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Abstract 

 

This paper examines the asymmetric behaviour of house prices in large metropolitan areas. 
Using a sample of large cities, in several countries, it is shown that real estate prices cycles are 
largely nonlinear. It is found that dynamic asymmetries in the housing market cycle can well 
be modelled using a logistic smooth transition model (LSTAR). Further, it is shown that the 
LSTAR model has better forecasting properties with respect to a linear autoregressive model. 
 

 

 

 

 

Keywords: Housing Markets, Asymmetric Cycles, Large Urban Areas, Non-Linear Models.  

JEL Classification: C10, C31, C33. 

 

  

                                                           
§ Corresponding Author: Alessandra Canepa, Department of Economic and Statistics Cognetti De Martiis, 
University of Turin, and Department of Economics and Finance, Brunel University London. Address: Lungo Dora 
Siena 100A, Turin, Italy. E-mail: Alessandra.Canepa@unito.it. 

* Huthaifa Alqaralleh, Department of Economics, Business and Finance, Mutah University, Karak, Jordan. E-mail: 
huthaifa89@mutah.edu.jo 

 

mailto:Alessandra.Canepa@unito.it
mailto:huthaifa89@mutah.edu.jo


2 
 

1. Introduction 

 

Fluctuations in house price and their impact on the financial system have attracted much 

attention following the recent global financial crisis. Thus far, a well-established literature has 

maintained that house prices cyclicality is closely related to the behaviour of macroeconomic 

fundamentals (see for example Edelstein and Tsang, 2007; and Claessens, 2008 among others). 

However, while cyclicality of housing market is well documented in the literature, little 

attention has been paid to the asymmetry of housing market cycles.   

If by “symmetry” of the housing market cycle we mean that negative shocks have 

symmetric effects on the absolute values of real estate price series so that a positive shock of 

equal magnitude would return the stochastic process to its original position, then empirical 

evidence shows that this degree of symmetry is not evident in the most housing market data. 

For example, the results in Glaeser and Gyourko (2006) show that for house price series, 

stochastic processes such a pure random walk fails quite badly in describing the features of 

house price cycles. Also, a simple data plot for many time series would reveal that housing 

prices adjust asymmetrically to economic shocks. This widely acknowledged empirical 

evidence has prompted economists to deliver theoretical models to explain this phenomenon. 

Asymmetric adjustment in the demand-supply market provides one such explanation. Broadly 

speaking, in the economic literature, theoretical models used to describe housing market cycles 

fall within the demand-supply framework, where supply is assumed to be rigid. For example, 

Abraham and Hendershott (1993) describe an equilibrium price level to which the housing 

market tends to adjust. The authors divide the determinants of house price appreciation in two 

groups: one that explains changes in the equilibrium price and another that accounts for the 

adjustment mechanism in the equilibrium process. Slow adjustment toward the equilibrium 

can be regarded as an indication of asymmetries in real estate cycles. Muellbauer and Murphy 

(1997) explore the behaviour of house prices in the UK. The authors suggest that the presence 

of transaction costs associated with the housing market cause important nonlinearity in house 

price dynamics.  

While economic theory suggests that asymmetry may be a characteristic feature of real 

estate markets there have not been many attempts at modelling this phenomenon in an explicit 

fashion. Many empirical works make use of vector autoregressions in which house price series 

is assumed to be nonstationary and cointegrated with a set of house price determinants. These 

econometric models assume that, in the long-run, deviations from the demand-supply 

equilibrium would trigger a market correction of the mispricing. For example, Hendershott 

and Abraham (1993) estimate a cointegrated model which includes lagged house price changes 

among other explanatory variables. They found evidence of slow adjustment toward the 

equilibrium which implies a cyclical adjustment path. Abelson, Joyeux and Milunovich (2005) 
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estimate an asymmetric threshold cointegrated model to investigate nonlinearity in house 

prices in Australia. Malpezzi (1999) analyses the impact of supply and demand factors on the 

path of house price adjustments. Vector error correction models and other types of linear 

models are able to capture many of the characteristics observed in housing market series data. 

However, asymmetric adjustments across cycles cannot be captured adequately by a linear 

representation. Modelling asymmetry requires nonlinear time series models. As the majority 

of empirical works are based upon econometric methods that work under the assumption of 

symmetry and linearity, in the presence of asymmetry and nonlinearity these models assuming 

symmetry would clearly be misspecified and may lead to spurious empirical results (see for 

example Blatt, 1980). 

In this paper we consider the real estate market in large urban areas. In general, housing 

market dynamics are determined by demographic and socio-cultural factors, economic 

conditions, local jurisdictions and the financial system. However ,  metropol ises  

have in common high demand pressure  in the hous ing market  of ten 

coupled wi th  ine las t ic  supply.  Also tight land use controls and regulations leave 

large cities prone to high housing market. It is likely that housing markets in large urban areas, 

especially major financial centres, have different dynamics than smaller urban settlements.  In 

this respect, few recent studies support this conjecture. For example, Glaeser, Gyourko and 

Saiz (2008) illustrate that during boom phases house prices in the US grow much more strongly 

in metro areas with inelastic supply. Saiz (2010) and Hilber and Vermeulen (2010) 

demonstrate that geographical restrictions constrain the elasticity of supply: in cities that lack 

construction land, urbanisation leads to price increases.  

A fundamental question that has not been adequately addressed in the empirical literature 

on housing prices is whether home prices in large cities are nonlinear. There is plenty of 

theoretical discussion on a type of non-rational behaviour that generate bubbles in the housing 

markets but, to the best of our knowledge, none that consider specifically data at high 

disaggregate level. For example, Seslen (2004) argues that households exhibit rational 

responses to returns on the upside of the market but do not respond symmetrically to 

downturns. Seslen also argues that on an upswing of the housing cycle households exhibit 

forward looking behaviour and are more likely to trade up, with equity constraint playing a 

minor role. On the other hand, households are less likely to trade when prices are on the decline 

causing stickiness on the downside of the housing market cycle. It is likely that this effect that 

the author describes is much stronger in large metropolitan areas than smaller urban centres.     

