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Abstract

In this paper we investigate the behavior of in�ation persistence in the United States. To model
in�ation we estimate an autoregressive GARCH-in-mean model with variable coe¢ cients and we
propose a new measure of second-order time varying persistence, which not only distinguishes between
changes in the dynamics of in�ation and its volatility, but it also allows for feedback from nominal
uncertainty to in�ation. Our empirical results suggest that in�ation persistence in the United States
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1 Introduction

The behavior of in�ation has long been an object of interest to economists, but especially to central banks

which are bounded by statutory mandate to maintain price stability, thus promoting sustainable growth.

A critical aspect of in�ation is persistence, this is because the degree of in�ation persistence determines

to what extent monetary policy authorities can control in�ation. Broadly speaking, in�ation persistence

measures the speed at which the in�ation rate returns to its equilibrium level after an in�ationary shock:

the faster in�ation returns to its equilibrium level after a macroeconomic shock, the more e¤ective mon-

etary policy action can be, all else equal. As a result, optimal monetary policy crucially depends on the

knowledge of in�ation dynamics. For example, high in�ation persistence may require a bolder monetary

policy action to bring in�ation under control. On the other side, low level of in�ation persistence may

require a weaker or no action by monetary authorities in response to an exogenous shock.

In the light of their mandate Central Banks are also interested in addressing the issue of whether in-

�ation persistence varies over time. Changes in the structural characteristics of the economy or monetary

policy actions can a¤ect the characteristic features of the stochastic process generating time-variation

in in�ation persistence. There is now growing consensus in the literature that substantial changes over

time in monetary regimes may leave econometric models exposed to the Lucas critique (see for example

Taylor, 2000 and the references therein).

The literature on in�ation persistence in the United States is quite extensive, however there is consid-

erable disagreement regarding the empirical �ndings. From the methodological point of view two strands

of literature are clearly de�ned, depending on the measure of persistence. Empirical work in the �rst

strand relies on the analysis of the order of integration of the process as the measure of in�ation persis-

tence, using unit root tests to classify in�ation as either an I(0) or an I(1) process. For example Chandler

and Polonik (2006), Beran (2009), and Palma and Olea (2010) �nd strong evidence for nonstationarity

in the U.S. in�ation. On the other hand, Rose (1988) indicated that monthly U.S. in�ation was an I(0)

process from 1947 to 1986. Mixed evidence was provided by Brunner and Hess (1993). They concluded

that the in�ation rate was I(0) before the 1960�s but that it is characterized as I(1) since that time. Other

studies include Barsky (1987), Ball and Cecchetti (1990) and Kim et al.(2004) among others. A second

strand of literature uses autoregressive (AR) model-based measures such as the largest autoregressive

root (LAR) and the sum of the autoregressive coe¢ cients (SAR) to measure persistence. For instance, in

his seminal paper Taylor (2000) concluded that U.S. in�ation persistence during the Volcker-Greenspan

era has been substantially lower than during the previous two decades. Similarly, Levin and Piger (2003)

showed that high in�ation persistence is not an inherent characteristic of industrial economies over the

period 1984-2002. On the other hand, the work based on the SAR approach by Batini (2006) suggests

relatively little evidence of shifts in in�ation persistence for the Euro area.

With this background in mind, in this paper we try and reconcile disagreements in the conclusions of
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empirical studies by considering a model that allows for time varying parameters for both the intrinsic

and uncertainty persistence. We also argue that, perhaps, one possible explanation of divergent results

of so many empirical works is the presence of structural breaks in the in�ation process that would bias

the �ndings for most of the commonly used unit root tests. From the theoretical point of view whether

in�ation follows a stationary or nonstationary process has important theoretical implications. In the

literature textbook treatments of in�ation, such as Blanchard (2000) for example, assume that in�ation

is stationary. Also, in their seminal paper Blanchard and Gali (2007) suggest that in�ation persistence

captures structural characteristics of the economy that do not likely respond to policy actions, which

implies that a policy of in�ation targeting should exert no e¤ect on in�ation persistence. On the other

side, the works by Cogley and Sargent (2005), Beechey and Österholm (2009), and Cogley and Sbordone

(2008) support the view that in�ation persistence varies across monetary regimes, therefore supporting

the Lucas critique.

The contribution of this paper is threefold. First, we extend the literature on in�ation persistence

along the second strand of the literature by proposing a new measure of in�ation persistence. Unlike

most related studies our measure of persistence is grounded on economic, rather than statistical theory.

In particular, we estimate an autoregressive (AR) asymmetric power (AP) GARCH in-mean (M) model

with variable coe¢ cients and we compute a measure of second-order time varying persistence, which not

only distinguishes between changes in the dynamics of in�ation and its volatility, but it also allows for

feedback from nominal uncertainty to in�ation.

In the related literature empirical works that document changes over time of in�ation persistence in

the United States are the works by Cogley and Sargent (2001, 2005) where a Bayesian state-space VAR

model is used to model of in�ation dynamics. The authors conclude that there has been a change in the

underlying characteristics of in�ation re�ecting a change in the structural characteristics of the economy

and, possibly, a more active in�ation targeting policy. In sharp contrast, Stock (2001) estimates the LAR

using rolling window estimation method and conclude that there is no indication of a marked decline

in the persistence. A similar results is found in Pivetta and Reis (2007) where the LAR and the SAR

are estimated using both Bayesian and rolling window estimation methods. The authors conclude that

in�ation persistence has been high in the United States and approximately unchanged over the entire

post-war period.

Modelling in�ation crucially relays on the properties of the in�ation process. Accordingly, the second

task of this paper is to �ll a gap in the �rst strand of the literature by investigating to what extent

commonly used unit root tests are robust to structural breaks in the times series process. It is well

known that the performance of such tests depends on a number of factors that are not easily observed by

applied economists trying to discriminate between stationarity and non stationarity. In addition, empirical

research has often found evidence of GARCH e¤ects with highly persistent volatility in situations where

the conditional second moment a¤ects the level of the series. However, the performance of the unit root
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tests for these types of stochastic processes has not been widely investigated. Thus, we consider a �time

varying�AR-APGARCH-M speci�cation and we carry out an extensive Monte Carlo experiment in order

to examine the size and power of these tests in the presence of abrupt breaks in the in-mean parameter.

The results indicate that the performance of the test statistics under consideration is severely a¤ected by

these breaks. The above considerations reinforce the argument (and extend it to a dynamic environment)

made by Conrad and Karanasos (2015a) that conventional time invariant measures of persistence, such

as unit roots, might result in misleading conclusions regarding the persistence in the level. Similarly, it is

well known that unexpected shifts in a time series can lead to huge forecasting errors and unreliability of

the model in general. Therefore, in a companion exercise we use simulated data to evaluate the reliability

of the out-of-sample forecasts in the context of the AR-APGARCH-M speci�cation with abrupt breaks

and �nd that the location and the magnitude of the breaks severely a¤ects the forecasting performance

of the models.

Research over the past decade has documented considerable instability in in�ation forecasting models,

see for example Stock andWatson (2007) or Stock andWatson (2009) for an excellent survey on the related

literature. This instability has created major headaches for in�ation forecasters. Accordingly, the third

contribution of this work relates to the forecasting properties of the proposed model.

The outline of the paper is as follows. Section 2 introduces the model and some related literature.

Section 3 considers the performance of commonly used unit root tests when the data generating process is

an AR-APGARCH-M process with deterministic abrupt breaks. Section 4 derives the optimal forecasts

and the second moments of this construction which we utilize in order to obtain a new time varying

measure of second-order persistence. Section 5 presents an empirical study on in�ation persistence in the

United States. Finally, Section 6 presents some concluding remarks.

