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Johansen�s (2000) Bartlett correction factor for the LR test of linear restrictions on cointegrated vectors
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1 Introduction

The procedure for estimating and testing cointegrating relationships described in Johansen (2006)

is available in virtually all econometric software packages and is widely used in applied research.

Brie�y this method involves maximizing the Gaussian likelihood function and analysing the eigen-

values and eigenvectors found using the reduced rank regression method. Once that the number

of cointegrating vectors has been determined, hypotheses on the structural economic relationships

underlying the long-run model can be tested using the likelihood ratio (LR) test.

Although the LR test of linear restrictions of cointegrating vectors has the correct size asymp-

totically, many studies contain reports that the approximation of the �2 distribution to the �nite

sample distribution of the LR test can be seriously inaccurate see, for example, Haug (2002), or

Gredenho¤ and Jacobson (1998)). In order to address this problem Johansen (2000) proposes a

Bartlett adjustment for LR statistic and analytically derives the asymptotic expansions needed

to calculate the expectation of the test statistic. Multiplying the unadjusted statistic by a factor

derived from an asymptotic expansion of the expectation test provides a closer approximation of

the resulting adjusted statistic to the �2 distribution, thus reducing the size distortion problem.

Simulation results presented by Johansen (2000) suggest that applying this type of correction to

the LR test statistic dramatically reduces the �nite sample size distortion problem. However, the

Bartlett correction factor is predicated under the assumption of Gaussian innovations. When the

innovations are non-normal, the correction factor needs to be modi�ed in order to account for

skewness and kurtosis of the innovations. One way of overcoming such calculations is to use a nu-

merical approximation in place of the analytical Bartlett correction. Canepa and Godfrey (2007)

propose computing the Bartlett adjustment for a quasi-LR test using non-parametric bootstrap-

ping as a simple method to generate a non-normality robust small sample inference procedure in

the context of ARMA models.

The purpose of this paper is to investigate if the bootstrap Bartlett corrected LR test can be

used to reduce the size distortion problem in situations where an analytical solution is di¢ cult or

does not work well. If such an application were to be successful it would have signi�cant practical

implications, for several reasons. The bootstrap Bartlett corrected LR test does not relay on the

Gaussian assumption of the innovations, and this feature may be appealing to the applied worker.

Moreover, simulation results indicate that the correction factor is useful for some parameter values

but does not work well for others. As Johansen points out "the in�uence of the parameters is

crucial [.....] There are parameters points close to the boundary where the order of integration or

the number of cointegrating relations change, and where the correction does not work well" (cf.

Johansen (2000) p.741). We believe that the dependency on the parameter values may be reduced
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by computing the Bartlett adjustment using the non-parametric bootstrap. Important theoretical

and empirical results in the literature suggest that the size distortion of the LR test depends on the

e¤ects of the nuisance parameters on the small-sample distribution of the test statistic. Because

the bootstrap method involves replacing the unknown cumulative distribution function of the LR

test statistic by the empirical distribution function of the bootstrap distribution of the same test,

the resulting inference procedure may show less sensitivity to the values of the parameters of the

data generating process (DGP) than a test based on the asymptotic critical values.

Computing the bootstrap Bartlett correction factor is relatively straightforward. Roughly

speaking, this procedure involves calculating a number of bootstrap values of the LR test statistic

and estimating the expected value of the test statistic by the average value of the bootstrapped

LR statistic. The bootstrap Bartlett method was �rst proposed in Rocke (1989) where hypothesis

testing in seemingly unrelated regression models was considered (see also Jacobson and Larsson

(1999)). Rocke�s simulation results showed that the Bartlett adjustment for the LR test de-

termined using the non-parametric bootstrap was considerably more accurate than the Bartlett

adjustment from the second-order asymptotic method of Rothenberg (1984).

This paper examines the performance of the LR test for linear restrictions on the cointegrat-

ing space, the Johansen (2000) Bartlett corrected LR test, the bootstrap p-value test and the

proposed bootstrap Bartlett corrected LR statistic under non-normal assumption of the innova-

tions. Innovation structures typically found in �nancial data are considered such as fat tailed and

conditionally heteroskedastic (i.e., ARCH and GARCH) innovations. Our objective is to decide

which inference procedure performs better in �nite samples when the Gaussian assumption on the

innovations is relaxed. Performance is assessed in terms of the size and power of the inference

procedures under consideration. This section will close with a brief presentation of the Bartlett

correction. The next section introduces the LR test for linear restrictions on cointegrating space,

the Bartlett correction of Johansen (2000), and the two bootstrap inference procedures. In Section

3, the design of the Monte Carlo experiment is explained, and in Section 4, the simulation results

are reported. An empirical application is considered in Section 5 and Section 6 contains some

concluding remarks.

The Bartlett Correction

The Bartlett correction is based on a simple idea, but can be very e¤ective in reducing the

�nite sample size distortion problem of the LR tests. This method takes the form of a correction

to the mean of the LR statistic for a given parameter point � under the null hypothesis. In regular

cases, the asymptotic distribution of the LR statistic is given by � = �2 log(LR) � �2 (q) where

q is the dimension of the constraints, and the asymptotic mean of the LR statistic ought to be
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approximately equal to q. The Bartlett correction is intended to make the mean exactly equal

to q by replacing the above equation by �B = q�
E�(�)

and then referring the resulting statistic

to a �2 (q). Typically, given the complicated form of the LR test, it is di¢ cult to �nd an exact

expression for E� (�) and one can instead �nd an approximation of the form

E� (�) = q

�
1 +

b (�)

T

�
+O

�
T�3=2

�
: (1)

Thus, the quantity
�

1 +
b(�̂)
T

has an expectation q+ O
�
T�3=2

�
which is closer to the limit distribution. For a survey on this

type of correction see for example Cribari-Neto and Cordeiro (1996).

2 Model and Tests

Consider the p-dimensional V AR model

�Yt = �
�
�0Yt�1 + �

0Dt

�
+
k�1X
i=1

�i�Yt�i + �dt + "t; t = 1; :::; T (2)

where Yt, "t � (0;
) are (p � 1) vectors with E ("t"s) = 0 (for t 6= s) and �Yt = Yt � Yt�1.

