge sets and skills that allow them to 

successfully recombine knowledge bits across different technological domains. In fact, prior 

research shows that inventors with higher educational attainment possess a better understanding 

of technological problem solving, they are less constrained by their cognitive abilities and more 
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receptive toward innovation, and therefore more likely to engage in boundary-spanning 

activities (March and Simon, 1958; Hambrick and Mason, 1984; Gagné and Glaser, 1987; 

Walsh, 1995; Pelled, 1996; Hargadon, 2006). Similarly, Gruber et al. (2013) stress that 

scientists are more likely to generate patents than span technological boundaries as compared 

to engineers, suggesting that inventors endowed with a strong scientific background are able to 

manage the recombination across different, and not necessarily related, technological domains.  

Furthermore, recent contributions show that universities have a prominent role in the 

generation of environmental innovation, because the knowledge required for its implementation 

is more complex and more ‘codified’ than that required for other types of innovation (Cainelli 

et al., 2012; Cainelli et al., 2015). Analysing data from the Italian Community Innovation 

Survey, De Marchi and Grandinetti (2013) show that GTs are more sensitive to collaborations 

with universities and research centres, with respect to standard innovations. At the European 

level, Triguero et al. (2013) find that small and medium firms interacting with institutional 

agents, including research institutes, agencies and universities, perform better in terms of green 

patents. Similarly, a recent study by Fabrizi et al. (2018) investigating the role of regulatory 

policies and research networks for environmental innovation across European countries, 

confirms that the contribution of universities and public research centres in green research 

network is positive and higher than the contribution of private firms. These studies point to the 

argument that GTs need a large set of competencies and skills and, therefore, collaboration with 

‘high profile’ agents that possess those competencies and skills are fundamental to the 

successful generation of environmental innovation. 

Based on this conceptual background, we hypothesize that the involvement of inventors 

from universities in patenting activity bears positive effects on the generation of GTs, by 

increasing the production of green patents. Provided the level of cumulated human capital 

necessary to access academic jobs, it can be assumed that academic inventors have a higher 

level of education than those employed in industry. Since higher levels of education are 

associated with higher abilities and willingness to recombine knowledge across technological 

domains, this being a fundamental pre-condition for the creation of environmentally sound 

inventions, we hypothesise that the intensity of involvement of academic scientists is positively 

associated with the amount of green patents generated. Therefore, we formulate our second 

hypothesis as follows: 

 

https://www.sciencedirect.com/science/article/pii/S0048733318300556#bib0095
https://www.sciencedirect.com/science/article/pii/S0048733318300556#bib0095
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Hp 2: The higher is the involvement of academic inventors in local patenting dynamics, 

the higher is the local generation of green knowledge. 

2.4 Interaction between non-green knowledge and academic inventors 

The previous hypothesis points to the positive impact of academic inventors on the 

generation of green knowledge because of their ability to move beyond the constraints of 

cognitive proximity. However, academic inventors also play an important role in mitigating the 

impact of geographical proximity on the effects of knowledge spillovers. There is extensive 

literature in the field of geography of innovation stressing that knowledge spillovers are 

localized because of the interplay of institutional factors and because of the higher absorptive 

capacity of co-localized agents that is due to complementarities and similarities in their 

competence set (Saxenian, 1994; Audretsch and Feldman, 1996; Feldman, 1999; Antonelli, 

2001; Ellison et al., 2010). We can reasonably expect that the effects of the spillovers from non-

green knowledge identified in the first hypothesis are also geographically bound. Low levels of 

local non-green knowledge likely hinder the generation of GTs. All other things being equal, it 

is very unlikely that knowledge spillovers can flow from other distant regions because of the 

constraining role of space. 

However, some literature has proposed that not all knowledge flows are all alike, and 

that the binding role of geography hinders the flow of different kinds of knowledge to different 

extents. Particularly, the exchange of knowledge among scientists within epistemic 

communities has been found to be less sensitive to spatial decay. A proposed explanation to 

these specific patterns is related to the nature of knowledge exchanged in epistemic 

communities, with respect to the distinction between tacit and codified knowledge (Breschi and 

Lissoni, 2001; Quatraro and Usai, 2017). In this framework, the ICT revolution is considered 

responsible of the decrease in the marginal costs of transmitting codified knowledge across 

geographic space, which have become invariant with respect to geographical distance 

(Steinmuller, 2000; Cowan et al., 2000). 

Academic inventors can have a further role in this respect, by mitigating the dependence 

of the generation of GTs on the local spillovers from non-green technologies, because of their 

involvement in global epistemic communities and in the exchange of codified knowledge across 

dispersed places. In other words, according to Hp1, we expect that low levels of spillovers from 

local non-green knowledge are associated with low levels of GTs generation. However, in view 

of the arguments above, in places where there is high intensity of academic inventors one would 
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expect the bounded effects of knowledge spillovers to be weaker, because of their capacity to 

access geographically dispersed knowledge sources. In other words, academic inventors can be 

considered as agents favouring the substitution of cross-regional knowledge spillovers for local 

knowledge spillovers. This compensation effect translates into an expected negative sign of the 

interaction between academic inventors’ involvement and local knowledge spillovers variables. 

We can spell our last hypothesis as follows: 

Hp 3: The higher is the involvement of academic inventors in local patenting dynamics, 

the lower is the impact of local spillovers from non-green technologies on the local generation 

of green knowledge. 

In the rest of the paper we will present and discuss our empirical analysis and its results. 

In the next section we describe the data and the methodology that we have used in the 

econometric analysis and we motivate the choice of the implemented estimators. 

3 Data, variables and methodology 

3.1 Data sources 

We test our hypotheses on a panel dataset of 103 Italian NUTS 3 regions (provinces) 

with data available from 1998 to 2009. The dataset includes 1,236 records. It is made up of 

inventor and patent data from the database on “Academic Patenting in Europe” (APE-INV)3, 

combined with patent information form the OECD Regpat database and from the OECD 

Indicator of Environmental Technologies. Regional administrative data at NUTS 2 and 3 level 

have been collected from the Cambridge Econometrics European Regional Database. 

Additional data have been collected from the Italian Institute for National Statistics (ISTAT) 

and from an Italian environmental association. 

3.2 Dependent variables 

The dependent variable is constructed from the OECD Indicator of Environmental 

Technologies (OECD, 2011) combined with the OECD Regpat database (Maraut et al, 2008). 

The first one is a classification of green technologies based on the International Patent 

Classification (IPC), presenting the following seven environmental areas: (a) general 

environmental management, (b) energy generation from renewable and non-fossil sources, (c) 

                                                             
3  APE-INV is a project on academic patenting in Europe that has been funded by the European Science 
Foundation. See Lissoni (2013) and project website for full details http://www.esf-ape-inv.eu/. 

http://www.esf-ape-inv.eu/
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combustion technologies with mitigation potential, (d) technologies specific to climate change 

mitigation, (e) technologies with potential or indirect contribution to emission mitigation, (f) 

emission abatement and fuel efficiency in transportation, and (g) energy efficiency in buildings 

and lighting. The second is a database of technological classes linked to regions according to 

the addresses of the applicants and inventors. In the Italian case, it provides information on 

NUTS 2 (i.e. “Regioni”, or regions) and 3 (“Province” or provinces) levels. 