2 Theory and Model

2.1 Theoretical Background

In the literature economists have placed considerable emphasis on the impact of in�ation uncertainty on

both in�ation and output growth. Friedman (1977) states that nominal uncertainty causes an adverse

output e¤ect. This argument is based on the viewpoint that uncertainty about future in�ation distorts

the allocative e¢ ciency aspect of the price mechanism (for details, see for example, Fountas et al., 2006;

or Fountas and Karanasos, 2007). Following the in�uential work of Friedman a rich literature highlights

the importance of nominal uncertainty for macroeconomic modelling and policy making. In particular,

according to Cukierman and Meltzer (1986) in the presence of uncertainty about the rate of monetary

growth and, therefore, in�ation, the policymaker applies an expansionary monetary policy in order to

surprise the agents and enjoy output gains. The argument that Central Banks tend to create in�ation

surprises in the presence of more in�ation uncertainty (hereafter, termed the Cukierman and Meltzer
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hypothesis) implies a positive causal e¤ect from in�ation uncertainty to in�ation (see for example, Conrad

and Karanasos, 2015b).

One of the �rst papers to test for the Cukierman and Meltzer hypothesis in a context of a GARCH-M

model was Baillie et al. (1996); see also Brunner and Hess (1993). However, the econometric speci�cations

which are employed in these studies do not take into consideration the time dependent characteristics

of in�ation. Time variation may explain why in�ation in the United States has become harder to be

modelled and forecasted in recent years (see, for example, Stock and Watson, 2007). In this respect,

our work is more closely related to the econometric framework in Evans (1991) and recently used by

Berument et al. (2005), Caporale and Kontonikas (2009) and Caporale et al. (2010) where time varying

AR�APGARCH-M models are estimated to accommodate for structural changes in the economy and the

resulting shifts in the private sector behavior.

2.2 The Model

In this section, we consider an AR(1) process with GARCH(1; 1)-in mean e¤ects, that is, a model in which

the conditional variance a¤ects the conditional mean, and two deterministic abrupt breaks (hereafter,

DAB-AR(1; 2)-M model). In particular, we will examine the case of two breaks (N = 2) which occur at

times t� k1 and t� k2 (with k2 > k1, k2 2 Z>0 (the set of positive integers)); of course when k2 = k1 we

have the case of one break), where the switch from one set of parameters to another is abrupt. The time

invariant version of the model has been introduced by Engle et al. (1987) and applied in Glosten et al.

(1993), Christensen and Nielsen (2007) and Conrad and Karanasos (2015a), among others.

The DAB-AR(1; 2)-M model is given by

yt = '(t) + �(t)yt�1 + &(t)�
�
t + "t; (1)

where "t = et�t, and the vector of the three deterministically varying coe¢ cients, m(�)0 = ('(�); �(�);

&(�)) is given by

m(�)0 =

8<: ('1; �1; &1)
('2; �2; &2)
('3; �3; &3)

if � > t� k1;
if t� k2 < � � t� k1;
if � � t� k2:

with 'n, �n, &n 2 R (the set of real numbers), n = 1; 2; 3, � 2 R>0 (the set of positive real numbers),

fetg is a sequence of independent and identically distributed (i.i.d) random variables with zero mean and

variance, E(e2t ), and �2t is the conditional variance of yt. 1 The time dependent autoregressive coe¢ cient

�(t) naturally measures the intrinsic persistence in the level of yt. By including ��t in the conditional mean

we allow for feedback from the power transformed conditional variance of yt to its level, captured by the

deterministically varying in-mean coe¢ cient &(t). We denote the size of the breaks by ��n = �n � �n�1
and �&n = &n � &n�1, for n = 2; 3. For example, �2 = �3 ���3 and �1 = �3 ���3� ��2.

1Within the class of ARMA processes this speci�cation is quite general and allows for intercept and slope shifts (see also
Pesaran and Timmermann, 2005, Pesaran et al., 2006, and Koop and Potter, 2007).
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The power transformed conditional variance, ��t , is positive with probability one and is a measurable

function of Ft�1, which in turn is the sigma-algebra generated by fyt�1; yt�2; : : :g. We assume that ��t is

speci�ed as a time invariant APGARCH(1; 1) process:

(1� �B)��t = ! + �f("t�1); (2)

with

f("t�1) = (j"t�1j � "t�1)�;

where jj < 1 (for the APGARCH model with time invariant parameters see, for example, Ding et al.,

1993, and Karanasos and Kim, 2006). The following conditions are necessary and su¢ cient for ��t > 0,

for all t: ! > 0, �; � � 0.

Next we will introduce some important notation.

Notation 1 i)We denote the time invariant r-th moment (r 2 Z>0) of the power transformed variance

by �r = E(��rt ).

ii) Similarly, �r denotes the r-th moment of f(et): �r = E[[f(et)]r].

Clearly for � � 1, �2=� = E(�2t ) is not a fractional moment only if � is equal to 1 or 2. In all other

cases �2=� have to be calculated numerically. However, if � > 2, the existence of the �rst moment, �1

guarantees that of �2=�. Similarly, �1+1=� = E(�
�+1
t ) is not a fractional moment only if � = 1=� where

� 2 Z>0. In all other cases �1+1=� have to be calculated numerically.

The APGARCH(1; 1) formulation in eq. (2) can readily be interpreted as having an ARMA(1; 1)

representation for the conditional variance:

(1� cB)��t = ! + �vt�1; (3)

where

c = ��1 + �; and vt = f("t)� E[f("t) jFt�1 ] = f("t)� �1��t ;

and vt is, by construction, an uncorrelated term with expected value 0. While the "t are the innovations

to the level of yt, the vt can be considered the �innovations�to the power transformed conditional variance

of yt. Note that the parameter c measures the intrinsic memory or persistence in the conditional variance.

Next we will de�ne the covariance matrix of the two �shocks� "t and vt, � = E("t"0t), where E(�)

denotes the elementwise expectation operator. First, we will denote the variances of the two �shocks�and

their covariance by

�" = E("2t ); �v = E(v
2
t ); �"v = E("tvt).

The covariance matrix � is given by

� =

�
�" �"v
�"v �v

�
=

�
�2=�E(e2t ) �1+1=�e�
�1+1=�e� �2�

�
; (4)
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where

� = (�2 � �21); e� = E[etf(et)].
In the following corollary we present expressions for �r and e� under the assumption of Normality (see
also Karanasos and Kim, 2006).

Corollary 2 Consider the case where the term et is standard normal. Then E(e2t ) = 1, and �r, e� are
given by

�r =
1p
�

�
(1� )r� + (1 + )r�

�
2(

r�
2 �1)�

�
r� + 1

2

�
;

e� = 1p
2�

�
[1� ]� � [1 + 

��
]2(�=2)�

�
�

2
+ 1

�
;

where � (�) is the Gamma function.

When � = 1 the above expressions reduce to e� = �, �1 =q 2
� ; �2 = 1+

2 and therefore � = (�2��21) =

1 + 2 � 2
� , which implies that � becomes

� = �2

�
1 �
� 1 + 2 � 2

�

�
: (5)

Having de�ned the deterministically varying extension of the AR-APGARCH-M model, in the next

section we will present its bivariate vector autoregressive moving average (BVARMA) formulation.