In this paper the empirical investigation is conducted in three stages. We start our analysis 

by examining the main features of the real estate market cycles. Questions of interest in the 

first stage of our research are: What are the main features of large urban areas housing market 

cycles? Is it actually the case that in large metropolitan areas real estate market expansion 
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phases last longer that contraction periods? Also, what are the characteristic of the amplitude 

of the cycles?  In order to answer these questions, we borrow from methods widely employed 

in the business cycle literature. In particular, we use the algorithm suggested by Harding and 

Pagan (2002), which extends the so-called BBQ algorithm developed by Bry and Boschan 

(1971), to identify the turning points in the log-differences of house price series.  

Once that the characteristic of the real estate market cycle has been identified we proceed 

to the second step of our research and turn our attention to modelling asymmetries in housing 

market cycles. To this end the logistic smooth transition autoregressive (LSTAR) (see 
Teräsvirta, Van Dijk, and Medeiros, 2005) is used to capture dynamic asymmetries in the 

housing market. In the literature a related study is the work by Kim and Bhattacharya (2009) 

where an exponential smooth transition autoregressive model (ESTAR) to model nonlinearity 

in the regional hosing market in the United States. Nonlinear models are also used in Crawford 

and Fratantoni (2003) to forecast house price changes. Regime-switching models such as 

ESTAR allow the dynamic of house price growth rates to evolve according to a smooth 

transition between regimes that depends on the sign and magnitude of past realization of house 

price growth rates (see Chan and Tong, 1986). The low speed of transition between different 

regimes in house price growth found in empirical studies validates the choice of smooth 

transition models. A possible shortcoming of this type of nonlinear models is that a symmetric 

transition function is used to capture oscillations from the conditional mean of the changes in 

the house price series. Although regime-switching model may efficiently describe nonlinearity 

in house price growth rates, they may not be suitable to capture dynamic asymmetries in real 

estate cycles. In this respect, the type of transition function used in this paper allows us to 

model the smooth transition between states of expansions and contractions which is a 

characteristic feature of the housing markets while being able to capture the asymmetry in the 

real estate cycle observed in the analysis of the turning points.  

In the final stage we consider whether forecasting using the LSTAR model leads to 

important improvements over forecasting with an incorrectly specified linear model. In the 

literature, the issues of the forecasting performance of nonlinear model is still an open 

question. For example, Balcilar, Gupta and Miller (2015) use a STAR-type model to forecast 

house price distributions in United States. They found that the use of nonlinear models to 

forecast house prices typically does not generate improvements in forecast performance, 

especially at short horizons, to justify the additional costs of nonlinear forecasts. On the other 

side, Cabrera et al. (2011) compare the out-of-sample forecasting performance of international 

securitized real estate returns using linear and non-linear models. They compare the 

performance of a number of nonlinear models to the benchmark linear AR model. They 

conclude that nonlinear models produce better out-of-sample forecasts. Similarly, Miles 

(2008) using the generalized autoregressive model concludes that the nonlinear specification 
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has superior performance in out-of-sample forecasting especially in housing markets 

traditionally associated with high home-price volatility.  

The remainder of this paper is organised as follows. In Section 2 some theoretical 

background on housing market cycle asymmetry is introduced. In Section 3 the characteristic 

of the housing market in large metropolitan areas are investigated. In Section 4 the testing 

and modelling procedure are briefly discussed before presenting the empirical results. In 

Section 5 the forecasting properties of the LSTAR are considered. Finally, in Section 6 some 

concluding remarks are given.  

 

2. Asymmetries in Real Estate Cycles        
 

The dynamic of house prices over phases of the business cycle has long been an object of 

interest to economists.  As Sichel (1993) points out an asymmetric cycle occurs when one 

phase of the cycle is different from the mirror image of the opposite phase. The literature on 

housing market cycles is closely related to the real business cycle from which it originated.  

Early evidence of asymmetry in the business cycle research go back to Burns and Mitchell 

(1946) where it was found that contractions are steeper, but shorter, than expansions, so that 

both the average duration and the dynamics of the two phases of the business cycle differ. An 

important break-through in the analysis of asymmetric adjustment in economic time series is 

provided by Sichel (1993). In this seminal study, univariate tests of deepness and steepness 

were developed to examine the possibility of asymmetry in the both the levels and changes of 

adjustment of time series. Sichel (1993) refers to “steepness” as a type of asymmetry which 

occurs in the business cycle when troughs are deeper than peaks. In this case recessions and 

expansions are characterized by the same duration (symmetry along the time axis), but the 

cycle undergoes a steep fall and a steep recovery, then it peaks at a slower rate and starts falling 

at a slow, but accelerating, rate; as a result, the distribution of the cyclical component is 

negatively skewed, with a positive mode (Proietti, 1999). On the other side, deepness considers 

the possibility that in business cycle peaks and troughs may differ in terms of their respective 

distances from an underlying trend. Recently, asymmetric behaviour of the business cycle has 

been analysed in the amplitude-frequency domain and latent factor models have been used to 

identify the feature of the cycle (see for example Koopman and Lucas, 2005). 

Although asymmetries were investigated by early business cycle researchers, the issue has 

only recently been examined empirically in the housing market context. Holly and Jones 

(1997) examine asymmetry in aggregate UK house prices and Cook and Holly (2000) 

consider asymmetry in UK house prices disaggregated according the age, or vintage. Brake 

(2013) analyses the duration of house price upturns and downturns for 19 OECD countries 

and found that downturns display duration dependence. In a rare study Cook and Watson 
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(2017) analyses price adjustment in the London market and find that asymmetric adjustment 

in house price was particularly evident in the more expensive Inner London region. All these 

empirical works reveal that asymmetries, well known in the business cycle literature, are also 

a feature of the housing market. These findings have important implications for the financial 

stability of the countries involved. This is because as expansions get longer, they are 

increasingly likely to terminate, signalling a progressively unsustainable departure from 

fundamental price valuations. Contractions often act as adjustment periods after long 

expansions: the longer the expansion, the deeper and more painful the subsequent contraction. 

Coming to modelling issue, modelling asymmetries in the real estate markets requires 

special care since, as already mentioned, models that relay on the linear and Gaussian 

assumptions are incapable of generating asymmetric fluctuations. Evidence of asymmetry 

may guide empirical investigators toward a particular class of econometric nonlinear 

specifications able to model asymmetric disturbances. In this respect, the type of nonlinear 

models used to capture asymmetry need to accommodate for the fact that the phenomenon 

under investigation behaves differently according to the state of the system defined in terms 

of a function of a transition variable. Along with the regime switching variable the transition 

mechanism (that is the way the system moves from one state to another) needs to be specified. 