In this paper, we use a dependent variable that measures the province-level stock of 

green patents, following the perpetual inventory method as in Peri (2005). We initiate the stock 

in year 1977, which is the first year when we observe Italian patents in the OECD Regpat 

database, and use the recursive formula 𝐾_𝐺𝑇𝑖,𝑡 = (1 − 𝑑)𝐾_𝐺𝑇𝑖,𝑡−1 + 𝑁_𝐺𝑇𝑖,𝑡, where 𝑁_𝐺𝑇𝑖,𝑡 

is the flow of province level patent applications previously defined and 𝑑 is the obsolescence 

rate applied to depreciate the stock of past patent applications 𝐾_𝐺𝑇𝑖,𝑡−1. The value chosen for 

𝑑 is 15%, commonly used in the literature (Keller, 2002).4 The variable hence created allows 

to take into account not only the net amount of green patents generated, but also the cumulated 

green knowledge generated by past patenting activity.5  

Descriptive statistics are reported in Table 2. The stock of green patents has mean equal 

to 6.8 and standard deviation of 20.07, thus showing right skewness. In fact, 75% of the 

observations have a stock that is smaller than 5. In addition, 15% of observations have zero 

stock of GTs. To get a closer look at variation across province and across time, we plot the 

province time-trend of 𝐾_𝐺𝑇𝑖,𝑡 split into four geographical macro-areas (see Figure 1).6 Besides 

the presence of outliers in the North West (i.e. Milan and Turin), in the North East (i.e. Vicenza, 

Bologna and Modena) and in the Center (i.e. Roma, Pisa and Firenze), two considerations 

clearly emerge from the graphs. Firstly, we notice a clear positive trend only in few provinces 

located in the North and, to some extent, in the Center, whereas in the South there is a mix of 

increasing and decreasing stock of green patents across time. Secondly, while the well-known 

                                                             
4 This methodology has some drawbacks, such as the approximation of a linear depreciation scheme with 
a geometric one, the use of the same rate across regions, hence ruling out territorial differences, and some 
necessary degree of measurement error. However, given the availability of the data, it provides a good 
approximation for the purposes of our work. 
5 We also compute a dummy variable called GT_DUMMY, equal to 1 when there is generation of GTs, zero 
otherwise. We use this as dependent variable in a robustness check where we estimate the probability of 
generation of GTs (see section 4.2). 
6 North West provinces are those of Piedmont, Valle d’Aosta, Liguria and Lombardy; North East provinces 
belong to Veneto, Friuli-Venezia Giulia, Emilia-Romagna, and Autonomous provinces of Trento and 
Bolzano (formerly Trentino-Alto Adige); Central provinces are in Tuscany, Marche, Umbria and Lazio; 
Southern provinces belong to Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria, Sicilia and Sardegna. 



11 
 

Italian North-South gap in economic development is also mirrored by patent data, what is 

striking is that this gap seems to be widening across time, particularly in the post-2000 period. 

3.3 Independent variables 

The first factor we look at is cross sector spillovers from non-green technologies. We 

are interested in the role played by the cumulated knowledge in non-green domains for the 

generation of green technologies. Therefore, we use the stock of non-green patents applications, 

𝐾_𝑁𝑂𝐺𝑇𝑖,𝑡, calculated in the same way as the stock of green patent applications, by using the 

recursive formula 𝐾_𝑁𝑂𝐺𝑇𝑖,𝑡 = (1 − 𝑑)𝐾_𝑁𝑂𝐺𝑇𝑖,𝑡−1 + 𝑁_𝑁𝑂𝐺𝑇𝑖,𝑡 , where 𝑁_𝑁𝑂𝐺𝑇𝑖,𝑡 is the 

count of non-green patents applications. In addition, we use the squared term of the stock of 

non-green patents 𝐾_𝑁𝑂𝐺𝑇_𝑆𝑄𝑖,𝑡  to investigate whether spillovers have a quadratic 

relationship with our dependent variable. Similarly to the stock of green patents, the stock of 

non-green is right-skewed, presenting a mean value of 197.9 and a standard deviation is 563.7 

(see Table 2). 

The second factor we consider is the involvement of academic inventors in patenting 

activities. The APE-INV database allows the identification of academic inventors and their 

home address within the list of patent applications at the European Patent Office.7 From this, it 

is possible to identify provinces where there are academic inventors and tag patent applications 

with at least one academic inventor among the list of inventors. Based on this information, we 

work out two variables that will be used to measure academic inventors’ involvement. Firstly, 

we create a dummy having value 1 for provinces presenting patenting activity that involves 

academic inventors, and 0 otherwise. The dummy 𝐴𝐶𝐴𝐷_𝑃𝐴𝑇𝑖,𝑡  has a mean value of 0.47, 

indicating that 47% of provinces across time presents academic patenting activity (see Table 

2). Secondly, we compute the share of patents involving academic inventors by dividing the 

count of patents involving at least one academic inventor per the total count of patents produced 

in a given province at a given time. The distribution of the variable 𝑆𝐻𝐴𝑅𝐸_𝐴𝐶𝐴𝐷𝑖,𝑡 shows 

that 52% of the province-year observations has no involvement at all; the mean value is 0.027, 

indicating that on average, 2.7% of patents involve academic inventors, with a standard 

deviation of 0.06. In the empirical analysis, we employ the share hence calculated as well as its 

squared term (𝑆𝐻𝐴𝑅𝐸_𝐴𝐶𝐴𝐷_𝑆𝑄𝑖,𝑡) to control for curvilinear effects.  

                                                             
7 The identification of academic inventors is available for the time span 1996-2009. In this paper we 
shorten it to years 1998-2009, for which we have complete information on all other variables. 
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Finally, to test our third hypothesis of an interaction effect between academic inventors’ 

involvement and cross-sector spillovers from polluting technologies, we generate two 

interaction terms: 𝐴𝐶𝐴𝐷_𝑃𝐴𝑇𝑖,𝑡 ∗ 𝐾_𝑁𝑂𝐺𝑇𝑖,𝑡  and 𝑆𝐻𝐴𝑅𝐸_𝐴𝐶𝐴𝐷𝑖,𝑡 ∗ 𝐾_𝑁𝑂𝐺𝑇𝑖,𝑡 , where the 

spillover variable is multiplied for the dummy indicating academics’ involvement and for the 

share of patents involving academics. 

3.4 Control variables 

We create a number of control variables to account for various province-level 

characteristics. In the first place, we control for industry related factors, given sectoral 

differences in propensity to patent. Hence, we use industry gross value added (𝐼𝑁𝐷_𝐺𝑉𝐴𝑖,𝑡) 

and employment in industry (𝐼𝑁𝐷_𝐸𝑀𝑃𝑖,𝑡). We use the Cambridge Econometrics’ European 

Regional Database (ERD) to construct them. This is a highly disaggregated dataset across 

regional and sub-regional dimensions, based on Eurostat REGIO database and the AMECO 

dataset of the European Commission's Directorate General Economic and Financial Affairs.  

Secondly, we control for R&D and human capital factors to capture the determinants of 

GTs related to the local R&D structure and availability of skilled workforce. We employ total 

R&D expenditure (𝑅&𝐷_𝐸𝑋𝑃𝑖,𝑡), R&D expenditure of universities (𝑅&𝐷_𝑈𝑁𝐼𝑖,𝑡), and science 

and technology graduates (𝑆&𝑇_𝐺𝑅𝐴𝐷𝑖,𝑡 ). We collect data from ISTAT databases, which 

provide information on them at NUTS 2 level. To compute the NUTS 3 corresponding 

variables, we weight the NUTS 2 variables for the NUTS 3 share of regional GDP. 