2.3 VAR Formulation

To obtain the optimal predictors and the variance of yt for the DAB-AR-M model in eqs. (1) and (2) in

the next lemma we will express eqs. (1) and (3) in a matrix form.

Lemma 3 Eqs. (1) and (3) can be expressed in a matrix form as

y� = '(�) +�(�)y��1 + J"� + Z(�)"��1; (6)

with y� = (y� ��� )
0, "� = ("� v� )0, J =

�
1 0
0 0

�
, where the three time varying coe¢ cient matrices, '(�),

�(�), and Z(�) are time invariant in each of the three segments:

'n =

�
'n + &n!

!

�
;�n =

�
�n &nc
0 c

�
;Zn =

�
0 &n�
0 �

�
;

8<: n = 1
n = 2
n = 3

if � > t� k1;
if t� k2 < � � t� k1;
if � � t� k2:
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For notational convenience we will interchangeably use �3 or � and Z3 or Z. We will term the

deterministically varying bivariate expression in eq. (6) the DAB-BVARMA(1; 1; 2) representation.2

In what follows we will employ the above representation to derive explicit formulas for the optimal

predictors and the variance of yt and ��t in eqs. (1) and (2), respectively.
3 These are needed in order to

obtain time varying �rst and second-order measures of persistence. But �rst, since the LAR has been

commonly used as a measure of persistence in the context of testing for the presence of unit roots, we will

use Monte Carlo simulations to examine the performance of unit root tests when the data are generated

from an AR-(APGARCH) M process with unknown structural breaks in the in-mean coe¢ cient.

3 Monte Carlo Experiment

A decision whether a series is treated as integrated of order zero, I(0), or I(1) has important implications

for the subsequent modelling, hypothesis testing and forecasting. A frequent criticism of unit root tests

concerns the poor power and size properties that many such tests exhibit. Since standard unit root tests

are based on the assumption that some type of heteroscedasticity is present but ignore the possibility that

the volatility has a direct impact on the level, we investigate the size and power properties of common unit

root tests in the presence of GARCH-M e¤ects and unknown structural breaks in the in-mean parameter.

The two unit root tests considered are the Dickey-Fuller test (DF ) proposed by Dickey and Fuller

(1981) and the M test proposed by Sims et al. (1990) and Perron and Ng (1996). As far as the

estimation of the autoregressive parameter � is concerned both ordinary least squared method (OLS )

and the generalized least squared method (GLS ) suggested by Elliott et al. (1996) are considered. This

gives us two DF statistics, which we de�ne as DFOLS or DFGLS depending on the estimation method

used for �. Likewise, the M tests are de�ned as M OLS and M GLS respectively.

To examine the properties of these tests we consider the DAB-AR(1; 2)-M model (data generating

process, DGP) in eqs. (1) and (2) for the Monte Carlo simulation experiment where

'(t) = �(t) = 1 for all t; � = 1; ! = 1� �� �; � = 0:1; � = 0:70;  = 0; (7)

and there are two abrupt breaks in the time varying in-mean coe¢ cient, &(t), at times t� k1 and t� k2.

In particular, &(�) = &1 for � < t�k2 and � > t�k1, whereas &(�) = &2 = &1+�& for t�k2 � � � t�k1:

The magnitude of the break is denoted by �& and the length of the break by �k = k2 � k1. Therefore,

time variation is caused only by the in-mean coe¢ cient. We also set the sample size k equal to 1; 000.

Finally, fetg are i.i.d� N (0; 1) random variables.

2As pointed out by Conrad and Karanasos (2015a) the AR(1)-[APGARCH(1; 1)]-M model is observationally equivalent
to an ARMA(2; 1) process, with the largest autoregressive root (LAR) being close to one. Clearly, if � = 0, c = 1 and there
are no breaks the reduced form representation of the AR-M speci�cation coincides with the IMA(1; 1) model proposed by
Stock and Watson (2007).

3Notice that, as pointed ouy by Pivetta and Reis (2007), including other variables would lead to an assessment of
predictability. Since here we focus on persistence, not predictability, we work with a univariate GARCH-M model.
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3.1 Empirical Sizes

The Monte Carlo simulation experiment design is targeted at investigating the e¤ect of the in-mean breaks

on the empirical sizes of the test statistics under consideration. However, as the magnitude of the in-mean

parameter itself is likely to a¤ect the performance of the test statistics we investigate this latter issue before

considering the former. Accordingly, the Monte Carlo experiment is aimed at investigating the e¤ects on

the empirical sizes of i) the magnitude of the in-mean parameter, ii) the magnitude of the break, �& , and

iii) the timing (k1, k2) and the length or duration (�k) of the breaks as a fraction of the sample size, k.

To address point i) a set of simulation experiments was undertaken with the DGP in eqs. (1), (2) and (7)

with increasing magnitude of the in-mean parameter, namely &1 2 f0:1; 0:3; 0:9g. Similarly, to investigate

point ii) simulation experiments were undertaken with �& 2 f0:07; 0:25; 0:50g with the case of �& = 0:00

set as benchmark. Finally, to tackle point iii) in the experiment design we considered the above DGP

with k1=k = (k � k2)=k 2 f0:100; 0:333; 0:450g, that is k1 = (k � k2) 2 f100; 333; 450g. In other words,

we consider three values for the length of the in-mean break: �k=k = (k2� k1)=k 2 f0:80; 0:333; 0:10g or

�k 2 f800; 333; 100g.

Note that all experiments were performed over 10; 000 Monte Carlo replications using, as mentioned

earlier, a sample size k = 1; 000, with a further 50 observations created and discarded in order to avoid

the in�uence of the initial values. The sequence fetg was generated using pseudo i.i.d� N (0; 1) random

numbers from the RNDNS procedure in GAUSS with the value of y0 set as a N (0; 1) random number.

Table 1 reports the results for the empirical sizes of the inference procedures under consideration for

the 5% nominal signi�cant level. The top panel reports the empirical sizes resulting from the simulation

experiment with the aforementioned DPG with�k = 800, whereas the results for�k = 333 and�k = 100

are given in the middle and bottom panel, respectively.
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Table 1. Empirical sizes of unit root tests: the case of two unknown
breaks in the in-mean parameter.

DFOLS DFGLS M OLS M GLS

�k = 800 or �k=k = 0:80
&1= 0:1 �&= 0:00 0.049 0.054 0.054 0.054

�&= 0:07
(&2=0:17)

0.048 0.042 0.046 0.040

�&= 0:25 0.048 0.037 0.037 0.037
�&= 0:50 0.017 0.011 0.012 0.011

&1= 0:3 �&= 0:00 0.049 0.040 0.042 0.040
�&= 0:07 0.045 0.028 0.030 0.028
�&= 0:25 0.029 0.014 0.014 0.013
�&= 0:50 0.012 0.007 0.005 0.006

&1= 0:9 �&= 0:00 0.015 0.001 0.005 0.001
�&= 0:07 0.013 0.001 0.001 0.001
�&= 0:25 0.016 0.000 0.000 0.000
�&= 0:50 0.008 0.000 0.000 0.000

�k = 333 or �k=k = 0:333
&1= 0:1 �&= 0:07 0.047 0.045 0.046 0.045

�&= 0:25 0.049 0.042 0.043 0.041
�&= 0:50 0.020 0.027 0.022 0.025

&1= 0:3 �&= 0:07 0.042 0.030 0.032 0.030
�&= 0:25 0.037 0.025 0.024 0.025
�&= 0:50 0.013 0.010 0.009 0.010