The matrices of coe¢ cients have the following dimensions: � and � are (p� r); � is (p� pd); � is
(pd � r) ; and �1; :::; �k�1 are (p� p). Also, dt (pd � 1) and Dt (pD � 1) are deterministic terms
in (2). Once the cointegrating rank has been established linear restrictions on cointegrating space

can be tested for. We focus on the hypothesis H0 : � = H', where H (p� s) (for r � s � p) is

a known matrix that speci�es that the same restrictions are imposed on all cointegrating vectors

(r), s is the number of unrestricted parameters, and ' is an (s� r) matrix; see Johansen (1996)
for a discussion of tests for other hypotheses. The LR test statistic for H0 can be obtained from

the concentrated likelihood function and is given by

� = �T
rX
i=1

log
h�
1� b�i� =�1� ~�i�i ; (3)

where �̂i and ~�i are the usual eigenvalues implied by the maximum likelihood estimation of the

restricted and unrestricted models, respectively.

For the null hypothesis H0 : � = H' an approximation to the order T�1 for the Bartlett

adjustment is derived in Johansen (2000) and is given by

3



# =
E� (�)

q
= 1 +

1

T

�
1

2
(p+ s� r + 1 + 2pD) + pd + kp)

�
(4)

+
1

Tr
[(2p+ s� 3r � 1 + 2pD) v (�) + 2 (c (�) + cd (�))]

where q = r(p � s), v (�) = tr

��
�0
�1�

��1X�1

��

�
with

P
�� = V ar(�0Y j�Yt; :::;�Yt�k+2),

cd = pdv (�), and the constant c (�) is given in Johansen. Thus, �B = #�1� is the Bartlett

corrected LR statistic.

The likelihood ratio test in (3) and the correction in (4) are derived under the assumption that

the innovations are "t v N(0;
). However, the Gaussian hypothesis is often too restrictive for the

type of data used in economic applications. The fact that the distribution of most data relating to

�nancial variables, for example (but certainly not exclusively), are fat tailed and often skewed has

been extensively documented in the �nance literature. Although, under weak conditions relaxing

the Gaussian hypothesis does not a¤ect the asymptotic distribution of �, one may expect the

�nite sample error in rejecting probability to be larger. Moreover, when innovations are non-

Gaussian, the second terms of the asymptotic expansions of the mean and the variance of �

depend on the skewness and kurtosis of their distribution. This means that in order to use the

analytical Bartlett�s correction factor it is necessary to estimate the skewness and kurtosis of the

true distribution and accordingly modify the Bartlett�s adjustment. Rather than undertaking

these tedious calculations, it is proposed below that the non-parametric bootstrap be used to

approximate the �nite sample expectation of �. By using the empirical distribution function in

place of some speci�c parametric distribution, the non-parametric bootstrap method does not

require a choice of error distribution be made; this feature is desirable with many type of data.

The proposed inference procedure involves undertaking a simulation study using the constrained

estimates of � obtained by solving the eigenvalue problem, conditional on the initial values Y0 and

�Y0, as the true values. Given these estimates and any required starting values, bootstrap data

can be generated recursively after resampling residuals. From each generated sample, one obtains

a bootstrap value of the LR statistic, say ��j , whose average estimates the mean of � under the

null hypothesis. An alternative procedure is a straightforward application of the bootstrap p-value

approach, where the signi�cance level assigned to � is the fraction of the ��j greater than �. (Note

that the subscript ���is used to indicate the bootstrap analog throughout the paper).
In principle, one may expect the two bootstrap procedures to perform in a similar fashion

given that in both cases we replace F (�), the unknown cumulative distribution function of �,

with F̂ � (�), the empirical distribution function of the bootstrap distribution of ��j . Let B be

the number of bootstrap replications, as B ! 1 then F̂ � (�) ! F � (�), the true cumulative

distribution function of ��j . Thus, the performance of the bootstrap procedures depend on how well
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F � (�) approximates F (�). When the bootstrap data generating process (DGP ) fails to mimic

the features of the true DGP it would be unwise to expect one bootstrap test to outperform the

other. However, one may expect the bootstrap Bartlett corrected test to be less computationally

intensive than the bootstrap p-value test.

Monte Carlo experiments involving bootstrapping are computationally demanding as the num-

ber of loops involved is N � B, where N is the number of Monte Carlo replications. Generally

speaking, the number of bootstrap replications needed in a Monte Carlo experiment is directly

related to the nature of the results desired. For instance, the more work that has to be done in the

"thin" part of the distribution (e.g. the tails), the higher B is needed. This is because values of

the statistics will occur in these areas much less frequently than they will in the "thicker" sections

of the distribution. Thus, many more bootstrap trials are needed to approximate these sections.

Because the bootstrap Bartlett corrected procedure uses bootstrapping to approximate the central

moment of a distribution it may require a lower number of replications than the bootstrap p-value

test, in which bootstrapping is used to approximate the tail of the distribution.

2.1 Bootstrap Algorithms

Bootstrap methods rely on simulations to approximate the �nite-sample distribution of the test

statistic under consideration. In order to achieve accurate inference procedures the bootstrap

DGP used for drawing bootstrap samples has to mimic the features of the underlying DGP . In

this section, we describe the two bootstrap algorithms used to calculate the bootstrap Bartlett

corrected test (��B) and the bootstrap p-value test (�
�). The former is suitable for the model in

(2) when the innovations are i.i.d., whereas the latter is used when innovations are independent

but not identically distributed.

2.1.1 Algorithm 1

When innovations are independent and identically distributed with common variance, it is possible

to obtain an accurate inference by simply resampling the residuals of the estimated restricted

model in (2) without the need to make a particular parametric assumption about the distribution

of the innovations. Swensen (2006) considers a recursive bootstrap algorithm for testing the rank

of � = ��0 in (2) and shows that, under a variety of regularity conditions, the non-parametric

bootstrap based test is consistent in the sense that the bootstrap statistic converges weakly in

probability to the correct asymptotic distribution.
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The steps used to implement the bootstrap algorithm for calculating ��B can be summarized

as follows:

Step (1): Estimate the model in (2) for a given cointegrating rank and obtain the unrestricted

estimate �̂ and the residual ("̂1; :::; "̂T ), the restricted estimates ~� and the residuals (~"1; :::;~"T ).