We also control for the heterogeneity of technological domains at province level so to 

account for the structure of the local technological base. We create a variable (𝑇𝐸𝐶𝐻_𝑉𝐴𝑅𝑖,𝑡) 

that measures technological variety, calculated from the probability of co-occurrence of patent 

technological classes within province patent applications.8 The higher the variable, the higher 

                                                             
8 Following Quatraro (2010), we measure technological variety in province knowledge bases using the 
information entropy index (Attaran and Zwick, 1987). For the purpose of this work, the entropy index 
measures the degree of disorder or randomness of the province knowledge base starting from the 
probability of co-occurrence of patent technological classes within province patent applications. Each 
technological class j is linked to class m when the same patent is assigned to both of them. The higher the 
number of patents jointly assigned to classes j and m, the stronger this link is. Since technological classes 
are listed in patent documents, we refer to the link between j and m as the co-occurrence of both of them 
within the same patent document. Given 𝑝𝑗𝑚  the probability of co-occurrence of the two technological 

classes, a two dimensional entropy measure (E) is expressed as follows: 𝐸 = ∑ ∑ 𝑝𝑗𝑚
𝑤
𝑚=1

𝑞
𝑗=1 log2(1/𝑝𝑚𝑗). In 

other words, E measures the variety of co-occurrences of technological classes j and m in a given province. 
A multidimensional index, which accounts for all patent technological classes in the province, measures the 
heterogeneity of all classes. The higher the index, the higher is technological variety in a given province.  
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is technological variety in a given province. The data source for its creation is the OECD Regpat 

dataset on technological classes linked to provinces. 

Finally, we control for environmental policies through an index of environmental 

performance created by Legambiente, an Italian non-profit organisation dedicated to 

environmental issues. The Legambiente index (𝐸𝑁𝑉_𝑃𝐸𝑅𝐹𝑖,𝑡) provides a score for each of the 

103 province capital cities, based on several indicators of e.g. air quality, green areas, drinking 

water quality, energy consumption, waste recycling performance. Legambiente releases a 

ranking of Italian cities on the basis of the city scores. This ranking implicitly provides an 

assessment of the performance of local policy-makers in managing environmental protection 

tasks (Bianchini and Revelli, 2013).9 

All control variables and their descriptive statistics are reported in Table 1 and Table 2. 

Table 3 presents the correlation table of all variables. The dependent variable is highly 

correlated with the variable measuring spillovers from non-green domains; it is also positively 

and significantly correlated with the dummy indicating academic inventors’ involvement and 

with most of the control variables.  

TABLES 1, 2, 3 ABOUT HERE 

FIGURE 1 ABOUT HERE 

3.5 Methodology 

The literature dealing with the empirical analysis of regional innovation performance is 

often based on the implementation of the so-called knowledge production (KPF). The KPF is 

among the pillars of the applied economics of innovation (Griliches, 1979, 1990, 1992; Romer, 

1990; Link and Siegel, 2007) and it has been widely applied in several contexts including firms, 

regions, industries and countries. In line with extant research, we employ an extended KPF 

where the stock of green patents (𝐾_𝐺𝑇𝑖,𝑡) is the dependent variable and cross-sector spillovers 

(𝐾_𝑁𝑂𝐺𝑇𝑖,𝑡 ), academic inventors’ involvement (𝐴𝐶𝐴𝐷_𝑃𝐴𝑇𝑖,𝑡 , 𝑆𝐻𝐴𝑅𝐸_𝐴𝐶𝐴𝐷𝑖,𝑡 ) and their 

interaction are among the regressors. Among the right-hand side variables of our models we 

                                                             
9 Clearly, urban environmental quality is not entirely under control of city governments. Regional and 
central government also play a role, and there may be relevant spillovers from nearby jurisdictions. 
However, given their institutional role in environmental monitoring, regulation and protection, the impact 
of city-level governments on environmental performance can be substantial (Lo Prete and Revelli, 2017). 
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also include a vector of control variables (𝑋𝑖,𝑡), NUTS 2 fixed effects (𝜌𝑖) and year fixed effects 

(𝜏𝑡). Therefore, we estimate the following equations: 

(1a) 𝐾_𝐺𝑇𝑖,𝑡 = 𝛽0 + 𝛽1 𝐾 𝑁𝑂𝐺𝑇𝑖,𝑡 + 𝛽2 𝐴𝐶𝐴𝐷 𝑃𝐴𝑇𝑖,𝑡  + 𝛾𝑋𝑖,𝑡 + ∑𝜌𝑖 + ∑𝜏𝑡 + 𝜀 

(1b) 𝐾_𝐺𝑇𝑖,𝑡 = 𝛽0 + 𝛽1  𝐾 𝑁𝑂𝐺𝑇𝑖,𝑡 + 𝛽2 𝐴𝐶𝐴𝐷 𝑃𝐴𝑇𝑖,𝑡 + 𝛽3𝐴𝐶𝐴𝐷 𝑃𝐴𝑇𝑖,𝑡  ∗

𝐾 𝑁𝑂𝐺𝑇𝑖,𝑡 + 𝛾𝑋𝑖,𝑡 + ∑𝜌𝑖 + ∑𝜏𝑡 + 𝜀𝑖,𝑡 

 

(2a) 𝐾_𝐺𝑇𝑖,𝑡 = 𝛽0 + 𝛽1 𝐾 𝑁𝑂𝐺𝑇𝑖,𝑡 + 𝛽2 𝑆𝐻𝐴𝑅𝐸 𝐴𝐶𝐴𝐷𝑖,𝑡  + 𝛾𝑋𝑖,𝑡 + ∑𝜌𝑖 + ∑𝜏𝑡 + 𝜀 

(2b) 𝐾_𝐺𝑇𝑖,𝑡 = 𝛽0 + 𝛽1 𝐾 𝑁𝑂𝐺𝑇𝑖,𝑡 + 𝛽2 𝑆𝐻𝐴𝑅𝐸 𝐴𝐶𝐴𝐷𝑖,𝑡  + 𝛽3𝑆𝐻𝐴𝑅𝐸 𝐴𝐶𝐴𝐷𝑖,𝑡  ∗

𝐾 𝑁𝑂𝐺𝑇𝑖,𝑡 + 𝛾𝑋𝑖,𝑡 + ∑𝜌𝑖 + ∑𝜏𝑡 + 𝜀 

The analysis of the antecedents of the generation of GTs poses an additional problem 

that is due to a number of year-province observations for which we observe zero green patents. 

These are around 15% of the sample. In this framework, investigation is needed to establish 

whether the observed zeros are due to the overall absence of patenting activity or to a specific 

lack of green patents nonetheless featuring some degree of technological activities. The zero-

inflated negative binomial (ZINB) model represents the most appropriate solution at hand 

because it allows the zeros in the dependent variable to be generated by a different process with 

respect to the positive values. The ZINB model runs simultaneously two equations: a binary 

logistic equation to model the zeros (inflation part of the model) and a negative binomial 

equation to model the dependent variable. The logit equation allows to distinguish between 

provinces where there is patenting activity, but not green patents, and regions where there is no 

patenting activity at all. We base our inflation model on the stock of total patent (both green 

and non-green) in each province (𝐾_𝑇𝑂𝑇𝑖,𝑡).  