&1= 0:9 �&= 0:07 0.013 0.001 0.002 0.001
�&= 0:25 0.009 0.000 0.000 0.000
�&= 0:50 0.003 0.000 0.000 0.000

�k = 100 or �k=k = 0:10
&1= 0:1 �&= 0:07 0.049 0.053 0.043 0.053

�&= 0:25 0.052 0.038 0.044 0.037
�&= 0:50 0.037 0.045 0.046 0.045

&1= 0:3 �&= 0:07 0.048 0.038 0.031 0.038
�&= 0:25 0.050 0.036 0.031 0.035
�&= 0:50 0.022 0.023 0.019 0.023

&1= 0:9 �&= 0:07 0.013 0.001 0.002 0.001
�&= 0:25 0.013 0.000 0.000 0.000
�&= 0:50 0.008 0.001 0.001 0.001

Note: The DGP is yt = 1+ yt�1 + &(t)�t + et�t and �t = 0:2+ 0:1 jet�1�t�1j+0:7�t�1, where &(�) = &1 if

� > t� k1 or � < t� k2, and &(�) = &2 = &1 +�& otherwise with &1 2 f0:1; 0:3; 0:9g, �& 2 f0:07; 0:25; 0:50g,

k = 1; 000, k1 = (k � k2) 2 f100; 333; 450g or �k 2 f800; 333; 100g.

Looking at the results in Table 1 we �rst notice that all inference procedures appear to be robust to

small values of the in-mean parameter (&1 = 0:1) and of the breaks (�& = 0:07). However, the magnitude
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of the in-mean parameter appears to have a signi�cant e¤ect on the size distortion of all test statistics

as, even when �& = 0:00, for &1 = 0:9 all the test statistics are severely undersized. Similarly, both

the magnitude and the location of the breaks a¤ect the size properties of the inference procedures under

consideration as from the top panel of Table 1 it is clear that the worst case scenario appears to be when

�k = 800 and �& � 0:25. In this case the break occurs very early and the stochastic process stays in the

second regime for 80% of the time period, only to go back to the �rst regime for the last 100 observations.4

Looking now at the performance of the individual tests, it appears that the OLS based test are more

robust to regime shifts in the in-mean parameter than the GLS based tests, as both DFOLS and M OLS

enjoy smaller size distortion than their GLS based counterparts.

3.2 Empirical Power

The empirical sizes of the unit root tests presented in Table 1 are constructed to generate a test with

asymptotic size of 5% under the null hypothesis of a unit root. We now focus on examining the power

of the inference procedures to reject the null hypothesis of �(t) = 1 for all t when in fact the process is

second-order, that is �(t) = � with j�j < 1 for all t.

As for the size, the Monte Carlo experiment design is meant to investigate the e¤ects for points i) -

iii) above. With this target in mind, the asymptotic local power functions for the 5% nominal level test

have been calculated. To model the sequence of stationary alternatives near the null hypothesis of unit

root, we consider the aforementioned DGP but now with �(t) = 1 � l
k for all t (instead of �(t) = 1) in

eq. (1) where l = 30; 29; :::; 1; 0 controlling the size of the departure from a unit root.

To investigate the issue in point i) simulation experiments were undertaken setting di¤erent values

of the in-mean parameter under the alternative hypothesis. The simulation results are summarized in

Figure 1, where the asymptotic local power curves are plotted for the DGP when the magnitude of the

parameter is increased from the modest value of &1 = 0:1 to a relatively large value &1 = 0:9; with the

break parameter �xed at �& = 0. In the x-axis the value taken by l is reported, whereas in the y-axis the

empirical rejection frequencies are reported. Looking at the plot of the asymptotic power curves for the

tests under consideration from Figure 1 it appears that all test statistics are sensitive to the magnitude of

the in-mean parameter. However, it is clear that DFOLS and M OLS are less sensitive to the magnitude

of & than the GLS based counterparts.

Coming to target point ii), in Figure 2 we report the results of simulation experiments obtained by

�xing the in-mean parameter at 0:9 and �k = 800, then comparing the resulting power curves of the

test statistics when �& = 0 and �& = 0:5. Interestingly enough, the DFOLS procedure appears to be the

most robust to the regime shift of the in-mean parameter. By contrast both GLS based statistics are

severely a¤ected by the magnitude of the break.

4We also �nd (results not reported) that in the presence of asymmetries the size distortion of the unit root tests is
stronger.
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Finally, we consider the issue of the timing and duration of the in-mean regime shift as stated in target

point iii). In this case the simulation experiment was undertaken with �k 2 f800; 100g and �& �xed at

the smallest value 0:07. Figure 3 plots the asymptotic local power function for DFOLS , DFGLS , M OLS

and M GLS respectively. From the results in Figure 3 it appears that the empirical power of all inference

procedure is less a¤ected by the timing and the duration of the regime shift than the size reported in

Table 1. Note that in the interest of brevity not all the values of the parameter space considered in Table

1 have been reported, but results are available upon request.

In the next section we use Monte Carlo simulations to examine the out-of-sample performance of the

model under consideration.

3.3 Forecasting

In this section we investigate the out-of-sample forecasting performance of the model in eqs. (1)-(2). The

DGP was generated by Monte Carlo simulation as explained in Section 3 with �(t) = � = 0:8, &1 = 0:3

and the other parameters as speci�ed in eq. (7). 5

In order to investigate the e¤ects of the time varying in-mean parameter the model with �& = 0:00

was considered as a benchmark and then the magnitude of the break increased as in Table 1. Similarly,

the duration of the regime shift was decreased from �k = 800 to �k = 100.

The evaluation of the out-of-sample forecast exercise does not rely on a single criterion; for robustness

we compare the results of three di¤erent forecasting measures, namely, the mean square error (MSE), the

mean absolute error (MAE) and the root mean square forecast error (RMSE). Table 2 reports the results

of the forecasting exercise. In columns 1 and 2 the forecasting horizon and the break magnitude under

consideration are reported, respectively, whereas in columns 3-8 the forecasting results for the conditional

mean and the conditional variance are reported.

5See Elliott and Timmermann (2008) for an excellent review on economic forecasting.
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Table 2. Forecasting with a DAB-AR(1; 2)-M model. Point predictive performances.

Forecast Horizon Break size Conditional Mean Conditional Variance
MSE MAE RMSE MSE MAE RMSE

�k = 800
1 �&= 0:00 0.002 0.040 0.040 0.016 0.127 0.126

�&= 0:07 0.002 0.045 0.044 0.018 0.134 0.139
�&= 0:25 0.002 0.048 0.048 0.018 0.137 0.137
�&= 0:50 0.002 0.050 0.050 0.019 0.137 0.137

5 �&= 0:00 0.009 0.082 0.098 0.022 0.142 0.148
�&= 0:07 0.011 0.084 0.101 0.023 0.145 0.150
�&= 0:25 0.012 0.103 0.107 0.024 0.150 0.153
�&= 0:50 0.013 0.104 0.118 0.026 0.153 0.155

10 �&= 0:00 0.117 0.300 0.343 0.026 0.158 0.164
�&= 0:07 0.131 0.319 0.361 0.028 0.162 0.162
�&= 0:25 0.141 0.333 0.376 0.029 0.169 0.172
�&= 0:50 0.174 0.381 0.417 0.032 0.175 0.177

�k = 333
1 �&= 0:07 0.002 0.046 0.046 0.018 0.135 0.135

�&= 0:25 0.002 0.048 0.048 0.018 0.136 0.138
�&= 0:50 0.002 0.049 0.049 0.019 0.137 0.137