Then, calculate �:

Step (2): Resample the residuals from ("̂1; :::; "̂T ) independently with replacement from the

unrestricted model to obtain a bootstrap sample ("�1; :::; "
�
T ). Generate the bootstrap sample

�Y �t = �̂
�
�̂
0
Y �t�1 + �̂

0Dt

�
+
k�1X
i=1

�̂i�Y
�
t�i + �̂dt + "

�
t ;

recursively from ("�1; :::; "
�
T ) using the estimated model given in (2).

Step (3): Estimate VAR using Y �t the pseudodata; obtain the the unrestricted and restricted

estimates of the coe¢ cients and residuals, �̂� and ("̂�1; :::; "̂
�
T ), ~�

� and (~"�1; :::;~"
�
T ). Then, test for

the hypothesis H0 : � = �̂
�
:

Step (4): Compute ��j using the data of step (2) and repeat B times. To get an estimate of the

average value of �, say �
�
, average the observed values ��1; :::;�

�
B , . A Bartlett-type corrected

statistic is therefore

��B =
q��

�
� :

The corrected statistic is then referred to a �2 (q) distribution (with q = r (p� s)).

As far as the bootstrap p-value test is concerned the bootstrap algorithm adopted is similar

to the procedure proposed by Gredenho¤ and Jacobson (2001) (see also Trenkler (2009)). This

involves repeating step (1)-(3) and then following stwp (5) below.

where I(�) is the indicator function that equals one if the inequality is satis�ed and zero
otherwise. The bootstrap p-value test, ��, is carried out by comparing P̂ �(�) with the desired

critical level, , and rejecting the null hypothesis if P̂ �(�) � .
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2.1.2 Algorithm 2

When the innovations show conditional heteroskedasticity simply resampling from the residual

fails to mimic essential features of the DGP that initially generated the data. A suitable mod-

i�cation of the residual based bootstrap procedure is the wild bootstrap, which is designed to

accommodate the possibility of independent but not identically distributed innovations. The wild

bootstrap method was developed by Liu (1988) based on a suggestion presented in Wu (1986).

Regarding time series, Gonçalves and Kilian (2003) proposed a recursive-design implementation

of the wild bootstrap for the autoregression model with conditionally heteroskedastic innovations.

For cointegrated VAR models, noteworthy are the recent papers by Cavaliere, Rahbek and Taylor

(2010a) and Cavaliere, Rahbek and Taylor (2010b).

The wild bootstrap DGP is given by

�Y �t = �̂�̂
0
Y �t�1 +

k�1X
i=1

�̂i�Y
�
t�i + �̂dt + v

�
t

where v�t = "̂tZt and Zt is speci�ed as a two-point distribution

Zt =
�
�p
5� 1

�
2

with probability

�p
5 + 1

�
2
p
5

=

�p
5 + 1

�
2

with probability

�p
5� 1

�
2
p
5

so that Zt terms are mutually independent drawings from a distribution which is independent of

the original data and has the properties that E (Zt) = 0, E
�
Z2t
�
= 1, and E

�
Z3t
�
= 1. Given the

bootstrap data, the associated value of the test statistic ��i can be calculated; repeat B times and

follows step (4) to calculate ��B and step (ii) to calculate �
�.

Using the fact that � = f (�; �;�i;
) is consistently estimated in the presence of conditional

heteroskedastic innovations, we show below that �� and ��B converge weakly in probability to the

�rst order asymptotic null-distribution of �.

REMARK 2.1: There has been some discussion in the literature on the use of restricted rather

than unrestricted residuals when implementing the bootstrap procedure. Using the restricted

residuals implies estimating the constrained VAR model and generating the pseudo-data on the

basis of the estimated constrained coe¢ cients. Omtzigt and Fachin (2006) argue that if the null

hypothesis is not true resampling from the unrestricted residuals greatly improve the power of

the p-value bootstrap test and should be preferred. The authors also suggest that the Bartlett

corrected test should be based on the unrestricted estimates. In this paper we have followed their

recommendation.
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REMARK 2.2: The procedure outlined in Algorithm 2 is suitable when the innovations are

serially uncorrelated. Many alternative procedures could be used for generating the bootstrap

DGP, such as the block bootstrap for example. Establishing which bootstrap schemes is the best

to calculate the Bartlett correction factor under di¤erent assumptions on the innovation process

is outside the scope of this paper. In this work the wild bootstrap was preferred to the block

bootstrap for the following reasons. First, the wild bootstrap method is easier to implement

than the block bootstrap because it does not involve the problem of determining block length

as the latter bootstrap method does. Second, under Assumption 1 below, the innovations form

an uncorrelated martingale di¤erence sequence and using the block bootstrap procedure when

innovations are uncorrelated may result in a loss of e¢ ciency. Finally, the consistency of the

wild bootstrap in the present context can be proved using available tools for independent random

variables. However, when innovations admit serial correlation using Algorithm 2 would fail to

replicate the correlation structure of the residuals therefore the procedure is no longer valid. In

this case the block bootstrap or subsampling methods may be used. Investigating the usefulness

of the suggested bootstrap Bartlett test in the case of correlated innovations will be the subject

of future research.

2.1.3 Algorithm 2

When the innovations show conditional heteroskedasticity simply resampling from the residual

fails to mimic essential features of the DGP that initially generated the data. A suitable mod-

i�cation of the residual based bootstrap procedure is the wild bootstrap, which is designed to

accommodate the possibility of independent but not identically distributed innovations. The wild

bootstrap method was developed by Liu (1988) based on a suggestion presented in Wu (1986).

Regarding time series, Gonçalves and Kilian (2003) proposed a recursive-design implementation

of the wild bootstrap for the autoregression model with conditionally heteroskedastic innovations.