In order to exploit the panel data structure, we employ year and region fixed effects. We 

employ NUTS 2 fixed effects to allow convergence of the ZINB model and we cluster standard 

errors at NUTS 3 level so to account for province-specific effects. In addition, we employ 1 

and 2 year lagged regressors to further rule out reverse causality concerns. In particular, while 

the vector of control variables is lagged by one year only, the stock of non-green patents and 

the academic inventors’ variables are lagged by two years. Using larger time lags for the factors 

that should have major influence on the generation of GTs is reasonable in light of the time it 

usually takes to generate an invention, apply for patent and, eventually, having it granted. In 
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fact, besides inventive activity, the application and granting process can take up to, on average, 

18-24 months. Finally, given the skewness of some of the continuous variables, we transform 

them to linearize their trend. We apply the inverse hyperbolic sine transformation, which allows 

not to lose any zero in the variables.10 For consistency and to ease interpretation of the results, 

we transform all continuous variables using the same method. 

4 Results 

4.1 Main results 

The main results are reported in Tables 4 and 5. In table 4 we present the ZINB 

regressions of models (1a) and (1b), where the dummy variable ACAD_PAT measures 

academic inventors’ involvement. In columns 1-3 we produce the results on the subsamples of 

observations for which we observe no missing data on any of the variables. This corresponds 

to 927 observations over years 2001-2009. In columns 4-6 we replicate the regressions on the 

full sample of 1,236 observations after excluding the variable ENV_PERF, for which data are 

only available from 2001 onwards. 

The variable measuring the stock of patents in non-green domains (K_NOGT) is 

consistently positive and significant (at 1-5% level) in all models. This confirms the first 

hypothesis of our work, according to which the production of GTs substantially depends upon 

the stock of non-green technologies. This leads us to assert that there are substantial spillovers 

from dirty to clean technologies. Similarly, the variable ACAD_PAT is positive and significant 

(at 1% level) in all models, thus confirming our second hypothesis of a positive contribution of 

academic inventors to the generation of GTs. Thanks to their peculiar endowment in skills, 

academic scientists are able to fruitfully recombine knowledge bits from various technological 

domains, which is a pre-condition for the successful generation of green technologies. Finally, 

the coefficients of the interaction term between K_NOGT and ACAD_PAT displayed in 

columns 3 and 6 are negative and significant (at 1% level), hence providing support to the third 

hypothesis of this work. Therefore, we find a compensation effect of academic inventors’ 

                                                             
10 This is an alternative to the Box-Cox transformations, defined by the following formula: 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑦 =
log [𝑦𝑖 + (𝑦𝑖

2 + 1)1/2]. Except for very small values of y, the inverse sine can be interpreted as a standard 
logarithmic variable. However, unlike a logarithmic variable, the inverse hyperbolic sine is defined at zero 
(Johnson, 1949; Burbidge et al, 1988; MacKinnon et al, 1990). 
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involvement on cross-sector spillovers, due to the fact that academic inventors favour the 

substitution of cross-regional knowledge spillovers for local knowledge spillovers. 

The coefficients of K_NOGT in the full models in columns 3 and 6 indicate that the 

expected stock of green patents increases by 0.04 units for each unit increase in the stock of 

non-green patents. Therefore, K_GT increases by a factor of 1.04. 11  The coefficients of 

ACAD_PAT in columns 3 and 6 suggest that the expected stock of GTs for provinces where 

academic inventors are involved in patenting activity is 1.112 times the expected stock of GTs 

for provinces with no academic inventors’ involvement, holding all other variables constant. 

Therefore, K_GT is 10% higher in provinces where academic inventors’ are involved in 

patenting.  

The negative coefficients of the interaction terms indicate that the strong involvement 

of academic members in inventors’ teams compensate for the lack of appropriate levels of local 

knowledge spillovers, most likely because of the ability of academic inventors to engage in 

spatially unbounded knowledge exchanges. Specifically, in areas characterised by high 

intensity of academic inventors, the decrease of K_NOGT has no negative effects on the 

expected value of K_GT. On the contrary, we find that thanks to the compensation effect, a unit 

decrease in K_NOGT increases the expected value of K_GT by a factor of 0.02.13 in provinces 

where academic inventors are involved in patenting activity. Figures 2 and 3 support our 

findings and further show that for lower levels of K_NOGT, provinces where academic 

inventors are involved in patenting activity display higher predicted levels of GTs, whereas the 

opposite holds for high levels of K_NOGT.  

As for the other regressors, it is worth noticing that the squared term of the spillover 

variable is negative and significant (at 1-5% level) in all models where it is included, hence 

suggesting an inverted U-shaped relationship between the stock of non-green technologies and 

the stock of GTs. In other words, while patents in non-green domains positively influence the 

generation of green patents, this is not true for high levels of the former. Industry determinants 

also matters for the generation of GTs, particularly the variable IND_GVA, whose coefficients 

are positive and significant (at 5-10% level) in the full sample estimations. R&D variables’ 

coefficients are positive and significant (at 1-5% level) in almost every estimation, especially 

                                                             
11 This is the incidence rate ratio, obtained by exponentiating the coefficient. 
12 This is exp(0.10). 
13 This is 1-exp(-0.02). 
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in the case of total R&D expenditure and R&D expenses of universities, thus confirming the 

relevance of the R&D regional infrastructure for the generation of GTs. Technological variety 

is positively and significantly related (at 5-10% level) to the dependent variable in the estimates 

on the full sample, suggesting that the higher heterogeneity of technological domains is, the 

higher the stock of GTs. 

It is also worth noting that our proxy for environmental policies never displays 

significant effects. This is not surprising, given the idiosyncratic features of the empirical 

context. In fact, even though Italy is part of the European environmental policy framework, it 

must be stressed that strong cross-country differences in the way policies are implemented still 

persist within Europe. In particular, Italy features very low levels in various OECD indicators, 

notably displaying low control of corruption and low levels of transparency and stability of 

environmental policy, as compared to the other OECD countries (Damania et al., 2003; Haščič 

et al., 2009; Johnstone et al., 2010).14    

The bottom part of Table 4 presents the estimation of the inflate part of the model: the 

inflate variable (K_TOT) predicting excessive zeros is negative and significant (at 1-10% 

level), which indicates that the higher the past stock of total patents, the lower the probability 

that there is no patenting activity in a given province. In other words, the more patents in 

K_TOT, the more likely that provinces display patenting activity (albeit green or not). 

In Table 5, we present the results of models (2a) and (2b) where the involvement of 

academics into patenting activity is measured with the variable SHARE_ACAD. As in Table 

4, the first three regressions are run on the subsample of observations for which there are no 

missing data point for every single variable (2001-2009), whereas the last three regressions are 

carried out on the full sample (1998-2009). The results are very similar to those in Table 4 with 

the only exception that the share of patents involving academic inventors is not statistically 

significant in columns 3 and 6, where the interaction term is included. The coefficients of 

SHARE_ACAD in models 2 and 5 indicate an increase in K_GT by a factor of 10 and 4 

respectively, due to a unit increase in the share of patents involving academics. We also find 

that SHARE_ACAD displays a quadratic behaviour with respect to the dependent variable, as 

shown by the negative and significant coefficient (at 5-10% level) of SHARE_ACAD_SQ in 

                                                             
14 According to Marin and Mazzanti (2013: p. 378): “manufacturing […] has also not adapted to the new 
climate change policy scenario, and even the environmental Italian policy as a whole has somewhat lagged 
behind other leading countries in terms of policy efforts”. 
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all models where it is included. Similarly to the spillover variable, SHARE_ACAD has an 

inverted U-shaped relationship with K_GT, thus implying that the proportion of patents 

involving academic inventors positively influence the generation of GTs up to a certain level, 

after which the relationship turns to be negative. This is consistent with the existing evidence 

on the dynamics of pecuniary knowledge externalities in areas characterized by congestion of 

technological activities (Antonelli et al., 2011). The interaction terms in columns 3 and 6 

support indicate a compensation effect between academic inventors and spillovers from 

polluting technologies, as their coefficients are negative and significant (at 5% level). Finally, 

control variables in Table 5 have very similar coefficients and significance of those in Table 4. 