5 �&= 0:07 0.009 0.083 0.100 0.022 0.144 0.149
�&= 0:25 0.010 0.084 0.103 0.023 0.147 0.151
�&= 0:50 0.011 0.087 0.107 0.025 0.150 0.153

10 �&= 0:07 0.135 0.325 0.368 0.027 0.160 0.165
�&= 0:25 0.140 0.333 0.375 0.030 0.164 0.168
�&= 0:50 0.144 0.336 0.379 0.029 0.168 0.171

�k = 100
1 �&= 0:07 0.002 0.048 0.049 0.018 0.137 0.137

�&= 0:25 0.002 0.049 0.049 0.019 0.137 0.137
�&= 0:50 0.002 0.050 0.050 0.019 0.137 0.137

5 �&= 0:07 0.009 0.080 0.092 0.019 0.140 0.143
�&= 0:25 0.010 0.082 0.099 0.022 0.144 0.149
�&= 0:50 0.011 0.083 0.100 0.027 0.145 0.150

10 �&= 0:07 0.140 0.332 0.374 0.027 0.159 0.164
�&= 0:25 0.143 0.335 0.378 0.027 0.160 0.165
�&= 0:50 0.145 0.337 0.380 0.027 0.161 0.166

Note: The DGP is yt = 1+0:8yt�1+ & (t)�t+ "t and �t = 0:2+0:1 j"t�1�t�1j+0:7�t�1, where & (�) = &1
if � > t � �1 or � < t � �2, and & (�) = &2 = &1 + �& otherwise with &1 = 0:3, k = 1; 000; k1 = (k � k2) 2

f100; 333; 450g or �k 2 f800; 333; 100g

Looking now at the results, from the top panel of Table 2 it appears that the forecasting accuracy

deteriorates when the forecasting horizon under consideration increases, as all three performance criteria

considered are considerably larger for the 10-steps ahead period. However, comparing the top and bottom
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part of Table 2 it is clear that the location of the breaks does a¤ect the forecasting performance of the

model. Similarly, comparing the benchmark case of �&= 0:00 in the top panel of Table 2 with �&= 0:50

it appears that, when the forecasting horizon increases, the greater the magnitude of the break the worse

the forecasting accuracy.

Having investigated the size and power properties of unit root tests in the presence of GARCH-M

e¤ects and unknown structural breaks in the in-mean parameter, next we will derive an explicit formula

for the general solution of the DAB-BVARMA(1; 1; 2) representation.

4 VAR General Solution

In this section we provide the generating solution of the DAB-BVARMA(1; 1; 2) representation, which

generates explicit formulas for the optimal predictors and the bidimensional time varying covariance

matrix of fy�g, � = t+ r, r 2 Z�0 (the set of nonnegative integers).

First, let �max(X) denote the modulus of the largest eigenvalue of X. The following theorem holds

(the proof is presented in the Appendix).

Theorem 4 The general solution of the bivariate system in eq. (6), subject to the initial condition y��k,

for k � k2 + r, is given by

y�;k = E(y� jF��k ) + FE(y� jF��k ); (8)

where

E(y� jF��k ) = 'k(�) +�k1+r1 �k2�k12 �k�k2�1(�y��k + Z"��k);

FE(y� jF��k ) = J"�+
k1+rX
`=1

�`�11 (�1J+ Z1)"��` +�
k1+r
1 f

k2�k1X
`=1

�`�12 (�2J+ Z2)"t�k1�`

+�k2�k12 [

k�k2�1X
`=1

�`�1(�J+ Z)"t�k2�`]g;

and if �max(�n) 6= 1, n = 1; 2; 3, then

'k(�) = (I��k1+r1 )(I��1)�1'1+�k1+r1 [(I��k2�k12 )(I��2)�1'2+�k2�k12 (I��(k�k2))(I��)�1']:

In the above expression if �max(�n) = 1, then (I��kn�kn�1n )(I��n)�1, with k0 = �r and k3 = k,

should be replaced by
Pkn�kn�1�1

`=0 �`n (a similar argument holds for any of the analogous cases that

follow).

The above theorem expresses the general solution, y�;k, in terms of the (k + r)-step ahead optimal

in (L2 sense) linear predictor, E(y� jF��k ), and the associated forecast error, FE(y� jF��k ). Clearly, if

k2 = k1 eq. (8) gives the solution in the case of one break, whereas if k2 = k1 = k, it gives the general
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solution when there is no time variation. For example, for the time invariant case, since �1 = �2 = �

and Z1 = Z2 = Z, the forecast error in eq. (8) reduces to

FE(y� jF��k ) = J"�+
k+rX
`=1

�`�1(�J+ Z)"��`. (9)

The general solutions when k � k1 + r and k1 + r < k < k2 + r can be obtained along the lines of

Theorem 4 and are equivalent to the time invariant case and the case when there is one break, respectively.

In this section, in the context of the DAB-AR-M model, we show the importance of taking into account

abrupt breaks for the in-sample forecasting.

Having found an explicit formula for the general solution of the DAB-BVARMA(1; 1; 2) representation,

in the next section we will derive an explicit formula for the bidimensional time varying covariance matrix

of fytg, which, as noted above, is needed in order to obtain a time varying measure of second-order

persistence.

4.1 Second Moment Structure

In this section we will examine the second moment structure of the DAB-BVARMA representation in eq.

(6). First we will introduce some further notation.

Let X
2 = X
X where 
 is the Kronecker product. In addition, let vec(X) be a vector in which the

columns of matrix X are stacked one underneath the other, and s = vec(�). Finally, let �� denote the

zero order bidimensional time varying covariance matrix of fy�g and � = vec(�� ), that is � = (Var(y� );

Cov(y� ; ��� ); Cov(y� ; ��� ); Var(��� ))0.

Assumption 1 (Second-Order): We assume that �max(�n)
2 < 1, n = 1; 3.

Assumption 1 implies that the DAB-BVARMA(1; 1; 2) representation is second-order. The equivalent

Assumption for this representation to be �rst-order is: �max(�n) < 1, n = 1; 3. Clearly, this condition

is su¢ cient for the condition in Assumption 1 to hold. Due to space considerations the �rst moment

structure of the above process and its Wold-Crámer decomposition are not reported but are available

upon request.

The following theorem states expressions for the �� (the proof is presented in the Appendix; in the

interest of brevity the results for higher order time varying covariances are not reported but are available

upon request).

Theorem 5 Consider the general model in eq. (6). Then under Assumption 1 � is given by

� = G(�)s, (10)

15



where

G(�)=[gij(�)] = J

2
+ [I
2�(�k1+r1 )
2][I
2 � (�1)
2]�1(�1J+ Z1)
2

+ (�k1+r1 )
2f[I
2�(�k2�k12 )
2][I
2 � (�2)
2]�1(�2J+ Z2)
2

+ (�k2�k12 )
2(I
2 ��
2)�1(�J+ Z)
2g;

and thus G1 = [gij;1] = limr!1G(�) is given by

G1 = J

2 + [I
2 � (�1)
2]�1(�1J+ Z1)
2: (11)

Clearly, if we set k1 = k2, and therefore �1 = �2 and Z1 = Z2 (the case of one break), then we

obtain the results for the simpler case, where we have only one abrupt break, at time t� k2. In this case

the form for G(�) simpli�es to

G(�) = J
2 + [I
2�(�k2+r2 )
2][I
2 � (�2)
2]�1(�2J+ Z2)
2 + (�k2+r2 )
2(I
2 ��
2)�1(�J+ Z)
2 ;

and thus G2 = [gij;2] = limr!1G(�) is given by

G2 = J

2 + [I
2 � (�2)
2]�1(�2J+ Z2)
2: (12)