Different combinations of transition variables and transition mechanisms produce a variety 

of nonlinear models that have been used to model the features of the housing market prices. 

One model often used in the literature to identify housing price expansion and contraction 

phases is the Markov switching model suggested by Hamilton (1993). In this specification 

the parameters of the autoregressive data generating process vary according to the states of a 

latent first-order Markov chain. Empirical studies that follow this approach are Suarez and 

Ceron (2006), Chowdhury and McLennan (2014) and Miles (2008) among others. Other type 

of nonlinear models that allow for regime change can be the Threshold Autoregressive Model 

(TAR), developed by Tsay (1989), or the smooth transition autoregressive (STAR) model 

developed by Luukkonen, Saikkonen, and Teräsvirta (1988). While TAR and Markov 

switching models specify a sudden transition between regimes with a discrete jump, the 

dynamics of the STAR model allows a smooth transition between regimes. Examples of 

applications to the housing market cycles are Kim and Bhattacharya (2009) and Crawford 

and Fratantoni (2003) among others.     

 

3. Data and Descriptive Statistics  

 

    The data under consideration are related to monthly residential properties prices over the 

period 1996:1 to 2015:12 for six large metropolitan areas. Namely, New York, Tokyo, Seoul, 
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Hong Kong, Rome and Amman. The data were collected from Bloomberg for all metropolitan 

areas but Amman for which data were collected from Central Bank of Jordan. 

    As far as the sample selection is concerned, some cities such as Rome, Amman and Tokyo 

have been selected as representative of bank-based financial systems where banks play a 

leading role in mobilizing savings, allocating capital, overseeing the investment decisions of 

corporate managers, and providing risk management vehicles. Other cities such as New York, 

Hong Kong and Seoul have been selected as a representative sample of metropolitan areas 

that are major financial centres in market-based system where securities markets share centre 

stage with banks in getting society's savings to firms, exerting corporate control, and easing 

risk management. Finally, Amman has been considered as an example of metropolitan areas 

that experienced great pressure on the demand side of the housing market not so much 

because of fast economic development, but rather for pressure due to political turmoil in the 

neighbour countries. Like many other cities in the Middle East, Amman experienced a surge 

of the refugee population which has an impact on the local property market. The conflict in 

neighbouring Syria has meant an influx of as many as 1.5 million Syrian refugees since 2011, 

these in addition to a large influx of Palestinian and Iraqi refugee present also before the 

Syrian civil war. All in all, the sample represents a good balance of the heterogenous type of 

financial, political and cultural systems which affect the housing market of large metropolitan 

areas.   

Table 1 reports some descriptive statistics for the data under consideration. From Table 1 

it appears that house price volatility in New York was the highest during the period under 

consideration, whereas Rome presents the most stable prices. Also, the Jarque-Bera (JB) test 

rejects the null hypothesis of normality for all the series under consideration. The JB test 

results are corroborated by the skewness and the kurtosis indexes suggesting that house prices 

are not normally distributed. Finally, the Augmented Dickey Fuller (ADF) test suggests that 

house price levels follow a random walk process, so that the series of house price changes 

are stationary. Note that the descriptive statistics are reported for the series in levels, whereas 

the ADF test relates to the series in first differences.    

          
     Table 1. Descriptive Statistics of house prices in the sample.  

 Rome Tokyo Seoul Amman New York Hong Kong 

Mean 104.6 108.8 75.8 167.2 130.4 105.8 

Std. Dev. 10.6 13.4 21.2 14.9 30.4 14.10 

Skewness -0.39 1.33 -0.23 0.45 -0.64 0.56 

Kurtosis 2.43 3.95 1.40 1.66 1.81 2.49 

JB 8.90** 80.35* 27.54* 25.88* 30.59* 15.03* 

ADF -4.00* -23.86* -5.69* -12.68* -5.85* -16.71* 

Note: *) **), ***) refer to the 1%, 5%, 10% significance level respectively. “ADF” relates to the Augmented 
Dickey–Fuller test for unit root and “JB” is the Jarque-Bera test for normality. 
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3.1. Identifying House Price Cycles 

 

To identify house price cycles, we borrow from the business cycle literature and use the 

Harding and Pagan (2002) algorithm to detect turning points. The procedure consists in finding 

a series of local maxima and minima that allow segmenting the series into period of house 

price expansions and contractions. The algorithm is basically a pattern-recognition program 

which involves finding points which are higher or lower than a window of surrounding points. 

Having located the turning points, the duration between these points are measured and a set of 

censoring rules is then adopted which restricts the minimal lengths of any phase as well as 

those of complete cycles.  

Let 𝑌𝑌𝑡𝑡 the series of house prices and ∆ the first difference operator. Define  𝑦𝑦𝑡𝑡 = ∆log𝑌𝑌𝑡𝑡 , 

then the turning point of 𝑦𝑦𝑡𝑡 at time t is defined as peak if the event  

{yt−k < yt > yt+k}, 

and a trough if   

{𝑦𝑦𝑡𝑡−𝑘𝑘 > 𝑦𝑦𝑡𝑡 < 𝑦𝑦𝑡𝑡+𝑘𝑘},   for 𝑘𝑘 = 1, … , 6. 

 

To ensure that we do not identify spurious phases we include the following four censoring 

criteria: i) We eliminate turns within eight months of the beginning/end of the series. ii) Peaks 

or troughs next to the endpoints of the series are eliminated if they are lower/higher than the 

endpoints. iii) Complete cycles of less than 16 months of total duration are also eliminated. iv) 

Each contraction (expansion) phase has a minimum duration of 6 months. 

Once that the turning points have been identified the feature of housing market cycles can 

be investigated. We are particularly interested in the duration of the cycles. Duration for 

upturns is defined as the distance in months between a trough and a peak, whereas downturn 

is measured as the distance in months between a peak and the trough.  

In Table 2 the results obtained using the algorithm described above are reported. In 

particular, the second and the fifth column reports the date of peaks and troughs, in columns 

three and six the duration of expansion and contraction phases in term of number of months is 

reported. Finally, in the fourth and last columns the percentages of price increase in each phase 

are reported.   
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Table 2. Dating of peaks (troughs) in house price cycles. 