All in all, our results confirm the hypotheses of this work. Firstly, there is a spillover 

effect from non-green domains to green domains, although this is true up to a given point only. 

Secondly, provinces displaying involvement of academic inventors into patenting activities 

have higher levels of green patents stock. When accounting for the exact share of patents 

involving academics, we find a fairly large effect but that is true up to a certain level. Finally, 

our data support the argument of compensation effects between academic inventors and local 

spillovers, whereby the higher is academics’ involvement in local patenting dynamics, the 

lower are the adverse effects of insufficient local spillovers on the generation of GTs. 

4.2 Robustness checks 

In this section, we show the results of various robustness checks. In the first place, we 

replicate our analyses on two subsamples of observations created on the basis of geographical 

macro-areas, by splitting the sample into Northern and Central-Southern Italy. We do so in light 

of the above illustrated remarkable differences in the stock of GTs across Italian provinces 

(Figure 1). We suspect that Northern provinces display different trends with respect to the rest 

of the provinces. Tables 6 and 7 show the results for the Northern and Center-South samples, 

respectively: in both tables, columns 1 and 2 present the results of models (1a) and (1b), while 

the estimates of models (2a) and (2b) are displayed in columns 3 and 4. We show only the main 

regressors of interest, but all control variables and year fixed effects are include in every model. 

Furthermore, we employ area fixed effects at the level of macro-regions, as follows: North-

Eastern and North-Western regions (Table 6), Centre and South regions (Table 7). A 

geographical pattern emerges from these results since the spillover effect is found in Northern 

provinces only; the role of academic inventors is confirmed in both areas but it is slightly 
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stronger in Southern provinces; the interaction effect between academic inventors and cross-

sector spillovers is negative and significant in Northern provinces only. 

The results in Tables 6 and 7 show a geographical divide, hence suggesting that the 

geographical dimension matters. For this reason, our second robustness check consists of a 

spatial regression model to further investigate such issues. We are interested in the effect of 

cross-sector spillovers and academic inventors when their spatial effects are accounted for. To 

do so, we implement a spatial Durbin auto-regressive model where we control for both spatially 

lagged regressors of interest.15  Various estimations show that there is no spatial effect of 

academic inventors.16 Therefore, we present only the estimates where the spatial lag of the stock 

of non-green patents is included. The results are presented in Table 8, where we show the Main, 

Direct, Indirect and Total Effects. We present the coefficients of the main independent variables 

only, but all control variables are included in the estimates. The spatial model so implemented 

includes year and NUTS 2 fixed effects. The results confirm Hp 1 (see column 1 and 4, 5 and 

8), and Hp 2 before introducing the interaction effect (see columns 1 and 4), while Hp 3 is only 

qualitatively confirmed. Furthermore, the results show that spillovers from non-green patents 

also have spatial effects, as can be noted from the statistically significant coefficient of 

K_NOGT is columns 3 and 7 and from the statistically significant spatial lag of K_GT in 

columns 1 and 5. Therefore, we find that the local generation of GTs positively benefits from 

intra and extra region cross-sector spillovers. 

The third and last set of regressions that we present to corroborate our results are shown 

in Tables 9 and 10. We implement a Logit model to estimate whether and to what extent the 

probability of generating green patents is influenced by the independent variables. We employ 

NUTS 2 and year fixed effect to account for the panel data structure. The dependent variable is 

a dummy indicating whether there is any green patenting activity in a given province at a given 

time (𝐺𝑇_𝐷𝑈𝑀𝑀𝑌𝑖,𝑡). This is created assigning value 1 every time the flows of green patents 

(𝑁_𝐺𝑇𝑖,𝑡) has positive values, 0 when it has value zero. The results are presented in Table 9, 

while the marginal effects are reported in Table 10. The coefficients confirm Hp 1 and 2 of this 

work, while Hp 3 is only qualitatively confirmed. Therefore, the probability of generation of 

GTs is positively influenced by cross-sector spillovers and by the involvement of academic 

inventors in patenting activities. Specifically, the probability of GTs generation increases by 2 

                                                             
15 We use the Stata command XSMLE (Stata 13). 
16 Not reported here. 
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percentage point due to an increase in the stock of non-green patents. It increases by 5 

percentage point in provinces where academic inventors are involved in patenting activity and 

by 32 percentage point due to an increase in the share of academic patents involving academic 

inventors. 

5 Conclusion 

This work has investigated the knowledge generation mechanisms underlying the 

creation of green technologies. We focus on the role of non-green technological domains, 

academic inventors, and the combination of their effects for the generation of GTs. To 

investigate these issues, we build a panel dataset of 103 Italian provinces observed through 

years 1998-2009, combining patent data from the OECD Indicator of Environmental 

Technologies and the OECD Regpat databases, inventor data from the APE-INV dataset, and 

regional administrative data from the Cambridge Econometrics ERD and ISTAT. The main 

empirical analysis consists of zero-inflated negative binomial regressions, while robustness 

checks include spatial panel data regressions and logistic regressions. 

Our results suggest positive cross-sector spillovers from non-green technological 

domains, hence supporting the first hypothesis of our work. Specifically, the previous stock of 

non-green patents positively influence the stock of green ones. In addition, our data show that 

Italian provinces featuring involvement of academic inventors in patenting activity display 

higher stock of green patents generated, thus supporting hypothesis 2. We find that both the 

dummy variable indicating whether there is any involvement of academic inventors and the 

exact share of province-level patents involving academics, are positively and significantly 

affecting the generation of GTs. Hypothesis 3 is also confirmed by our data in the main results, 

which show that academic inventors facilitate the substitution of cross-regional knowledge 

spillovers for local knowledge spillovers. The robustness checks carried out confirm the main 

findings, although the compensation effect between academics and spillovers is not always 

statistically confirmed. Additionally, our data show that spillovers from polluting technologies 

are more relevant in Northern Italian regions than in Southern areas, while the role of academic 

inventors is stronger in Southern regions than in the rest of the country. The interaction effect 

is found in Northern provinces only. We also find that cross-sector spillovers from 

neighbouring regions are fairly relevant for the local generation of green patents. Finally, the 
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probability of generation of GTs is positively influenced by both cross-sector spillovers and 

academic inventors. 

This work has few caveats, including the well-known limits of patent statistics as 

indicators of technological activities and the approximation of academia-business interaction 

with the involvement of academic inventors in patenting activity. Yet, previous studies 

highlighted the usefulness and reliability of patents to measure the production of new 

knowledge, notably in the context of regional innovation performances (see e.g. Acs et al., 

2002). Prior research also shows the key role of academic inventors for companies’ innovation 

and for regional innovation (see e.g. Meyer, 2004; Murray, 2004; Lissoni, 2010). 