Further, if in addition k2 = k, then G(�), since �2 = � and Z2 = Z, reduces to the well known

formula for the time invariant model

G = J
2 + [I
2 ��
2]�1(�J+ Z)
2; (13)

which is the result obtained in Conrad and Karanasos (2015a), but it is expressed in a more compact

way. It follows directly from the above theorem that the �rst element of the time varying covariance

vector, � , which is the time dependent variance of y� , is given by

Var(y� ) = �"g11(�) + �"v2g12(�) + �vg14(�). (14)

Notice that the three time invariant variances for each of the three periods, denoted by Varn(y� ),

n = 1; 2; 3, are obtained from the above expression by replacing g1j(�) with g1j;n (see eqs. (11)-(13)). In

addition, since the matrices �n are upper triangular, the G(�) matrix is also upper triangular and its

(4; 4) time invariant element is g44 = �2

1�c2 . Thus, the fourth element of � , which is the time invariant

unconditional variance of ��� , is given by

Var(��� ) = �2 � �21 =
�2

1� c2�v:

Since �v = �2� (see eq. 4) and using �1 =
!
1�c we obtain (if and only if c

2��2� < 1) by straightforward

manipulation the standard result (see, e.g., Karanasos, 1999, He and Teräsvirta, 1999, and Karanasos

and Kim, 2006):

�2 =
(1 + c)!2

(1� c)(1� c2 � �2�) : (15)

In the next section we will show how the above results can be used to derive a time varying second-

order measure of persistence.
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4.2 Time Varying Persistence

The most often applied time invariant measures of �rst-order (or mean) persistence are the LAR, and

the SAR. As pointed out by Pivetta and Reis (2007) in relation to the issue of recidivism by monetary

policy its occurrence depends very much on the model used to test the natural rate hypothesis, i.e., the

hypothesis that the SAR or the LAR for in�ation data is equal to one. Obviously, both measures would

ignore the presence of breaks and in-mean e¤ects and, hence, potentially under or over estimate the

persistence in the levels, which is partly induced by the persistence in the conditional variance.

The LAR has been used to measure persistence in the context of testing for the presence of unit roots

(see, for details, Pivetta and Reis, 2007). The authors �nd no evidence pointing to a rejection of a unit

root in in�ation. However, as we show in Section 3 if the in-mean mechanism together with the possible

presence of breaks in the in-mean parameter are ignored, then conventional procedures (such as unit root

tests) for estimating the persistence in the mean may lead to biased estimates. In particular, they might

falsely indicate a unit root, and, hence, suggest the modelling of the di¤erenced series rather than their

levels.

In the following, we suggest a time varying second-order (or variance) persistence measure that is able

to take into account the presence of breaks and to distinguish between the e¤ects of a mean shock and a

volatility shock on the level and conditional variance respectively. Fiorentini and Sentana (1998) argue

that any reasonable measure of shock persistence should be based on the IRFs. For a univariate process

xt with i.i.d errors, et, they de�ne the persistence of a shock et on xt as P (xt jet ) = Var(xt)=Var(et).

Clearly P (xt jet ) will take its minimum value of one if xt is white noise and it will not exist (will be

in�nite) for an I(1), process.

Regarding the DAB-AR-(APGARCH) M model, if ��v = 0, that is there are no asymmetries (see eq.

(4)), then "t and vt can be viewed as �structural�shocks. Thus it follows directly from eq. (14) that:

Var(y� ) = �"g11(�) + �vg14(�): (16)

Correlated Shocks

In general, the two shocks will be correlated with covariance matrix �. In this case we will de�ne two

uncorrelated shocks with variances equal to one.

The new orthogonal shocks, e"t and evt, can be obtained from the original shocks via the transformation:
e"� = "�p

��
, ev� = 1p

1� �2"v
(��"ve"� + v�p

�v
);

where �"v is the correlation between "t and vt.

Now, the persistence of the two shocks, e"t and evt, for the variance of yt, can be decomposed as follows:
Var(y� ) = P (y� je" ) + P (y� jev ); (17)
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where

P (y� je" ) = ��g11(�) + �2"v�vg14(�) + 2��vg12(�); P (y� jev ) = �v(1� �2"v)g14(�):
Clearly, if we have the symmetric case, that is  = 0 and, therefore, ��v = 0 the above expression re-

duces to the one in eq. (16). To save space the equivalent persistence measures for the power transformed

conditional variance and also for the product yt��t are not reported but are available upon request. No-

tice that when � = 1 the above expressions (since �� = �2, �v = �2(1 + 
2 � 2

� ) and ��v = ��2 [see

Corollary 2 ]) reduce to

P (y� je" ) = �2[g11(�) + 2g14(�)� 2g12(�)], P (y� jev ) = �2(1� 2

�
)g14(�); (18)

where �2 is given in eq. (15) with c = �
q

2
� + � (see eq. (3) and Corollary 2).

If Assumption 1 is violated then conditional measures of second-order persistence can be constructed

using the variance of the forecast error (see eq. A.3 in the Appendix) instead of the unconditional variance

(results not reported but are available upon request).

We have derived explicit formulas for time varying second-order (or variance) persistence measures.6

In the next section we show the empirical relevance of these results using U.S. in�ation data.

5 In�ation Data

In our empirical application we consider log-di¤erences of quarterly data of Personal Consumption Ex-

penditure (CPE) in the United States from 1947Q1 to 2016Q3. The CPE index is used by the Federal

Reserve as in�ation proxy when reviewing economic conditions and charting a course of action designed to

impact on the real economy. It is therefore crucially important to be able to make appropriate modelling,

inference and forecasting in order to avoid unwanted e¤ects of monetary policy actions.

The �rst step in the estimation procedure is to identify possible points of parameter changes. In

order to do so the Bai and Perron (2003) breakpoint estimation technique on in�ation rates is used to

identify possible breaks during the sample period.7 Using the Bai and Perron procedure two signi�cant

breaks were identi�ed. The �rst break took place in the 1960�s, when an expansion of social programs

was undertaken by the U.S. administration in the aftermath of a contraction period when unemployment

and in�ation reached high levels. The second break occurred in 2008 at the height of the �nancial crisis

and during a spike of the oil price. In particular, the breaks were identi�ed in 1966Q4 and 2008Q3.8

6Cogley and Sargent (2001) measured persistence by the spectrum at frequency zero, S0. As an example, for the time

invariant AR(2) model this will be given by: S0 =
�2"

2�(1��1��2)2
.

7Since the seminal paper by Perron (1989) a great deal of research has been directed to the detection and estimation of
breaks, and forecasting in the presence of breaks (see, e.g., Andrews, 1993; Andrews and Ploberger, 1994; Bai and Perron,
1998).

8Kim et al. (2004) found evidence for a structural break in in�ation in late 1979, resulting in lower persistence. The
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Accordingly, below we estimate the DAB-AR(1; 2)-M model in eqs. (1)-(2), (with � = 1),9 allowing

for both the intrinsic persistence of in�ation (as captured by the autoregressive coe¢ cient, �(t)) and

the in-mean coe¢ cient, &(t), to switch across breakpoints.10 This should allow us to determine whether

changes in the structure of the conditional mean of in�ation recently observed in the U.S. derive from

changes in either �(t) or &(t), or possibly both. To capture these changes we use dummy variables that

take the value zero in the period before each break and the value one after the break.11

5.1 Estimation Results

As far as the QML estimation results are concerned Table 3 reports the estimated parameters for each of

the three models and the relative misspeci�cation tests. In particular, the top part of Table 3 reports the

estimated parameters for the conditional mean, whereas the ones for the conditional variance are given

in Panel B.