  Peak 

Duration of 
contraction 

(Peak to 
Trough) 

  

Price increase (%) Trough 

Duration Of 
Expansion 
(Trough to 

Peak) 

Price decrease (%) 

Tokyo 

Sep. 2007 44 0.19 Jan. 2004 97 0.19 

Mar. 2010 11 0.3 Apr. 2009 19 0.38 

Feb. 2014 18 0.11 Aug. 2012 29 0.12 
   Aug. 2014 6 0.34 

   

Seoul 

Oct. 1997 15 0.12 Jul.1996 7 0.02 

Oct. 2003 59 0.37 Nov.1998 13 0.57 

Sep. 2008 44 0.36 Jan. 2005 15 0.09 

Mar. 2010 12 0.16 Mar. 2009 6 0.23 
   Sep. 2013 42 0.06 

  

Rome 

Jul.2002 79 0.16 Feb. 2003 7 0.2 

Oct. 2005 32 0.2 Aug. 2006 10 0.1 

Jul.2007 11 0.15 May.2009 22 0.3 

May.2010 12 0.09 Jan. 2012 20 0.29 
   

New York 
Aug. 2006 128 0.26 Apr.2009 32 0.14 

Aug. 2010 16 0.14 Mar. 2012 19 0.17 
   

Hong Kong 

Aug. 1998 32 0.28 Dec. 2001 40 0.21 

Jan. 2003 13 0.02 Feb. 2005 25 0.21 

Dec. 2007 34 0.15 Aug. 2008 8 0.08 

Apr. 2009 8 0.47 Jul-10 15 0.03 
   

Amman 

Dec.1999 41 0.04 Jul.1996 7 0.07 

Apr. 2002 17 0.05 Nov. 2000 11 0.03 

Apr. 2004 17 0.04 Nov. 2002 7 0.03 

Sep. 2008 47 0.11 Oct. 2004 6 0.04 

Oct. 2014 66 0.07 Apr. 2009 7 0.21 

Note: The duration of upswing and downswings is expressed in number of months. 

 
 

Looking at the results in Table 2 the algorithm seems to be quite successful in locating 

periods in time that have been thought of as picks and troughs in the housing markets, such 

as the housing market crash that originated the long and deep recession in the US in 2005 and 

the Asian crisis in 1997. A closer look at Table 2 shows that the peak phase in New York, 

Rome and Dublin lasted more than 5 years, between 1996 and early 2000 and that the house 

prices index rose by 0.26%, 0.16% and 0.42% per month, respectively. By contrast, Tokyo 

suffered a long contraction period between 1996-2004, when the house prices index declined 

by 0.19% per month due to the Asian financial crisis in 1997. It is interesting to note that the 

housing market in Hong Kong and New York appear to be more volatile than other large 
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metropolitan areas since price swings are greater than in other large cities in the sample.  This 

seems to agree with our conjecture that market base financial system feature less stable 

housing market. Another notable fact is that the real house prices for most of cities peaked 

before the financial crisis (i.e. before the period Aug. 2006 – Sep. 2008). This result confirms 

the argument in Taylor (2015) (see also Gimeno and Martinez-Carrascal, 2010) that booms 

in house prices can be used as an early warning of recession for the whole economy.  

Table 3 reports the average amplitude and duration of the cycles for each metropolitan 

area. From Table 3 it appears that in most cities real estate cycles have asymmetric 

characteristics with expansion phases which last longer than contraction phases. More 

precisely, the duration of price expansion is between two to five years, whereas contractions 

last less than two years in average. In term of amplitude, a typical house price cycle feature 

more pronounced amplitude in expansion phases than contraction.  

 

          Table 3. Statistics on housing market cycles.  

 Contraction Expansion 

 Duration Amplitude Duration Amplitude 

Tokyo 37.50 -9.10 22.25 6.07 

Singapore 24.75 -11.43 35.00 18.28 

Seoul 16.40 -2.43 31.40 8.64 

Rome 17.75 -3.64 36.00 6.05 

New York 25.50 -3.78 62.67 14.55 

Hong Kong 22.00 -5.251 30.20 7.08 

Dublin 12.75 -4.04 37.60 13.91 

Amman 9.00 -0.48 38.00 2.76 

        Note: Duration and amplitude refer to the average of the duration and amplitude in number of months.  

 

Figure 1 plots house price changes for the period under considaration along with their peaks 

and troughs as identified by the Harding and Pagan (2002) alghorithm. Figure 1 clearly reveals 

that house price cycles have an asymmetric bahavior: in most metropolian areas large, sharp 

upward movements in house price growth are followed by slow downword drifts. This 

behavior suggests that non-linear time series models that allow for asymmetric behavior of the 

cycle may be needed to capture differences in contraction and exapansion pahses of the house 

price cycle.      
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Figure 1. House price index with peaks (dashed line) indices and troughs (solid line).  
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4. The Analysis of Housing Market Cycles 

 

In this section we focus on modelling home price growth rates as a non-linear and state-

dependent variable. Below we briefly summarise the econometric model used in the empirical 

estimation before presenting the estimated results. 

    

  

4.1. The Econometric model 

Let yt be a realisation of a house prices growth series observed at  𝑡𝑡 = 1 − 𝑝𝑝, 1 −

(𝑝𝑝 − 1), . . . ,−1,0, 1,𝑇𝑇 − 1,𝑇𝑇. Then the univariate process {yt} can be specified using the 

following model  

 

𝑦𝑦t =  (ϕ0 +∑ ϕi
𝑝𝑝
𝑖𝑖=1 yt−i)�1− G(st; γ, c)� + (ϕ1 + ∑ ϕi

𝑝𝑝
𝑖𝑖=1 yt−i)�G(st;γ, c)� + ɛt ,     

        = 𝜙𝜙0 + ∑ ϕi
𝑝𝑝
𝑖𝑖=1 yt−i + �𝛽𝛽0 + ∑ βi

𝑝𝑝
𝑖𝑖=1 yt−i�G(st;γ, c) + ɛt ,                               (1) 

 

where 𝛽𝛽0 = 𝛼𝛼0 − 𝜙𝜙0  , 𝛽𝛽𝑖𝑖 = 𝛼𝛼𝑖𝑖 − 𝜙𝜙𝑖𝑖 , the innovations ɛt  ̴ NIID�0,σ2 � and G(st;γ, c) is the 

transition function. The transition function G(st;γ, c) depends on the transition variable st, 

the vector of location parameter 𝑐𝑐 and the slope parameter γ. The regime occurs at time 𝑡𝑡 

depending on the type of transition variable 𝑠𝑠𝑡𝑡. Different choice of transition function leads 

to different types of regime-switching behaviour.  