For cointegrated VAR models, noteworthy are the recent papers by Cavaliere, Rahbek and Taylor

(2010a) and Cavaliere, Rahbek and Taylor (2010b).

The wild bootstrap DGP is given by

�Y �t = �̂'̂0
�
H 0Y �t�1 + �̂

0Dt

�
+
k�1X
i=1

�̂i�Y
�
t�i + �̂dt + "

�
t ;

where v�t = "̂tZt and Zt is speci�ed as a two-point distribution
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Zt =
�
�p
5� 1

�
2

with probability

�p
5 + 1

�
2
p
5

=

�p
5 + 1

�
2

with probability

�p
5� 1

�
2
p
5

so that Zt terms are mutually independent drawings from a distribution which is independent of

the original data and has the properties that E (Zt) = 0, E
�
Z2t
�
= 1, and E

�
Z3t
�
= 1. Given the

bootstrap data, the associated value of the test statistic ��i can be calculated; repeat B times and

follows Step (4) to calculate ��B and Step (5) to calculate �
�.

Using the fact that � = f (�; �;�i;
) is consistently estimated in the presence of conditional

heteroskedastic innovations, we show below that �� and ��B converge weakly in probability to the

�rst order asymptotic null-distribution of �.

REMARK 2.1: The procedure outlined in Algorithm 2 is suitable when the innovations are

serially uncorrelated. Many alternative procedures could be used for generating the bootstrap

DGP, such as the block bootstrap for example. Establishing which bootstrap schemes is the best

to calculate the Bartlett correction factor under di¤erent assumptions on the innovation process

is outside the scope of this paper. In this work the wild bootstrap was preferred to the block

bootstrap for the following reasons. First, the wild bootstrap method is easier to implement than

the block bootstrap as it does not involve the problem of determining block length as the latter

bootstrap method does. Second, under Assumption 1 below, the innovations form an uncorrelated

martingale di¤erence sequence and using the block bootstrap procedure when innovations are

uncorrelated may result in a loss of e¢ ciency. Finally, the consistency of the wild bootstrap

in the present context can be proved using available tools for independent random variables.

However, when innovations admit serial correlation using Algorithm 2 would fail to replicate the

correlation structure of the residuals, therefore the procedure is no longer valid. In this case

the block bootstrap or subsampling methods may be used. Investigating the usefulness of the

suggested bootstrap Bartlett test in the case of correlated innovations will be the subject of future

research.

2.2 Some Asymptotic Results

We now consider the statistics �� and ��B and we show that the distributions of the bootstrap tests

coincide with the corresponding asymptotic counterparts. We focus on the pseudo-data generated

by Algorithm 2 since the consistency of the bootstrap procedure proposed in Algorithm 1 can be
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derived in a similar way. Our approach builds on the important theoretical results in Swensen

(2006) and Cavaliere, Rahbek and Taylor (2010a).

In the following w! denotes weak convergence, P! convergence in probability,
wp! weak conver-

gence in probability as de�ned by Gine and Zinn (1990), P � denotes the bootstrap probability and

E� relates to the expectation under P �. Moreover, for any square matrix A, jAj is used to indicate
the determinant of A, the matrix A? satis�es A0?A = 0, and the norm kAk is kAk = [tr (A0A)]

1=2.

For any vector a; kak denotes the Euclidean distance norm, kak = (a0a)1=2.
In order to establish the validity of the wild bootstrap we need to impose some conditions on

the innovations. More precisely, we make the following assumption:

Assumption 1

(i) De�ne the characteristic polynomial,

A(z) = (1� z)Ip � ��0z � �1(1� z)z � :::� �k�1(1� z)zk�1: (5)

Assume that the roots of j[A (z)]j = 0 are located outside the complex unit circle or at 1. Also
assume that the matrices � and � have full rank r and that �0?��? has full rank p � r, where

� = Ip � �1 � :::� �k�1.
(ii) The innovations f"tg form martingale di¤erence sequence with respect to the �ltration Ft,

Ft�1 � Ft, with E ("t) = 0 and E ("t"0t) = 
 <1.
(iii) E k"tk4+& <1, & > 0:

Assumption 1 replaces the usual Gaussian assumption on the innovations f"tg by the less
restrictive martingale sequence assumption. The innovations are not correlated, however ARCH

and GARCH e¤ects are now allowed in model (2) by Assumption 1-(ii). Finally, condition iii)

requires the 4 + & moments to be uniformly �nite.

Under Assumption 1, Theorem 1 in Rahbek, Hansen and Dennis (2002) implies that the process

Yt has the following representation

Yt = C
tX
i=1

("i + �
0Di) +

1X
i=0

Ci("t�i + �dt�i) +A0; (6)

where C = �?

�
�0?

�
I �

k�1P
i=1

�i

�
�?

��1
�0?, the coe¢ cients Ci decrease exponentially, and A0 is

a term that depends only on the initial values and �0A0 = 0. Moreover, Theorem 2.1 in Hansen
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(1992) implies the weak convergence of the stochastic integrals

T�1=2
[Tu]X
t=1

"t
w! B (u) ;

T�2
TX
t=1

 
tX
i=1

"i

! 
tX
i=1

"i

!0
w!

1Z
0

B (u)B (u)
0
du;

where B = 
1=2W is a p-dimensional Brownian motion with variance 
 and W a p-dimensional

standard Brownian motion. Rahbek et al: (2002) use this result to derive the asymptotic distri-

bution of the pseudo likelihood ratio test for cointegrating rank. They show that, under the as-

sumption that innovations form a stationary and ergodic vector of martingale di¤erence sequence,

the limit distributions of the rank tests are invariant to heteroskedasticity (see also Seo (2006)).

Recently, in the paper by Cavaliere, Rahbek and Taylor (2010a) it is shown that the limiting null

distributions of the rank tests remain valid in the less restrictive case of global stationarity.