Bai and Perron methodology also identi�ed a third break in 1977Q4. However, in the estimation of the DAB-AR-M model
the corresponding dummy variable was insigni�cant. Pivetta and Reis (2007) point out that extra data points in their
sample (1965-2001) might show a break in 1991. The Bai and Perron methodology also identi�ed a fourth break in 1991Q3.
However, in the estimation of our model the corresponding dummy variable was insigni�cant.
Another line of work has identi�ed changes in the way monetary policy is conducted in the United States. Therefore we

also add a dummy variable for the period 1981�1983, which was an anomalous period in the data for in�ation, commonly
referred to as the Volcker disin�ation. The dummy was insigni�cant.

9Karanasos and Schurer (2008) show that it is optimal to model the conditional standard deviation of in�ation instead
of the conditional variance. So far the relevant empirical literature has ignored this important characteristic of the in�ation
data.
10The asymptotic theory for the QML estimator of the parametric GARCH-M model has recently been developed by

Conrad and Mammen (2016). However, this theory does not yet treat all standard speci�cations.
11An alternative approach to account for structural breaks would be to estimate similar models for subperiods. Due to

the limited number of quarterly observations we do not consider this option.
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Table 3. Estimated DAB-AR(1; 2)-M model using U.S. in�ation data

Model 1 Model 2 Model 3
Panel A: Conditional Mean

' 0:0009
(0:0006)

0:0004
(0:0005)

0:0004
(0:0005)

�3 0:405�
(0:093)

0:545�
(0:059)

0:377�
(0:088)

��3
(�2=�3���3)

�0:318�
(0:085)

� �0:28�
(0:153)

��2
(�1=�3���3���2)

0:263��
(0:142)

� �

&3 0:481��
(0:217)

0:432��
(0:188)

0:643��
(0:191)

�&3
(&2=&3��&3)

� �0:613��
(0:153)

�

�&2
(&1=&3��&3��&2)

� 0:376���
(0:227)

0:181
(0:230)

Panel B: Conditional Variance
! 0:0001��

(0:000)
0:0002��
(0:000)

0:0001
(0:000)

� 0:092��
(0:044)

0:103��
(0:052)

0:103��
(0:048)

 �0:803��
(0:370)

�0:791���
(0:358)

�0:671��
(0:305)

� 0:871�
(0:044)

0:857�
(0:055)

0:868�
(0:048)

c = ��1 � � 0:944 0:939 0:950
R2 0:625 0:626 0:616

Panel C: Q-Statistics and Information Criteria
Q-Statistics (4) 1:702

[0:199]
0:852
[0:310]

0:335
[0:562]

Akaike �8:403 �8:004 �8:432
Schwarz �8:269 �7:789 �8:376

Panel D: Forecasting
Conditional Mean

MSE 0:000 0:000 0:000
MAE 0:005 0:005 0:004
RMSE 0:004 0:006 0:006

Conditional Variance
MSE 0:000 0:000 0:000
MAE 0:006 0:005 0:008
RMSE 0:007 0:002 0:005

Note: *, **, *** indicate statistical signi�cance at 1%, 5% and 10%, respectively. The numbers in parentheses are

standard errors. The numbers in brackets are p-values. ���3, ��&3 and ���2, ��&2 are the estimated parameters

for the �rst and second dummy, respectively. Accordingly, in Model 1: �2 = 0:723 and �1 = 0:460; In Model 2,

&2 = 1:045 and &1 = 0:669; In Model 3: �2 = 0:377 and &1 = 0:462:

In order to investigate whether changes in in�ation were due to breaks in the intrinsic persistence

coe¢ cient or the in-mean coe¢ cient the model in eqs. (1)-(2) was estimated with no dummy variables

for the latter (i.e., with &2 = &1 = 0 in Table 3) and the resulting speci�cation is labelled as Model 1.

Similarly, to investigate if breaks in the in-mean coe¢ cient did a¤ect in�ation, the model was estimated

with no dummies capturing breaks in the intrinsic persistence (i.e., with the parameters �2 = �1 = 0)

and the resulting speci�cation is referred to as Model 2. Finally, to investigate the joint e¤ects of the two

types of breaks various attempts were made to estimate a model with breaks in both coe¢ cients. The
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best (based on information criteria and likelihood ratio tests) resulting speci�cation is labelled as Model

3.12

Looking now at the estimated parameters, according to the estimates in Model 1 until 1966 the

in�ation process was well approximated by a �rst-order autoregression with low intrinsic persistence

(�3 = 0:40), but from 1967 onwards the autoregression coe¢ cient increased considerably (�2 = �3���3 =

0:72). It was only after 2008 that the intrinsic persistence level went back to roughly its previous regime

(�1 = �2 ���2 = 0:46).

According to Model 2 it appears that in�ation variability imposed upward pressure on in�ation (&3 =

0:43). In general, higher in�ation uncertainty increases long term risk premia, inducing extra hedging

costs due to in�ation risks therefore shifting upward in�ation levels, as predicted by Cukierman and

Meltzer. Interestingly, the in-mean e¤ect becomes stronger (it more than doubles in size) after 1966

(&2 = &3 ��&3 = 1:04). However, in the post-(global �nancial) crisis it decreases (&1 = &2 ��&2 = 0:67)

although it does not return to the pre-1967 level. Finally, Model 3 con�rms that changes in in�ation

dynamics can be explained by both changes in the intrinsic persistence and the in-mean coe¢ cient. In all

models the estimated intrinsic variance persistence is high (c is either 0:94 or 0:95) and the asymmetry

coe¢ cient, , is negative, indicating that negative shocks have a higher impact on the volatility than

positive shocks.

Looking now at the speci�cation tests in Panel C the Q-Statistics do not reject the null hypothesis of

no serial correlation, therefore indicating that the models do not su¤er from misspeci�cation. Also, from

the information criteria it appears that Model 2 o¤ers the best speci�cation for the in�ation process.

Finally, the bottom part reports the 5-step ahead forecasting criteria for the models under consideration.

It appears that all three models have relatively good forecasting properties.

To summarize our results, we �nd evidence that the parameters in the models capturing intrinsic

persistence and in-mean e¤ects change over time. Therefore, not allowing for time varying coe¢ cients in

the estimation procedure would result in a less accurate modelling of the in�ation process. This, in the

light of the simulation results in Section 3.3, may lead to poor forecasting.

Next, we will investigate whether in�ation and its variability are highly persistent.

5.2 In�ation Persistence

Pivetta and Reis (2007) employ di¤erent estimation methods and measures of persistence. Estimating

the persistence of in�ation over time using di¤erent measures and procedures is beyond the scope of

12There is also the possibility of a change in the drift of in�ation. Such a shift can be interpreted as a change in the
long-run in�ation target of the Federal Reserve (see, for details, Pivetta and Reis, 2007 and the references therein). Our
DAB-AR-M model also allows for changes in the intercept. However, and in spite of allowing for a time varying drift, we
�nd that the second-order persistence is unchanged (see the analysis below), a result which is in agreement with the one in
Pivetta and Reis.
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this paper.13 In this section we depart from their study in an important way, that is we contribute

to the measurement over time of in�ation persistence by taking a di¤erent approach to the problem

and estimating a model of in�ation dynamics grounded in economic (rather than statistical) theory. In

particular, we employ the DAB AR-(APGARCH) M model and we compute an alternative measure

of persistence, that is, the second-order persistence (using the methodology in Sections 4.1 and 4.2),

which not only distinguishes between changes in the dynamics of in�ation and its volatility (and their

persistence) but also allows for feedback from volatility (in�ation uncertainty) to the level of the process

(in�ation).