In the light of the results in Section 3 a choice of a transition function that may be suitable 

to model the asymmetric behaviour of house price cycle is the following  

 

G(st; γ, c) = �1 + e−γ(yt−d –c)�
−1

 , with  γ > 0 and 𝑠𝑠𝑡𝑡 = 𝑦𝑦𝑡𝑡−𝑑𝑑 ,                   (2) 

 

where d is the delay parameter which controls the delays in moving between regimes. On the 

others side, the parameter  γ  determines the speed of adjustment in switching between 

regimes.  

The model in Eq. (1) with the transition function in Eq. (2) is referred to as Logistic 

Smooth Transition model in Teräsvirta (2005). The transition function in Eq. (2) has two 

major features: i) it allows for asymmetric cycles of real estate prices, ii) it also caters for 

smooth transition between expansion and contraction regimes. Given that house prices adjust 

slowly to the economy fundamentals allowing for a smooth transition between phases seems 

to be reasonable. However, Teräsvirta et al. (2005) also suggest the following transition 

function  
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G(st; γ, c) = �1 + e−γ(𝑦𝑦t−d –c1)(𝑦𝑦t−d –c2)�
−1

,     c1 ≤ c2, γ > 0, G(st;γ, c) ϵ [0, 1].     (3) 

 

Combining Eq. (1) with Eq. (3) results in a model referred to as Exponential Smooth 

Transition Autoregressive (ESTAR). In contrast to the LSTAR model, the transition function 

in Eq. (3) is symmetrically U-shaped and considering the model in Eq. (1) with the transition 

function in Eq. (3) would result in a nonlinear specification suitable to model series that 

feature symmetric housing market cycles. With these two possible models in mind, we 

therefore frame our problem of modelling housing market cycles as one of choosing the 

transition function which best describes the features of the housing market cycle described in 

Section 3.  Both models can be estimated by maximin likelihood using standard iterative 

algorithms.  

 

4.2 Empirical Results 

 

The modelling procedure adopted implies to determine the dynamic structure of the series 

of house price growth in the first place. In our case, for each house price series the maximal 

lag order of the AR(p) model was chosen by using the Bayesian information criterion and the 

Portmanteau test for serial correlation. Then, the second step prior to start the estimation 

procedure is to test if the data support the hypothesis a nonlinear model. A natural way of 

doing it is to perform a test of linearity and check if the model in Eq. (1) reduces to a linear 

autoregressive model. This can be done, for example, by using LM principle. However, the 

distribution of such test would not be identified under the null hypothesis since the parameters 

𝛾𝛾 and 𝑐𝑐 in Eq. (1) are not identified under the null (see Davies, 1977). In their seminal work, 

Lukkonen et al. (1988) solve the identification problem by using a Taylor series 

approximation to reparametrize the transition function in Eq. (1). Therefore, the function 

G(st; γ, c) in Eq. (1) can be replaced by the third-order Taylor series as follows    

 

T3(st, γ, c) ≋ γ � ∂G
∗(st,γ,c)
∂γ

� + γ3

6
� ∂

3G∗(st,γ,c)
∂γ3

�,                                (4) 

where 𝐺𝐺∗(𝑠𝑠𝑡𝑡,𝛾𝛾, 𝑐𝑐) is the second derivative with respect to 𝛾𝛾. The resulting auxiliary model is 

than given by 

 

𝑦𝑦𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽10 + ∑ 𝛽𝛽1𝑖𝑖𝑦𝑦𝑡𝑡−𝑖𝑖
𝑝𝑝
1 +∑ 𝛽𝛽2𝑖𝑖𝑦𝑦𝑡𝑡−𝑖𝑖𝑦𝑦𝑡𝑡−𝑑𝑑

𝑝𝑝
1 + ∑ 𝛽𝛽3𝑖𝑖𝑦𝑦𝑡𝑡−𝑖𝑖𝑦𝑦𝑡𝑡−𝑑𝑑2𝑝𝑝

1 + ∑ 𝛽𝛽4𝑖𝑖𝑦𝑦𝑡𝑡−𝑖𝑖𝑦𝑦𝑡𝑡−𝑑𝑑3𝑝𝑝
1 + 𝜖𝜖𝑡𝑡 ,                    

(5) 
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where  𝛽𝛽𝑖𝑖  are the functions of the parameters  𝛾𝛾, 𝑐𝑐 and 𝜙𝜙𝑖𝑖.  The  expression in Eq. (5) can be 

used as the base for the LM tests.   

Panel A of Table 4 reports the p-values of the linearity tests along with the optimal 

delay parameter for each metropolitan area under consideration. From Table 4 it appears that 

the null hypothesis of linearity can be rejected for all house price series under consideration. 

We therefore conclude that a nonlinear STAR type model is better able to capture the features 

of the time series under consideration than an AR(p) model.  

Given that the linearity hypothesis is rejected for all the series under consideration, we 

can now proceed to validate our conjecture that the dynamics of house price changes in the 

metropolis under consideration can best be modelled using an econometric model which is, 

by construction, able to capture asymmetric cycles.  With this target in mind, we follow 

Teräsvirta and Anderson (1992) and use the expression Eq. (5) as a base to test a sequence of 

nested hypotheses which allow us to discriminate model in Eq. (1) with the transition function 

in Eq. (2) against the model in Eq. (1) with the transition function as specified in Eq. (3). The 

procedure involves using a sequence of nested F-type tests for the coefficients in Eq. (5) 

which encompasses testing the following hypotheses in turn: 

                                                                    𝐻𝐻01:𝛽𝛽4𝑖𝑖 = 0,  

                                                                    𝐻𝐻02:𝛽𝛽3𝑖𝑖 = 𝛽𝛽4𝑖𝑖 = 0, 

                   𝐻𝐻03:𝛽𝛽2𝑖𝑖 = 𝛽𝛽3𝑖𝑖 = 𝛽𝛽4𝑖𝑖 = 0. 

Accordingly, given the optimal delay lag (d) established in the previous test of linearity, in 

Eq. (5) we have three possible sequential outcomes. These outcomes are reported in Panel A 

of Table 4. First, rejection of 𝐻𝐻01 ∶  𝛽𝛽41 = 0 implies selecting the transition function in Eq. 