Turning now to the statistics constructed under the pseudo-data generated by Algorithm 2,

the representation in (6) is still valid for each bootstrap replication. However, the reminder term

depends on the realization and needs careful consideration in the bootstrap context. Lemma 1

extends the validity of Lemma 1 in Swensen (derived under the assumption of i.i.d. innovations) to

the case where innovations form an uncorrelated martingale sequence di¤erence with �nite fourth

moments. In the following we set �; � and the initial values of Y to zero, without loss of generality.

As before, an asterisk (�) denotes the bootstrap analog.

Theorem 1: Let the conditions of Assumption 1 hold. Then, under the null hypothesis,

��
wp! � as T !1.

Corollary 1: Under the conditions of Theorem 1, E� (��) P! E (�) as T !1.

Proof of Theorem 1: By Lemma A.4 in Cavaliere et al. (2010a), under Assumption 1, the

generated pseudo observations have the representation

Y �t = Ĉ
tX
i=1

v�i + T
1=2R�t ; (7)

where Ĉ = �̂?

�
�̂0?

�
I �

k�1P
i=1

�̂i

�
�̂?

��1
�̂0? and, for all � > 0, P

� (maxt=1;:::;T kR�t k > �)! 0 in

probability as T !1:
Using the results in (7) we can describe the asymptotic properties of the product moment ma-

trices generated using the pseudo-observations, which are the basic properties of the test statistics.

Following the standard notation, we de�ne R0t and R1t as the residuals obtained by regressing

~Z0t = �Yt and ~Z1t = Yt�1, respectively on ~Z2t =
�
�Y 0t�1;�Y

0
t�2; :::;�Y

0
t�k+1

�
. Moreover,
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Si;j = T�1
TX
t=1

RitR
0
jt =Mij �Mi2M

�1
22 M2j i; j = 0; 1:

and Mij = T�1
TP
t=1

~Zit ~Z
0
jt.

Let �
�� = p lim
T!1

T�1
TP
t=1

�0 ~Z1t ~Z
0
1t�, �
�i = p lim

T!1
T�1

TP
t=1

�0 ~Z1t ~Z
0
it for i = 0; 2, and �
ij =

p lim
T!1

T�1
TP
t=1

~Zit ~Z
0
jt for i; j = 0; 2. Under Assumption 1,

P � (kS�00 � �00k > �)
P! 0; (8)

P �
��̂0S�11�̂ � ��� > �

�
P! 0; (9)

P �
��̂0S�10 � ��0 > �

�
P! 0; (10)

where �ij = �
ij � �
i2 �
�122 �
2j for i; j = 0; 1; �. Moreover,

T�1=2
[Tu]X
t=1

v�t
wp! B (u) ; (11)

T�1�̂
0
?S

�
11�̂?

wp!
1Z
0

F (u)F (u)0du; (12)

�̂
0
?

�
0S�10 � S�11�̂�0

�
�?

wp!
1Z
0

F (u) dB0�?; (13)

where F (u) := �0?CB(u) and [Tu] is the integer value of uT .

The proof for (8)-(10) mimics the proof of Lemma A.7 in Cavaliere et al. (2010a). Similarly,

Lemma A.5 in the same paper implies that the functional central limit theorem for the stochastic

process built from the sequence of partial sums corresponding to the bootstrap resamples holds,

so that

T�1=2
[Tu]X
t=1

v�t
wp! B (u) :

Considering now, (11) and (12), as the reminder R�t in (7) vanishes Lemma 10 in Rahbek et

al. (2002) holds and

T�1=2�̂
0
?Y

�
[Tu]

wp! F (u)

such that the continuous mapping theorem gives

T�1�̂
0
?S

�
11�̂?

wp!
1Z
0

F (u)F (u)0du:
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Similarly, we have

�̂
0
?

�
S�10 � S�11�̂�̂0

�
�̂?

wp!
1Z
0

F (u)d)B0�?:

When linear restrictions are imposed on the parameters �̂ = H'̂, a submodel is de�ned

and the space spanned by the linear transformation z : Rp 7�! Rs with matrix representation

Y �t 7�! H 0Y �t forms a subspace such that sp
�
�̂
�
� sp (H). Given that linear transformations

preserve linear combinations of vectors it follows that if fY �t g satis�es (7), then fH 0Y �t g also

satis�es the same conditions. Moreover, the random process

(
T�1=2

 
[Tu]P
t=1

H 0v�i

!)
converges

weakly toward a Brownian motion with covariance matrix H 0
̂H and the asymptotic distribution

of the moment matrices is given by

T�1=2'̂0?H
0Y �[Tu]

wp! H 0 ~F (u) (14)

'̂0?H
0S�10�̂?

wp! H 0
1Z
0

~FdB0�? (15)

T�1'̂0?H
0S�11H'̂?

wp! H 0
1Z
0

~F (u) ~F (u)0duH: (16)

where ~F (u) := '0?CB(u). From Theorem 1 it follows that the (p� r) smallest solutions of����̂'̂0 �H 0S�11H �H 0S�10S
��1
00 S�01H

�
'̂
��� = 0

converge to zero. Therefore, using (14)-(16) the asymptotic distribution of �� can found by

mimicking Theorem 13.9 in Johansen (1996).

�

Proof of Corollary 1:

Under Assumption 1, (11)-(12) imply weak convergence of the partial sums of stochastic in-

tegrals. Moreover, from (8)-(10) we have that S�ij ! �ij in probability and the estimators of

the parameters are consistent. Under the conditions of Theorem 1, this trivially implies that

E� (��)! E (�) in probability as T !1.
�

3 The Monte Carlo design
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To what extent do deviations from the Gaussian assumption in model (2) a¤ect the �nite sample

performance of the analytical Bartlett correction? In addition, can the non-parametric bootstrap

based Bartlett adjustment introduced above deliver accurate small sample inference when the

Gaussian assumption on the innovations is relaxed? Questions of this nature can best be settled

by case and simulation studies. We now describe the Monte Carlo study that addresses these

issues.