As pointed out by Pivetta and Reis (2007) estimates of the persistence of in�ation a¤ect the tests

of the natural hypothesis neutrality. Therefore detecting whether persistence has recently fallen is key

in assessing the likelihood of recidivism by the central bank. In addition, if the central bank feels

encouraged to exploit an illusory in�ation-output trade o¤, the result could be high in�ation without any

accompanying output gains. Furthermore, research on dynamic price adjustment has emphasized the

need for theories that generate in�ation persistence.

Table 4 presents, the time invariant (within each period) second-order measures of persistence for the

three models under consideration. The �rst three columns report the persistence for the mean shock (e"),
the next three columns the persistence for the volatility shock (ev), and the last three columns the sum
of the two shocks (see eq. (18)). Model 2, which is the preferred one, generates the highest persistence.

Interestingly, for this model the persistence is very similar in all three periods (approximately 11). Model

1 is the one with the lowest persistence. For this model the persistence doubles in the second period,

but after the global �nancial crisis it almost returns to the pre-1967 levels. In model 3 the persistence

increases by 75% in the period 1967-2008 and decreases by 28% in the post-crisis period.

Table 4. �Second-order persistence�for each of the three periods and models.

P (yt je" )� 106 P (yt jev )� 106 [P (yt je" ) + P (yt jev )]� 106
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

1947Q1-1966Q4 4: 51 10: 88 5: 64 0:062 0:3 2 0:18 4: 57 11: 20 5: 82
1967Q1-2008Q2 9: 01 10: 98 9: 67 0:2 6 0:4 1 0:55 9: 26 11: 40 10: 22
2008Q3-2016Q3 4: 84 10: 92 6:81 0:07 0:37 0:5 3 4: 92 11: 29 7: 34
Note: We use eq. (18) to calculate the (within each period time invariant) second-order persistence

for the three models. For each period, n = 1; 2; 3, we obtained the g1j;n; using eqs. (11)-(13).
.

For comparison Table A.1 in the Appendix presents the (time invariant within each period) ��rst-

order persistence�for all three models. The pre-1967 period exhibits the lowest persistence whereas in
13Pivetta and Reis (2007) applied a Bayesian approach, which explicitly treats the autoregressive parameters as being

stochastically varying and it provides their posterior densities at all points in time. From these, they obtained posterior
densities for the measures of in�ation persistence. Such estimates of persistence are forward-looking, since they are meant
to capture the perspective of a policy maker who at a point in time is trying to forsee what the persistence of in�ation will
be. They also estimated backward-looking measures of persistence that the applied economist forms at a point in time,
given all the sample until then.
Pivetta and Reis (2007) also used an alternative set of estimation techniques for persistence. They assumed time invariant

autoregressive parameters and re-estimated their AR model on di¤erent sub-samples of the data, obtaining median unbiased
estimates of persistence for each regression. Finally, Pivetta and Reis also employed rolling and recursive unit root tests.
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the second period the persistence is the highest. In particular, for the second model from 1967 onwards

it increases by 60%. For all models in the post global �nancial crisis period the persistence reduces, but

it remains higher than the pre-1967 levels except perhaps for model 1, where it more than doubles in the

second period and then it almost halves in the post-crisis period.

Therefore our �ndings regarding the �rst-order persistence are in line with the �ndings of i) Barsky

(1987), who found very low in�ation persistence for the pre-war period but that in�ation is very persistent

since the 1960s, and ii) Pivetta and Reis (2007), who by computing alternative statistical measures of

persistence came to the conclusion that in�ation persistence in the United States is best described as

unchanged over their sample, which was 1965-2001.

In sum our main conclusion is that for our chosen speci�cation (model 2) the preferred measure of

persistence, that is the second-order persistence, remained relatively unchanged throughout the whole

period 1947-2016. These results are in line with Pivetta and Reis (2007) and Stock (2001), who also

found no evidence of a change in in�ation persistence in the United States.14

6 Conclusions

Economists have placed signi�cant interest in recent years in investigating structural shifts in the dynamics

of the in�ation process in the United States. A number of detailed and rigorous empirical works regarding

changes in in�ation persistence have, however, reached diverging conclusions. Several studies �nd evidence

of little or no change of in�ation persistence over the past four decades, whereas others conclude that

there has been a pronounced decline over the same period.

In this paper we attempt to reconcile di¤erent strands of the literature by showing that seemingly

con�icting results regarding changes in in�ation persistence actually constitute two sides of the same

problem. We start our analysis by showing that if the estimated model is misspeci�ed with respect to

the data generating process, commonly used test statistics to detect persistence would deliver spurious

results. In particular, using Monte Carlo simulation experiments we show that if the in-mean mechanism

(together with the possible presence of breaks in the in-mean parameter) is ignored, conventional unit

root tests might falsely indicate in�ation as being a nonstationary rather then a stationary process. The

obvious consequence is that commonly used inference procedure would suggest the modelling of in�ation

processes in their �rst di¤erences rather then in their levels. We then proceed by using the general solution

of a DAB AR-(APGARCH) M model to compute a time varying second-order persistence measure that

is able to take into account the presence of breaks and to distinguish between the e¤ects of a mean shock

and a volatility shock on the level and conditional variance respectively.

14Stock and Watson (2002) also found no evidence of a change in persistence in U.S. in�ation. Therefore their results are
in agreement with ours. However, they found strong evidence of a fall in volatility. We also checked for possible changes
in the unconditional volatility by adding dummy variables in the drift of the conditional variance. However, they are all
insigni�cant.
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Our paper adds to the literature that has challenged the empirical relevance of the Lucas critique

on reduced-form models. In this respect, from the empirical point of view our measure of persistence

constitute an important break through in the literature since we allows for feedback from volatility

(in�ation uncertainty) to the level of the process (in�ation). Our estimation results lead to the conclusion

that U.S. in�ation persistence has been high and approximately constant over time, a �nding which agrees

with those of Stock and Watson (2002, 2001) and Pivetta and Reis (2007).
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Figure 1. Power of DF and M tests. The DGP is yt = 1 + yt�1 + &�t + "t and

�t = 0:2 + 0:1 j"t�1�t�1j+ 0:7�t�1.
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Figure 2: Power of DF and M tests. The DGP is yt = 1 + yt�1 + & (t)�t + "t and

�t = 0:2 + 0:1 j"t�1�t�1j+ 0:7�t�1, where & (�) = &1 if � > t� k1 or � < t� k2, and & (�) = &2 = &1 +�&
otherwise with &1 = 0:9, k = 1; 000; k1 = (k � k2) = 100 or �k = 800:
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Figure 3. Power of DF and M tests. The DGP is yt = 1 + yt�1 + & (t)�t + "t and

�t = 0:2 + 0:1 j"t�1�t�1j+ 0:7�t�1, where & (�) = &1 if � > t� k1 or � < t� k2, and & (�) = &2 = &1 +�&
otherwise with &1 = 0:0, �& = 0:07; k = 1; 000; k1 = (k � k2) 2 f100; 450g or �k 2 f800; 100g :

Figure 4. Time varying in�ation persistence.
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