(2). If, however, 𝐻𝐻01 ∶  𝛽𝛽4𝑖𝑖 = 0 is not rejected, we move to the second part of the sequential 

test which tests if 𝐻𝐻02 ∶  𝛽𝛽3𝑖𝑖 = 0 given 𝛽𝛽4𝑖𝑖 = 0. Rejection of the hypothesis 𝐻𝐻02 implies the 

selection of the transition function in Eq. (3). However, if 𝐻𝐻03 is not rejected, we move to the 

last part of the sequential test which tests: 𝐻𝐻02 ∶  𝛽𝛽2𝑖𝑖 =  0 given 𝛽𝛽3𝑖𝑖  =  𝛽𝛽4𝑖𝑖  = 0. Rejection of 

𝐻𝐻02 implies the selection of the transition function in Eq. (2) and therefore the LSTAR model. 

However, according to Kapetanios (2001) strict application of the sequential test may lead to 

misleading conclusions, since the higher order terms of the Taylor expansion used in deriving 

these tests are disregarded. The author suggest that the ESTAR model should be used if the p-

values of the F-test resulting from hypothesis  𝐻𝐻02  is smaller than the empirical p-value result 

from testing hypotheses 𝐻𝐻01 and 𝐻𝐻03  and choose the LSTAR model otherwise. Accordingly, 

on the base of these recommendations in Panel B of Table 4 we follow this criterion and adopt 

the LSTAR model for all the series under consideration.   
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Panel B of Table 4 reports the estimated coefficients of the LSTAR model. For easy of 

interpretation in Table 4 the estimated autoregressive parameters for the expansion and 

contraction regimes in Eq. (1)-(2) are reported separately. In Panel B for each urban area the 

models have been estimated using the optimal delay parameter d reported in Panel A.  

Looking at the estimated coefficients it appears that in most cities house price persistence 

is higher in expansion than contraction phases, since most of the estimated parameters in the 

higher regime are greater in modulus that the corresponding parameters in contraction phases. 

Coming now to the estimated parameters γ , it appears that they are statistically significant 

for all estimated models. The speed of adjustment between regimes is higher for some cities 

than others, however the relatively small estimates of the parameter γ suggests that the value 

of the logistic function changes slowly from zero to unity around the location parameter c. 

This implies that models such us the TAR or Markov regime switching models, where 𝛾𝛾 is 

infinity and there is a sudden switch between regimes are not suitable to capture the housing 

market dynamic. This result contrasts with much of the previous literature where these types 

of models are used to describe housing market behaviour. Another significant finding is that 

the estimated location parameters 𝑐𝑐 shows the different level of sensibility to the magnitude 

of exogenous shocks. Namely, New York, Rome and Seoul are the most sensitive to the 

market shocks. One the other side, Tokyo, Hong Honk and Amman seems to be less 

responsive to shocks than other cities. 
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 Table 4. Estimation results.  

  Rome  
AR(p)* = 9 

Tokyo  
AR(p)* = 7 

Seoul 
 AR(p)* = 6 

Amman  
AR(p)* = 5 

New York  
AR(p)* = 4 

Hong Kong 
AR(p)* = 3 

Panel A: Linearity test   
Optimal 
delay  
parameter (d) 

7 (0.006) 4 (0.048) 1 (0.000)  5 (0.001)  1 (0.000)  3 (0.000) 

LM test for model selection 

       

𝐻𝐻04:𝛽𝛽4𝑖𝑖=0  0.007* 0.105 0.000* 0.034 0.000* 0.231 

𝐻𝐻03:𝛽𝛽3𝑖𝑖=0 0.151 0.644 0.261 0.088 0.001 0.008 

𝐻𝐻02:𝛽𝛽2𝑖𝑖=0  0.175 0.025* 0.002 0.006* 0.000 0.001* 

Panel B: Estimated Parameter  

 Lower Regime 

𝜃𝜃0 
0.127** -5.91 0.095 -0.062 -0.267 3.806** 

(-0.059) (-5.858) (-0.086) (-0.066) (-0.169) (-1.606) 
       

𝜃𝜃1  
-0`.052** -1.477** -0.099 0.585* 0.245** -0.477* 

(-0.024) (-0.627) (-0.151) (-0.164) (-0.102) (-0.186) 
       

𝜃𝜃2  
0.018 -0.706 0.195* 0.516* 0.226** -0.493** 

(-0.071) (-0.851) (-0.072) (-0.104) (-0.118) (-0.217) 
       

𝜃𝜃3  
0.346** 1.283** 0.008 0.488* 0.353* -1.291* 

(-0.169) (-0.621) (-0.100) (-0.114) (-0.099) (-0.348) 

Higher Regime 

𝛽𝛽0  
-0.862** 5.774 1.024* 0.389* 1.359* 4.649* 

(-0.432) (-5.866) (-0.265) (-0.123) (-0.314) (-1.676) 
       

𝛽𝛽1  
-0.874 1.067* -0.116 -0.728* -0.425* 0.36 

(-0.788) (-0.631) (-0.197) (-0.205) (-0.198) (-0.223) 
       

𝛽𝛽2  
-1.249** 0.776** -0.064 -0.688* -0.212 0.31 

(-0.561) (-0.378) (-0.202) (-0.192) (-0.204) (-0.256) 
       

𝛽𝛽3  
-1.642** -1.300** -0.850* -0.654* -0.326* 1.233* 

(-0.943) (-0.623) (-0.186) (-0.178) (-0.120) (-0.373) 

 Smooth Transition Parameter 

c 
1.014* -0.5152* 0.531* -0.276* 0.462** -0.595** 

(-0.16) (-0.048) (-0.101) (-0.081) (-0.226) (-0.201) 
       

γ 
8.753*** 4.251** 6.562** 1.76* 2.942** 2.266** 

(-4.598) (-1.852) (-2.887) (-0.785) (-1.462) (-0.906) 

Panel C: p-values for Misspecification Tests 

𝐴𝐴𝐴𝐴(4) Test 0.675 0.147 0.191 0.244 0.443 0.196 
 
No Rem. 
Nonlinearity  

0.598 0.2 0.419 0.157 0.225 0.411 

Panel A reports the linearity tests. Note that the selection of the optimal lag, AR(p)*, was made using the AIC 
statistic. The numbers in parentheses refer to the lowest p-value of the test in Eq. 5. Panel B reports the estimated 
parameters. Standard errors of the estimated parameters are given in parentheses. Panel C reports 
misspecification tests. *) **) and ***) relate to 1%, 5% and 10% significance level, respectively. 
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Once that the model has been estimated the goodness of fit can be evaluated using 

misspecification tests. The diagnostic statistics considered here are the LM test for serial 

independence for the hypothesis that there is no serial correlation against the q-order 

autoregression (for 𝑞𝑞 =  4) and the test for no remaining nonlinearity.  