Nonetheless, this work contributes to the academic debate in many ways. First of all, 

we shed lights on the knowledge recombination process behind green innovation. In particular, 

our results are in line with extant research as far as the recombination of different and distant 

technological domains are concerned. Specifically, in line with the theoretical model developed 

by Zeppini et al. (2011) and with the empirical results of Corradini (2017) and Montresor and 

Quatraro (2018), we show that knowledge recombination between green and non-green 

components is fruitful for the generation of environmentally relevant innovations through 

hybridization. Secondly, as vastly supported by the literature on patent inventors, we show that 

inventors are key actors in the knowledge recombination activity (see e.g. Gruber et al, 2013). 

Precisely, academic inventors, because of their educational endowment, are better able to 

recombine knowledge components across different technological domains (see e.g. Hargadon, 

2006). Additionally to previous studies, we show that there are compensation effects between 

cross-sector spillovers and academic inventors, whereby academic inventors reduce the 

dependence of the generation of GTs on the local spillovers from polluting technologies. This 

finding further reinforces the key role of academic inventors in the green innovation process. 

We believe this work contributes to opening the black box of green innovation because 

it uncovers the knowledge dynamics behind its generation. Furthermore, by exploring the role 

of academic inventors for the generation of GTs, this work combines two streams of the 

economics of innovation literature that have only rarely intersected, namely university-industry 

interactions and environmental innovation. Our analysis also has important policy implications 

grounded on the need to boost the generation of GTs, so to achieve a “smart growth” as defined 

by the Europe 2020 strategy. 17  In particular, our analysis contributes the debate on the 

                                                             
17 http://ec.europa.eu/europe2020/europe-2020-in-a-nutshell/index_en.htm  

http://ec.europa.eu/europe2020/europe-2020-in-a-nutshell/index_en.htm
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importance of optimal policy mixes for the promotion of technology-driven sustainability 

transition, which points to the need of coordination of environmental and science and 

technology policies (Crespi and Quatraro, 2015; Crespi et al. 2015; Costantini et al., 2015). 

First, our analysis indicates that for technology policies aiming at supporting the creation at 

GTs to be effective, resources should not be fully allocated exclusively to green R&D, due to 

the relevance of knowledge inputs from non-green technological activities. Moreover, much of 

the extant literature has stressed the importance of accessing external resources and 

participating to innovation networks for the generation of GTs. Our results suggest that science 

and technology policies should support the generation of GTs by explicitly stimulating 

university-industry interactions, particularly the involvement of academic scientists in teams of 

inventors. This would indeed ensure heterogeneity of competencies and availability of the 

necessary skills to combine knowledge inputs from diverse knowledge sources, even when they 

are geographically dispersed. 
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7 Tables 

      

  VARIABLES Description Data source Time span 

Dependent 

variables 

1 K_GT Province-level stock of green 

patents 

OECD Regpat, OECD 

Indicator of Environmental 

Technologies 

1998-2009 

2 GT_DUMMY Dummy equal to 1 for generation 

of GTs, 0 for no generation 

OECD Regpat, OECD 

Indicator of Environmental 

Technologies 

1998-2009 

      

Independent 

variables 

3 K_NOGT Province-level stock of non-green 

patents 

OECD Regpat, OECD 

Indicator of Environmental 

Technologies 

1998-2009 

4 SHARE_ACAD Share of patents involving 

academic inventors 

Academic Patenting in 

Europe Database (APE-INV) 

1998-2009 

5 ACAD_PAT Dummy equal to 1 for 

SHARE_ACAD>0, 0 for 

SHARE_ACAD=0 

Academic Patenting in 

Europe Database (APE-INV) 

1998-2009 

      

Control 

variables 

6 IND_GVA Industry gross value added Cambridge Econometrics’ 

European Regional Database 

1998-2009 

7 IND_EMP Employment in industry Cambridge Econometrics’ 

European Regional Database 

1998-2009 

8 R&D_EXP Total R&D expenditure Italian Institute for National 

Statistics 

1998-2009 

9 R&D_UNIV University R&D expenditure Italian Institute for National 

Statistics 

1998-2009 

10 S&T_GRAD Science and Technology 

graduates 

Italian Institute for National 

Statistics 

1998-2009 

11 TECH_VAR Technological variety, 

heterogeneity of technological 

domains 

OECD Regpat 1998-2009 

12 ENV_PERF Environmental performance score 

at city level 

Legambiente 2001-2009 

      

Fixed effects 13 YEAR Dummies - - 

14 NUTS 2 Dummies - - 

Table 1 Variable list. 
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  VARIABLES N mean sd min max 

Dependent vars 1 K_GT 1,236 6.798 20.07 0 204.5 

 2 GT_DUMMY 1,236 0.373 0.484 0 1 

        

Independent vars 3 K_NOGT 1,236 27.72 563.7 -170.2 5,717 

 4 SHARE_ACAD 1,133 0.0269 0.0590 0 1 

 5 ACAD_PAT 1,133 0.476 0.500 0 1 

        

Control vars 6 IND_GVA 1,236 2,531 3,498 140.3 30,424 

 7 IND_EMP 1,236 49.89 61.02 3.185 497.0 

 8 R&D_EXP 1,236 147,649 275,369 3,685 2.418e+06 

 9 R&D_UNIV 1,236 46,547 61,852 1,086 595,992 

 10 S&T_GRAD 1,228 1.544 1.721 0.0693 16.50 

 11 TECH_VAR 1,236 4.441 2.220 0 9.430 

 12 ENV_PERF 927 0.502 0.0884 0.213 0.746 

        

Fixed effects 13 YEAR 12 - - - - 

 14 NUTS 2 20 - - - - 

Table 2 Descriptive statistics. 

 

  1 2 3 4 5 6 7 8 9 10 11 12 

1 K_GT 1            
2 GT_DUMMY 0.36* 1           
3 K_NOGT 0.91* 0.33* 1          
4 SHARE_ACAD 0 -0.02 -0.02 1         
5 ACAD_PAT 0.25* 0.33* 0.24* 0.48* 1        
6 IND_GVA 0.85* 0.44* 0.92* -0.01 0.33* 1       
7 IND_EMP 0.83* 0.46* 0.88* -0.01 0.36* 0.99* 1      
8 R&D_EXP 0.79* 0.34* 0.73* 0.05 0.3* 0.74* 0.71* 1     
9 R&D_UNIV 0.63* 0.31* 0.59* 0.16* 0.35* 0.62* 0.62* 0.92* 1    
10 S&T_GRAD 0.51* 0.32* 0.44* 0.15* 0.34* 0.43* 0.43* 0.68* 0.73* 1   
11 TECH_VAR 0.43* 0.51* 0.44* 0.06 0.49* 0.59* 0.62* 0.43* 0.37* 0.39* 1  
12 ENV_PERF 0.03 0.19* 0.06 -0.03 0.19* 0.12* 0.12* 0.02 0.13* -0.05 0.4* 1 

Table 3 Pairwise correlation. Significance level 0.05 or more. 
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  1 2 3 4 5 6 

VARIABLES K_GT K_GT K_GT K_GT K_GT K_GT 

K_NOGT 0.0309** 0.0327*** 0.0477*** 0.0250** 0.0270** 0.0435*** 

 (0.0124) (0.0124) (0.0126) (0.0119) (0.0118) (0.0123) 