The DGP adopted here is given by

Y1t = Y2t + u1t where u1t = �u1t�1 + �1t (5)

Y2t = �Y1t + u2t u2t = u2t�1 + �2t

�Y3t = �3t

�Y4t = �4t

with

2664 �it

�jt

3775 � i:i:d: N

2664
0BB@ 0

(2�1)

0
(2�1)

1CCA ;

0BB@ A
(2�2)

0
(2�2)

0
(2�2)

B
(2�2)

1CCA
3775

where �it =
�
�1t �2t

�0
, �jt =

�
�3t �4t

�0
, A =

0BB@ �2 ��

�� �2

1CCA, and B = �2I. The null

hypothesis

H0 : � = H' =

266666664
1 0

(1�2)

�1 0
(1�2)

0
(2�1)

I
(2�2)

377777775
'

(3�1)
;

is tested against the alternative H1 : � unrestricted. For easy of interpretation the DGP in (5) is

also given in VECM form

266666666664

�Y1t

�Y2t

�Y3t

�Y4t

377777777775
=

266666666664

�Y2t

��Y1t

0

0

377777777775
+

266666666664

(� � 1)

0

0

0

377777777775
(Y1t�1 � Y2t�1) +

266666666664

"1t

"2t

"3t

"4t

377777777775
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From (5) it is easy to see that under the null hypothesis the variables Y1t, and Y2t enter into the

cointegrated relationship with coe¢ cients proportional to (1;�1). This restriction matches the
hypothesis of proportional co-movements of the two random variables. The DGP in (5) is similar

to that used in Gonzalo (1994). Among others, Gonzalo considers a simple two dimensional V AR

in which cointegration holds between the I(1) series Y1t and Y2t in (5). The DGP used in Gonzalo

allows for high control over the many parameters a¤ecting the size distortion of � such as the speed

of adjustment (�), the correlation between the innovations (�), and the volatility parameter (�).

A possible shortcoming, however, is that bivariate cointegrated V ARs are rarely encountered in

empirical applications. The DGP in (5) maintains high control over the experimental design while

also having greater practical relevance. The experimental parameter space is T 2 (50; 100; 250);
� 2 (0:2; 0:5; 0:8; 1) ; � 2 (�0:5; 0; 0:5) ; � = 1. In addition, combinations of these parameters with
alternative distributions of "t are considered.

Although non-normality is not a feature con�ned to �nancial data, it is the �nancial liter-

ature that has extensively documented substantial departures from the assumption of Gaussian

innovations. For example, it is well established that the unconditional distributions of returns

from �nancial market variables such as equity prices and interest rates are characterized by non-

normality. Equity returns tend to be negatively skewed, whereas the patterns of skewness for

bond market yields are more varied. Non-normality of the marginal distributions of returns does

not necessarily imply the non-normality of the conditional distributions, but many empirical stud-

ies suggest that for �nancial data the Gaussian distribution is highly counterfactual. Given the

widespread use of Johansen�s procedure in �nancial applications, it seems appropriate to consider

innovation distributions that better describe the behavior of �nancial markets.

To illustrate the problem of non-normality in �nancial market variables, we use the behavior of

exchange rates. It is well known that exchange rate changes do not follow a Gaussian distribution.

Potentially important sources of non-zero skewness and excess kurtosis are recurrent periods of a

volatile and then quiet currency markets. To mimic the jump-like behavior caused by the volatility

clustering of exchange rates, several researchers have allowed the innovations to be drawn from fat

tailed distributions. Among others, Tucker and Pond (1988) provide evidence on the descriptive

validity of the mixture of normal distribution as a statistical model for currency markets. Hull and

White (1998) give indications on the choice of parameters of the mixture of normals that match

the higher-order moments of exchange rate changes for a number of major trading currencies.

Building on these studies we allow the innovations to be drawn from these distributions. The

DGP in (5) has

"it � i:i:d: !1N
�
�1; �

2
M1

�
+ !2N

�
�2; �

2
M2

�
and "jt � N(0; 1) (6)
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with !1�1 + !2�2 = 0; !1; !2 � 0, and !1 + !2 = 1. Volatility clustering is introduced in (5) by

!1 that causes occasional "jumps" in the innovation process of the cointegrated VAR(1).

When �1 = �2 = 0 the zero skewness assumption about "it is preserved, being the means

of the normal distributions mixed at zero. In this case, excess kurtosis has been introduced in

(5) by choosing !1 < !2 and �2M1 > �2M2 . Under this assumption the kurtosis in "it is strictly

increasing according to the quantity �2M1

�2M2
. Consistent with these considerations, the following �ve

distributions of "it have been investigated

D1 : "it � i:i:d: 0:15N (0; 3:1329) + 0:85N (0; 0:6084) ;

D2 : "it � i:i:d: 0:52N (�2; 1:5876) + 0:48N (2:18; 0:3721) ;

D3 : "it � i:i:d: 0:7N (2; 1:4161) + 0:3N (�4:7; 0:0196) ;

D4 : "it � i:i:d: 0:32N (4; 1:9881) + 0:7N (�1:9; 0:5329) :

Table 1 summarizes the descriptive statistics for D1, D2, D3 and D4. Note that the skewness

coe¢ cient, (Skew), is computed as the third theoretical sample moment standardized by three

halves power of the variance, whereas the kurtosis coe¢ cient, (Kurt), is the fourth theoretical

sample moment divided by the square of the variance. For a normal distribution Skew should

bero zero and Kurt should be equal to three.1

Table 1. Descriptive measures of D1, D2, D3, and D4:

D1 D2 D3 D4

Mean .0 .0 .0 .0
V ar 1.08 3.28 3.82 6.29
Skew .0 -0.50 -2.65 1.34
Kurt 4.610 4.49 12.83 4.16

As it emerges from Table 1, the innovations generated using mixture of normals cover a broad

range of fat tailed and skewed distributions. Innovations generated under D1 have mildly fat tails

but are not skewed, whereas D2, D3 and D4 are fat tailed and skewed distributions.