The p-values of the tests are reported at the bottom panel of Table 4. Looking at the 

misspecification tests it emerges that the autocorrelation tests do not reject the null hypothesis 

of no autocorrelation against the q-order autoregression for all estimated models. There is 

also no evidence of remaining nonlinearity given that the tests do not reject the null 

hypotheses for the estimated models. Overall, the results in Table 4 suggest that the estimated 

models do not suffer from misspecification problems. 

The estimated transition functions in Figure 2 are plotted against the transition variable 

G(st; γ, c) in Eq. (2).  From Figure 2 it appears that for New York about two-thirds of the 

observations are located in the lower part of the graph, corresponding to the segment between 

0 and 0.5 of the vertical axis, while the rest correspond to the upper regime. The opposite is 

found in the case of Hong Kong since about 80% of the observations are located in the 

segment between 0.8 and 1. The transition functions plotted in Figure 2 clearly show the 

impact of the negative effect of the parameter c in the cases of Amman and Tokyo. However, 

Amman makes a smooth transition because the speed of this transition corresponds with the 

impact of the shocks measured by c.  
 

 

 

 

 

 

 

 

 



18 
 

 

Figure 2. Estimated transition function for the house price series.   
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5. Forecasting Housing Prices 
 

A rolling forecast experiment is implemented in order to investigate the forecasting ability of the 

LSTAR model. With this target in mind the house price series are split in two subsamples: a pre-forecast 

period (for 𝑡𝑡 = 1, . . . ,𝑇𝑇𝑠𝑠−1) from which the model is estimated and a forecast period 𝑡𝑡 = 𝑇𝑇𝑠𝑠, … ,𝑇𝑇 with 

𝑇𝑇𝑠𝑠 = 𝑡𝑡 + ℎ. Then h-step-ahead forecasts are computed and compared with the pre-forecast period. The 

forecast period under consideration is ℎ = {1, 3, 6, 12} months. For each city we compare a linear AR(p) 

model and the LSTAR model in their out-of-sample point forecasts. The out-of-sample forecast 

comparisons do not rely on a single criterion; for robustness we compared the results of using four 

different measures. These comprised the Mean Error (ME), Root Mean Squared Error (RMSE), Mean 

Absolute Error (MAE), Mean Percentage Error (MPE) and Mean Absolute Percentage Error (MAPE). 

The performance measures are calculated as follows 

𝑀𝑀𝑀𝑀 =  ∑ 𝐸𝐸𝑡𝑡𝑇𝑇
𝑡𝑡=1
𝑁𝑁

.                                                                                               

𝐴𝐴𝑀𝑀𝑅𝑅𝑀𝑀 =  �∑ 𝐸𝐸𝑡𝑡2𝑇𝑇
𝑡𝑡=1
𝑁𝑁

.                                                                                      

𝑀𝑀𝐴𝐴𝑀𝑀 =  ∑ |𝐸𝐸𝑡𝑡|𝑇𝑇
𝑡𝑡=1
𝑁𝑁

.                                                                                            

𝑀𝑀𝑀𝑀𝑀𝑀 =  ∑ 𝐸𝐸𝑡𝑡𝑇𝑇
𝑡𝑡=1

∑ 𝑌𝑌𝑡𝑡𝑇𝑇
𝑡𝑡=1

.                                                                                             

𝑀𝑀𝐴𝐴𝑀𝑀𝑀𝑀 =  ∑ |𝐸𝐸𝑡𝑡|𝑇𝑇
𝑡𝑡=1

∑ |𝑌𝑌𝑡𝑡|𝑇𝑇
𝑡𝑡=1

.                            

 

Table 5 reports the results of the forecasting exercise. In columns 1 and 2 the forecasting the forecast 

error measures and the horizon are reported, respectively, whereas in columns 3-14 the forecasting 

results are reported. From the top panel of Table 5 it is clear that according to the ME, RMSE and MAE 

criteria the LSTAR model performs better than its symmetric counterpart does. However, the results 

according to the MPE and MAPE are mixed.  
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Table 5. Forecasting: point predictive performances. 