K_NOGT_SQ  -0.0329** -0.0276**  -0.0342*** -0.0282** 

  (0.0133) (0.0131)  (0.0115) (0.0115) 

ACAD_PAT 0.154*** 0.128*** 0.107*** 0.143*** 0.123*** 0.0971*** 

 (0.0502) (0.0445) (0.0389) (0.0473) (0.0425) (0.0367) 

ACAD_PAT*K_NOGT   -0.0189***   -0.0215*** 

   (0.00695)   (0.00654) 

IND_GVA 0.589 0.488 0.510 0.714** 0.604* 0.613* 

 (0.382) (0.370) (0.368) (0.339) (0.331) (0.327) 

IND_EMP -0.440 -0.336 -0.373 -0.501 -0.393 -0.425 

 (0.387) (0.383) (0.380) (0.362) (0.362) (0.357) 

R&D_EXP 0.200 0.273** 0.279** 0.186 0.263** 0.275** 

 (0.123) (0.123) (0.123) (0.118) (0.120) (0.120) 

S&T_GRAD 0.264* 0.301** 0.302** 0.0169 0.0329 0.0303 

 (0.147) (0.148) (0.150) (0.0876) (0.0886) (0.0906) 

R&D_UNIV 0.0385*** 0.0334*** 0.0305*** 0.0390** 0.0343** 0.0321** 

 (0.0114) (0.0114) (0.0118) (0.0153) (0.0146) (0.0149) 

TECH_VAR 0.239* 0.181 0.164 0.259** 0.203* 0.186* 

 (0.128) (0.125) (0.123) (0.116) (0.111) (0.109) 

ENV_PERF -0.0226 -0.205 -0.184    

 (0.505) (0.480) (0.480)    

Constant -7.138*** -7.068*** -7.086*** -7.289*** -7.184*** -7.194*** 

 (1.593) (1.583) (1.575) (1.448) (1.425) (1.410) 

Year FE Yes Yes Yes Yes Yes Yes 

NUTS 2 FE Yes Yes Yes Yes Yes Yes 

Inflate       

K_TOT -1.566*** -1.664*** -1.795*** -3.347 -2.787* -2.753* 

 (0.477) (0.472) (0.471) (2.534) (1.647) (1.421) 

Constant -30.72*** -14.81*** -14.52*** -11.21 -11.12** -12.35*** 

 (1.585) (1.552) (1.528) (11.37) (4.887) (4.196) 

lnalpha -47.26*** -32.67*** -394.9*** -23.30*** -17.30*** -43.25*** 

 (0.0840) (0.101) (0.105) (0.0841) (0.0311) (0.0765) 

Observations 927 927 927 1,236 1,236 1,236 

AIC 2283.1 2278.9 2278.7 2945.5 2938.3 2936.6 

BIC 2476.4 2477.0 2481.7 3160.6 3158.5 3161.9 

Log Likelihood -1101.6 -1098.4 -1097.4 -1430.8 -1426.2 -1424.3 

McFadden’s R2 0.254 0.256 0.257 0.262 0.265 0.266 

Robust standard errors in parentheses  

*** p<0.01, ** p<0.05, * p<0.1 

 
Table 4 ZINB regressions. Time span 2001-2009 (col 1-3) and 1998-2009 (col 4-6). Measure of academic inventors’ 
involvement : ACAD_PAT. 
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  1 2 3 4 5 6 

VARIABLES K_GT K_GT K_GT K_GT K_GT K_GT 

K_NOGT 0.0327*** 0.0364*** 0.0459*** 0.0268** 0.0297** 0.0377*** 

 (0.0125) (0.0124) (0.0132) (0.0119) (0.0118) (0.0123) 

K_NOGT_SQ  -0.0340** -0.0331**  -0.0359*** -0.0356*** 

  (0.0137) (0.0136)  (0.0118) (0.0117) 

SHARE_ACAD 0.804* 2.366*** 1.438 0.906*** 1.323** 0.00899 

 (0.413) (0.906) (1.061) (0.300) (0.571) (0.746) 

SHARE_ACAD_SQ  -5.629** -8.786*  -0.828 -1.620* 

  (2.783) (4.811)  (0.760) (0.921) 

SHARE_ACAD*K_NOGT   -0.370**   -0.335** 

   (0.146)   (0.135) 

IND_GVA 0.580 0.511 0.505 0.695** 0.585* 0.578* 

 (0.384) (0.372) (0.370) (0.340) (0.332) (0.330) 

IND_EMP -0.424 -0.328 -0.371 -0.478 -0.364 -0.408 

 (0.388) (0.383) (0.380) (0.365) (0.366) (0.359) 

R&D_EXP 0.214* 0.242* 0.293** 0.203* 0.266** 0.323*** 

 (0.124) (0.130) (0.125) (0.118) (0.124) (0.121) 

S&T_GRAD 0.244* 0.267* 0.241 0.0250 0.0275 0.0205 

 (0.146) (0.148) (0.152) (0.0865) (0.0895) (0.0914) 

R&D_UNIV 0.0385*** 0.0324*** 0.0303*** 0.0351** 0.0318** 0.0297** 

 (0.0111) (0.0114) (0.0116) (0.0142) (0.0142) (0.0142) 

TECH_VAR 0.256* 0.174 0.164 0.271** 0.203* 0.198* 

 (0.131) (0.125) (0.123) (0.119) (0.111) (0.110) 

ENV_PERF -0.0402 -0.270 -0.196    

 (0.510) (0.480) (0.478)    

Constant -7.259*** -6.756*** -7.011*** -7.380*** -7.132*** -7.467*** 

 (1.610) (1.602) (1.571) (1.465) (1.454) (1.423) 

Year FE Yes Yes Yes Yes Yes Yes 

NUTS 2 FE Yes Yes Yes Yes Yes Yes 

Inflate       

K_TOT -1.563*** -1.668*** -1.659*** -2.967 -2.629** -2.568** 

 (0.468) (0.471) (0.461) (2.188) (1.221) (1.093) 

Constant -14.26*** -14.40*** -14.49*** -10.49 -12.72*** -12.90*** 

 (1.557) (1.544) (1.512) (6.535) (3.502) (3.097) 

lnalpha -18.06*** -111.3*** -58.26*** -17.83*** -24.61*** -22.15*** 

 (0.0906) (0.0876) (0.0955) (0.0834) (0.0792) (0.0727) 

Observations 927 927 927 1,236 1,236 1,236 

AIC 2286.3 2280.0 2278.6 2947.1 2940.1 2938.4 

BIC 2479.5 2482.9 2486.3 3162.1 3165.4 3168.8 

Log Likelihood -1103.1 -1098.0 -1096.3 -1431.6 -1426.0 -1424.2 

McFadden’s R2 0.253 0.257 0.258 0.262 0.265 0.266 

Robust standard errors in parentheses  

*** p<0.01, ** p<0.05, * p<0.1 
Table 5 ZINB regressions. Time span 2001-2009 (col 1-3) and 1998-2009 (col 4-6). Measure of academic inventors’ 
involvement : SHARE_ACAD. 
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 1 2 3 4 

VARIABLES K_GT K_GT K_GT K_GT 

K_NOGT 0.0322** 0.0499*** 0.0345** 0.0415*** 

 (0.0140) (0.0162) (0.0142) (0.0147) 

K_NOGT_SQ -0.0430*** -0.0364*** -0.0454*** -0.0444*** 

 (0.0119) (0.0113) (0.0120) (0.0117) 