Though mixture of normals introduces fat tails, it preserves the i.i.d. structure of the in-

novations. Among others, Bollerslev (1987) suggests that ARCH and GARCH models better

�t exchange rate data measured over short time intervals (i.e. daily or weekly). Accordingly,

simulations with conditional heteroskedastic innovations have been carried out with

1 Note: The second, third and forth central moments of "it are calculated as E("
2
it) =

2X
b=1

!b
�
�2b + �

2
b

�
, E("3it) =

2X
b=1

!b
�
3�b�

2
b + �

3
b

�
, and E("4it) =

2X
b=1

!b
�
3�4b + 6�

2
b�

2
b + �

4
b

�
(for b = 1; 2), respectively.
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"1t =
p
ht&1t; "2t = �"1t +

p
(1� �2)&2t; "3t and "4t � N (0; 1) ;

with &it � N (0; 1) (for i = 1; 2) and ht denotes the conditional variance. Two speci�cations of

the variance schemes are used: an ARCH(1) process given by

ht =
�

1� % + %"
2
1t�1; (7)

with � = 1, and a GARCH(1; 1) process given by

ht =  0 +  1"
2
1t�1 +  2ht�1: (8)

with  0 = 0:1. As for the choice of the other parameters, the following values have been selected

D5 : "it as in (7) with % = 0:4;

D6 : "it as in (7) with % = 0:8;

D7 : "it as in (8) with  1 = 0:570 and  2 = 0:921;

D8 : "it as in (8) with  1 = 0:095 and  2 = 0:881:

The parameter values in D7 and D8 are those estimated for the exchange rate markets in

Bollerslev (1987).

Estimates of the rejection probabilities have been obtained using pseudo-random numbers with

programs written in GAUSS. The Monte Carlo experiment was based on N = 10; 000 replications

for �, �B and on N = 1; 000 replications for ��B and �
�. All bootstrap distributions have been

generated by resampling and then calculating the test statistic 800 times. The random number

generator was restarted for each T value with the initial value set equal to zero. The VAR(1)

model was �tted with an unrestricted constant. Moreover, note that in the Johansen procedure,

the maximum likelihood estimator of � in equation (2) is calculated as the set of eigenvectors

corresponding to the s largest eigenvalues of S00kS
�1
00 S0k with respect to Skk , where S00; Skk and

S0k are the moment matrices formed from the residuals�yt and yt�k, respectively, onto the�yt�j .

In this paper in place of the conventional algorithm for cointegration analysis (i.e. the algorithm

for maximum likelihood estimation that uses the second moment matrices), all simulation results

reported have been obtained using an algorithm based on QR decomposition; see Doornik and

O�Brien (2002). This yields simulation results that are more numerically stable.

4 The Monte Carlo results

Table 2-5 report the simulation results on the performance of �, �B , ��B , and �
�. The �nite

sample signi�cance levels are estimated for nominal levels of 5% and all estimates are given as
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percentages. In Table 2, the normal distribution serves as a benchmark, whereas Table 3 shows

the results for the case of innovations drawn from a mixture of two normal distributions. Table

3 also contains results relating to the sensitivity of the error in rejection probability to variations

of key parameters of the DGP . For the case with �2 (c) and t (c) distributions, the Monte Carlo

results are summarized in Table 4 using response surface regressions. Finally, Table 5 reports the

rejection frequencies for the case of ARCH and GARCH innovations.

Before looking at other speci�cs of the simulation results it is noteworthy to consider the

benchmark case in which "it � N (0; 1). As far as � is concerned, Table 2 mainly con�rms previous

�ndings that inference based on �rst order asymptotic critical values is markedly inaccurate with

excessively high rejection frequencies. Correcting � using the analytical Bartlett factor improves

the behavior of the test statistic. However, Table 2 indicates that the performance of �B is highly

dependent on the autoregressive coe¢ cient of the error correction mechanism, �. When � is large

(i.e. the speed of adjustment to the cointegrated equilibrium is low), the correction does not

work well. Using the bootstrap to approximate the Bartlett adjustment factor produces estimated

levels that are less sensitive to the value of � parameter. The performance of the p-value bootstrap

test is also less dependent on the value of the speed of adjustment parameter. Looking at the

simulation results in Table 2 it appears that when T = 100 and � 6= 0, �� and ��B work well for
� � 0:8, whereas the empirical levels of �B are within the 95% con�dence interval for � � 0:5,

say. When � = 1 the process Yt is a pure I(1) process that does not cointegrate. In this case,

we do not expect the resampling schemes presented in Section 2 to work, since the roots of the

characteristic polynomial of the model in (2) are located inside the unit circle, and the process

Y �t �E (Y �t ) is not stationary. The size distortion of ��B and �� is still quite moderate, but there
is no reason to believe that the test statistics would have adequate power. (Note that for the near

unit-root model the bootstrap becomes inconsistent just as the exact unit root case). Coming to �,

the estimated sizes reported in columns 3-6 show that the error in rejection probability increases

when � ! 0: However, no matter the value of �, bootstrap based inference outperforms �B .

Table 2. Estimated rejection probabilities, for the 5% critical value (in percent). Case withN(0; 1) innovations.
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� = 0:8 � = 0:5

Test � = �0:5 � = 0 � = 0:5 � = 0:2 � = 0:5 � = 1

T = 50 � 25:7 29:5 26:1 9:2 11:9 41:9
�B 14:5

(1:559)
17:3
(1:563)

14:4
(1:565)

4:5
(1:407)

5:6
(1:473)

25:3
(1:597)

��B 7:4 7:9 7:3 5:1 5:3 11:2
�� 8:1 8:3 8:6 5:1 5:7 13:1

T = 100 � 12:8 16:1 12:8 6:8 7:9 40:8
�B 8:4

(1:290)
11:0
(1:281)

8:7
(1:280)

4:8
(1:207)

5:1
(1:233)

32:1
(1:298)

��B 5:5 6:0 5:2 4:9 5:1 11:1
�� 5:4 5:9 5:5 4:8 5:3 13:0

T = 250 � 7:7 8:7 7:9 5:6 5:8 40:6
�B 6:2

(1:090)
7:0

(1:112)
6:1

(1:116)
5:0

(1:079)
4:7

(1:097)
36:4
(1:120)

��B 4:6 5:1 5:0 5:3 5:0 11:0
�� 4:8 5:1 5:2 5:4 5:2 12:7

Note: The estimated rejection probabilities of ��B and �� have been calculated using algorithm 1 in Section

2. For � and �B the number of replications is N=10,000, for ��B and �� N=1,000 and B=800. A 95% con�dence

interval around the nominal level of 5% is given by (3.6, 6.4). The Bartlett corrections are given in parenthesis.