 Rome Tokyo Seoul Amman New York Hong-Kong 

Error 
measure Horizon AR LSTAR AR LSTAR AR LSTAR AR LSTAR AR LSTAR AR LSTAR 

ME 

1 0.02 0.00 0.88 0.00 0.05 0.00 0.00 0.00 0.58 0.00 0.03 0.00 

3 0.17 0.00 0.91 0.00 0.06 0.00 0.00 0.00 0.71 0.00 0.09 0.00 

6 0.21 0.03 1.12 0.00 0.07 0.02 -
0.05 0.14 0.87 0.00 0.12 0.00 

12 0.14 0.07 0.76 0.00 0.05 0.03 -
0.18 0.06 0.61 0.00 0.78 0.00 

RMSE 

1 0.57 0.00 3.43 0.00 0.50 0.00 0.30 0.00 0.78 0.00 1.85 0.00 

3 0.21 0.01 2.19 0.36 0.36 0.06 0.58 0.36 0.70 0.45 2.28 0.12 

6 1.79 0.02 2.24 0.26 0.40 0.10 0.11 0.27 0.61 0.44 1.06 0.17 

12 2.12 0.02 3.34 0.18 1.55 0.12 0.85 0.29 0.58 0.53 3.01 0.29 

MAE 

1 0.73 0.00 0.57 0.00 0.56 0.00 0.54 0.00 0.32 0.00 1.51 0.00 

3 0.15 0.01 1.68 0.31 0.23 0.05 0.39 0.32 0.48 0.43 1.29 0.10 

6 0.42 0.02 1.85 0.18 0.32 0.08 0.56 0.15 0.49 0.39 2.61 0.14 

12 0.55 0.02 1.69 0.10 0.50 0.10 0.73 0.23 0.53 0.41 1.83 0.24 

MPE 

1 0.06 0.00 0.53 0.00 0.42 0.00 0.39 0.00 0.42 0.00 0.48 0.00 

3 0.80 -0.14 0.58 0.61 0.05 -3.46 0.43 0.98 0.85 -0.22 0.51 -0.83 

6 0.66 0.20 0.52 0.12 0.61 2.29 0.44 0.25 0.78 -0.38 0.53 -0.96 

12 0.57 0.53 0.44 0.14 0.51 -0.14 0.42 1.50 0.44 -0.36 0.47 2.60 

MAPE 

1 0.69 0.00 0.52 0.00 0.56 0.00 0.00 0.00 0.00 0.00 0.56 0.00 

3 0.63 0.11 0.67 0.88 0.34 0.16 0.71 0.98 1.51 0.50 0.93 0.26 

6 0.45 0.20 0.44 0.74 0.43 0.22 0.43 0.58 0.44 0.66 0.74 1.25 

12 0.79 0.17 0.65 0.48 0.51 0.31 0.44 1.96 0.44 0.59 0.74 3.27 

Note: The table compares, for each city, a linear AR(p) model and the LSTAR model in their out-of-sample point forecast 
performance. The forecast measures are: i) Mean Error (ME), ii) Root Mean Squared Error (RMSE), iii) Mean Absolute Error 
(MAE), iv) Mean Percentage Error (MPE) and v) Absolute Percentage Error (MAPE). The forecast horizon are 1,3,6, and 12 
month ahead. 
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5.1 Discussion 

What do we learn from this application? First, the LSTAR model well characterizes the dynamic 

asymmetry of all the metropolises under consideration. This result highlights the fact that the behaviour 

of housing market in high density urban areas may have different dynamics with respect to lower 

population density urban areas. In metropolises high real construction costs such land cost and stricter 

regulations on new developments introduce unpriced supply restrictions. In this respect our results are 

in line with the model in Capozza et al. (2004) where it is found that higher real income, higher level 

of real construction costs and tight regulation increase asymmetries in the housing market cycles. On 

the other side, markets with a higher level of transactions have lower information costs; thus, prices 

adjust more quickly to their long-run equilibrium value. Transaction frequency also affects reservation 

prices in search models of the housing market (Wheaton 1990). This implies that price correction in 

large metropolitan areas is faster than urban areas with lower transaction volume per unit area.  

Therefore, the transmission of an exogenous shock to the housing market is faster with respect to less 

densely populated urban areas. This is why nonlinearity occurs. 

Second, the practical implication of the LSTAR handling house price series is that housing market 

in large cities are more prone to bubbles than lower density areas. Tight housing supply and strong 

demand pressure in high population density urban areas gives rise to deviation from the market 

fundamental price which are then abruptly corrected.  In an influential paper Gleaser et al. (2008) 

suggest a theoretical model where irrational bubbles cause a temporary increase in optimism about 

future prices so that demand shock have more of an effect on price and less on new construction. Their 

model predicts that places with more elastic housing supply have fewer and shorter bubbles, with 

smaller price increases. Consensus literature suggests that supply inelasticity is a crucial determinant of 

the duration of a bubble (see for example Abraham and Hendershott, 1993). It is generally agreed that 

when housing supply is elastic positive economic shocks prompt new construction house prices rise, 

which causes the bubble to quickly unravel.   

Third, there is an extensive literature on how regional house prices interact through the “ripple 

effect” and how they converge or diverge over time (see for example Holmes and Grimes, 2008; Cook, 

2006). The “ripple effect” or “price diffusion effect” is the phenomenon where a shock in a given 

housing market is spread out to the rest of the territory over time. More precisely, ripple effect on house 

prices is shown as a co-movement (rise or fall) in real estate prices which affect in the same direction 

other region’s prices. Spatial diffusion can occur in contiguous geographical areas, but not necessarily, 

it may also affect discontinuous spatial territory with similar socio-economic conditions. Among other 

empirical works, evidence of the price diffusion effect is given in Tsai (2018) for the US, Cook and 

Watson (2016) for the UK, Taltavull et al. (2017) for Spain. Good prudential policy requires action 

before the overbuilding goes too far and necessitates authorities’ intervention. An investigation of a 
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selection of 18 financial crisis from post-war period in several countries carried out by Reinhart and 

Rogoff (2009) has found that housing markets tend to undergo a significant expansion prior to each of 

the financial crises. A good understanding of the time-series properties of metropolises that are at the 

centre of a country economic activity may inform policy makers on the course of action to take before 

it gets too late.      

 

6. Conclusion 

 

In this paper we investigate the time series properties of a sample of metropolises. We start our 

analysis by investigating the duration and amplitude of house price cycles. The results show that all 

the cities considered in the sample present the features of an asymmetric cycle, with expansion lasting 

longer than contraction phases and trough that are deeper than peaks. Another notable fact is that real 

estate markets present synchronized turning points, for example, most housing markets peaked before 

the financial crisis that started 2006 in the United States.  This result is important since it implies that 

a shock in housing market may signal cyclical turning point for the whole economy. In the second step 

of our empirical investigation we model house price dynamics using the LSTAR model. The advantage 

of this type of nonlinear model with respect to other models in the same class is that the LSTAR model 

is able to capture both asymmetries in house price cycles and the smooth transition between regimes. 

The estimation results are encouraging since it is shown that the LSTAR model is able to capture the 

features of house price series and it has good forecasting properties.  

The present paper extends the existing literature in several ways. First, it provides an examination 

of asymmetrical behaviour in house prices in the large urban areas. We believe this is the first study 

to approach dynamic asymmetries in the housing market at this level of aggregation. Related studies 

that investigate the turning points such as Cook (2006), Holly and Jones (1997) and Cook and Holly 

(2000) consider asymmetry in house prices disaggregated at regional or country level. It is reasonable 

to expect real estate prices in large metropolitan areas to have distinctive dynamic patterns with respect 

to smaller urban settlements. Second, most empirical works in economics are based upon the 

assumptions of symmetry and linearity. Therefore, in the presence of nonlinearity, econometric models 

assuming symmetry are not correctly specified and may lead to spurious results. Finally, asymmetrical 

behaviour may inform alternative economic theories of the housing market. Many theoretical models 

assume that asymmetries play an important role over the various phases of the housing cycles. These 

models suggest that price dynamics might differ across expansion and contraction phases of the market 

therefore nonlinear modelling of house price cycles should improve our understanding of how the real 

estate market operates.  
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