ACAD_PAT 0.0709 0.0953*   

 (0.0530) (0.0562)   
ACAD_PAT*K_NOGT  -0.0271**   

  (0.0113)   
SHARE_ACAD   1.643* 0.0286 

   (0.841) (1.076) 

SHARE_ACAD*K_NOGT    -0.434*** 

    (0.166) 

Constant -4.203** -4.335** -4.010** -4.477** 

 (1.871) (1.825) (1.905) (1.856) 

Control variables Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 

Area FE Yes Yes Yes Yes 

Inflate     

Linvkcap -7.420 -7.476 -7.475 -7.492 

 (5.169) (5.658) (5.497) (5.623) 

Costant 20.24* 20.35 20.40 20.41 

 (12.14) (13.35) (13.04) (13.29) 

lnalpha -41.44*** -42.02*** -52.56*** -17.72*** 

 (0.0785) (0.0715) (0.0871) (0.0563) 

Observations 552 552 552 552 

Robust standard errors in parentheses  

*** p<0.01, ** p<0.05, * p<0.1 
Table 6 ZINB regressions. Subsample of Northern provinces. Time span 1998-2009. Measure of academic inventors’ 
involvement : ACAD_PAT (col 1-2) and SHARE_ACAD (col 3-4). 
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 1 2 3 4 

VARIABLES K_GT K_GT K_GT K_GT 

K_NOGT 0.0149 -0.0243 0.0176 0.0162 

 (0.0151) (0.0351) (0.0151) (0.0190) 

K_NOGT_SQ -0.0535** -0.0604** -0.0570** -0.0575** 

 (0.0263) (0.0288) (0.0268) (0.0273) 

ACAD_PAT 0.178** 0.386**   

 (0.0841) (0.174)   
ACAD_PAT*K_NOGT  0.0410   

  (0.0302)   
SHARE_ACAD   0.917** 1.072 

   (0.368) (1.196) 

SHARE_ACAD*K_NOGT    0.0285 

    (0.200) 

Constant -5.357*** -5.569*** -5.432*** -5.427*** 

 (1.661) (1.698) (1.699) (1.694) 

Control variables Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 

Area FE Yes Yes Yes Yes 

Inflate     

K_TOT -2.940*** -2.947*** -2.870*** -2.864*** 

 (0.667) (0.671) (0.631) (0.635) 

Constant -11.57*** -11.41*** -11.86*** -11.45*** 

 (2.908) (2.981) (2.406) (2.420) 

lnalpha -21.41*** -21.37*** -21.25*** -21.38*** 

 (0.170) (0.168) (0.198) (0.211) 

Observations 684 684 684 684 

Robust standard errors in parentheses  

*** p<0.01, ** p<0.05, * p<0.1 
Table 7 ZINB regressions. Subsample of Centre-South provinces. Time span 1998-2009. Measure of academic inventors’ 
involvement : ACAD_PAT (col 1-2) and SHARE_ACAD (col 3-4). 
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  1 2 3 4 5 6 7 8 

VARIABLES Main LR_Direct LR_Indirect LR_Total Main LR_Direct LR_Indirect LR_Total 

                  

K_NOGT 0.116*** 0.116*** 0.209* 0.325** 0.121*** 0.120*** 0.210* 0.330*** 

 (0.0156) (0.0157) (0.125) (0.128) (0.0174) (0.0176) (0.115) (0.118) 

K_NOGT_SQ 0.00394 0.00442 -0.399 -0.395 0.00525 0.00595 -0.404 -0.399 

 (0.0289) (0.0274) (0.380) (0.387) (0.0292) (0.0273) (0.342) (0.347) 

ACAD_PAT 0.123** 0.121** 0.000505 0.122* 0.105 0.103 -0.00251 0.100 

 (0.0568) (0.0559) (0.0362) (0.0641) (0.0664) (0.0653) (0.0265) (0.0662) 

ACAD_PAT*K_NOGT     -0.00557 -0.00607 -0.000207 -0.00627 

     (0.0117) (0.0114) (0.00301) (0.0120) 

Control variables Yes Yes Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes Yes Yes 

NUTS 2 FE Yes Yes Yes Yes Yes Yes Yes Yes 

Spatial lag K_NOGT 0.208*    0.212**    

 (0.107)    (0.107)    

Spatial lag K_NOGT_SQ -0.379    -0.381    

 (0.309)    (0.308)    

rho -0.0462    -0.0517    

 (0.223)    (0.224)    

sigma2_e 0.355***    0.354***    

 (0.0494)    (0.0494)    

Observations 1,236    1,236    

R-squared 0.749    0.749    

Number of NUTS 3 103       103       

Robust standard errors in parentheses  

*** p<0.01, ** p<0.05, * p<0.1 

Table 8 Spatial Durbin model. Sample 1998-2009. Measure of academic inventors' involvement: ACAD_PAT. 
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  1 2 3 4 

VARIABLES GT_DUMMY GT_DUMMY GT_DUMMY GT_DUMMY 

     
K_NOGT 0.150*** 0.161*** 0.154*** 0.164*** 

 (0.0351) (0.0435) (0.0351) (0.0340) 

K_NOGT_SQ -0.0167 -0.0141 -0.0212 -0.0220 

 (0.0442) (0.0459) (0.0442) (0.0442) 

ACAD_PAT 0.324* 0.271   

 (0.170) (0.227)   
ACAD_PAT*K_NOGT  -0.0150   

  (0.0417)   
SHARE_ACAD   2.222** -0.754 

   (1.037) (4.059) 

SHARE_ACAD*K_NOGT    -0.539 

    (0.721) 

     
Control variables Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 

NUTS 2 FE Yes Yes Yes Yes 

Constant -14.82*** -14.82*** -15.27*** -15.50*** 

 (4.035) (4.031) (3.970) (4.031) 

     
Observations 1,200 1,200 1,200 1,200 

     
Pseudo R-sq 0.315 0.316 0.316 0.316 

Robust standard errors in parentheses  

*** p<0.01, ** p<0.05, * p<0.1 
Table 9 Logit regressions. Sample 1998-2009. Dependent variable: GT_DUMMY. Measure of academic inventors' 
involvement: ACAD_PAT (col 1-2) and SHARE_ACAD (col 3-4). 

 

 

  

1 

GT_DUMMY 

2 

GT_DUMMY 

3 

GT_DUMMY 

4 

GT_DUMMY 

VARIABLES Marginal effects Marginal effects Marginal effects Marginal effects 

          

K_NOGT 0.0221*** 0.0225*** 0.0226*** 0.0211*** 

 (0.00502) (0.00500) (0.00501) (0.00578) 

K_NOGT_SQ -0.00246 -0.00207 -0.00311 -0.00323 

 (0.00649) (0.00674) (0.00648) (0.00648) 

ACAD_PAT 0.0477* 0.0488*   

 (0.0250) (0.0262)   
ACAD_PAT*K_NOGT  -   
     

SHARE_ACAD   0.327** 0.170 

   (0.152) (0.250) 

SHARE_ACAD*K_NOGT    - 

     
Observations 1,200 1,200 1,200 1,200 

Table 10 Average marginal effects of Logit regressions in Table 9. 
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8 Figures 

 

Figure 1 Distribution of the stock of GTs across geographical area. 
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Figure 2 Interaction term Table 4 column 3. 

 

 

Figure 3 Interaction term Table 4 column 6. 
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