The asymptotic distribution is �2(1).

Turning to the question of assessing how good the bootstrap Bartlett correction when the

innovations are fat-tailed, Table 3 suggests that the answer depends in a complicated way on �,

�, T and the distribution of "it. Looking at the estimated levels of � over the range D1; :::; D4

in the �rst place, a match with the excess kurtosis and skewness coe¢ cients in Table 2 reveals

that, in general, the error in the rejection probability of the test increases with jKurtj and jSkewj,
with the highest size distortion for the case of D3 and D4. Furthermore, comparing the estimated

sizes from the top and the bottom panel in Table 3 it appears that the e¤ect of non-Gaussian

innovations on the estimated level of the test is, once again, highly dependent on the parameter

values of the DGP : it is pronounced when the speed of adjustment is slow and it is relatively mild

when the latter is fast (i.e., � = 0:2). Bewley and Orden (1994) report that Johansen�s estimator �

produces outliers when the speed of adjustment is slow, while Phillips (1994) provides a theoretical

analysis showing that the �nite sample distribution of �̂ is leptokurtic. The simulations in Bewley

and Orden and the theoretical results in Phillips explain why � behaves so poorly when the

combinations of � = 0:8 and the non-Gaussian distributions in Table 3 are selected: excess kurtosis

in the innovations magni�es the e¤ect of the slow speed of adjustment increasing the mismatch
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between the �nite sample and the asymptotic reference distribution of the test statistic by moving

the distribution to the left. In this situation, �B can only be partially successful because the

second terms of the asymptotic expansions of the mean of � depend on the skewness and kurtosis

of its distribution, and the conditions under which this dependence vanishes have not yet been

established. In contrast, when using ��B the Gaussian distribution is replaced with the empirical

density function of the innovations. This strongly mitigates the e¤ects of skewness and kurtosis

on the �nite sample mean of the test and makes the �nite sample distribution of ��B closer to the

asymptotic distribution.
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Table 3. Empirical sizes for the 5% (in percent) critical value. Case with mixture of normal innovations.

� = 0:8

� = �0:5 � = 0:5

"it � �B ��B �� � �B ��B ��

T = 50 D1 31:0 18:3
(1:563)

8:6 9:3 31:6 18:4
(1:566)

8:5 9:7

D2 28:0 15:8
(1:564)

8:2 8:8 28:9 16:3
(1:561)

8:4 9:1

D3 32:6 19:1
(1:562)

8:3 9:0 33:2 19:9
(1:559)

8:8 10:5

D4 34:8 20:9
(1:562)

9:3 10:9 34:5 20:3
(1:556)

8:6 10:4

T = 100 D1 18:5 13:2
(1:276)

5:4 6:1 19:0 13:2
(1:281)

6:2 6:7

D2 15:4 10:7
(1:281)

5:2 5:4 15:8 10:7
(1:283)

6:0 6:1

D3 21:0 14:8
(1:283)

6:5 6:7 21:7 15:4
(1:279)

5:8 7:0

D4 23:8 17:7
(1:281)

7:2 8:0 23:4 17:0
(1:281)

5:8 6:1

T = 250 D1 8:6 7:1
(1:107)

4:8 4:6 8:8 7:3
(1:114)

4:7 4:7

D2 7:7 6:0
(1:118)

5:2 5:1 8:0 6:4
(1:115)

4:5 4:5

D3 9:6 8:0
(1:109)

5:7 5:3 9:6 8:0
(1:114)

5:2 5:4

D4 11:1 9:0
(1:113)

4:4 4:2 10:6 8:9
(1:116)

4:1 4:3
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Table 3. (Continue)

� = 0:5

� = 0:2 � = 0:5

"it � �B ��B �� � �B ��B ��

T = 50 D1 10:1 5:3
(1:394)

4:8 4:6 15:2 7:9
(1:471)

6:3 6:9

D2 9:5 5:0
(1:399)

4:4 5:6 13:0 6:4
(1:473)

6:2 5:8

D3 11:0 5:1
(1:396)

5:9 5:8 17:3 9:5
(1:474)

6:0 6:3

D4 12:3 6:2
(1:397)

5:9 5:8 18:7 10:1
(1:473)

6:1 6:6

T = 100 D1 7:8 5:4
(1:203)

4:0 4:2 9:2 6:1
(1:239)

5:9 4:6

D2 7:2 4:9
(1:200)

4:7 5:2 8:4 5:4
(1:238)

5:0 5:4

D3 7:5 5:1
(1:202)

5:1 5:0 9:6 6:4
(1:235)

5:4 5:6

D4 8:1 5:6
(1:113)

4:6 4:7 10:5 7:3
(1:235)

5:4 4:8

T = 250 D1 5:8 5:0
(1:079)

4:9 4:7 6:5 5:4
(1:094)

5:0 4:5

D2 5:7 4:9
(1:079)

4:7 5:0 6:2 5:0
(1:096)

5:1 4:6

D3 6:1 5:2
(1:079)

4:7 4:4 6:7 5:5
(1:095)

4.5 4:7

D4 6:1 5:2
(1:078)

4:8 4:7 6:9 5:7
(1:096)

4:5 4:6

Note: The estimated rejection probabilities of ��B and �� have been calculated using algorithm 1 in Section

2. For � and �B the number of replications is N=10,000, for ��B and �� N=1,000 and B=800. The Bartlett

corrections are given in parenthesis.

The �nal set of simulation experiments relates the ARCH and GARCH innovations. Table 4

presents the empirical sizes for the inference procedure under consideration when di¤erent values

of %,  1 and  2 are considered. As for the other cases, the error in rejection probability of � and

�B heavily depend on the distribution of "it. In contrast, ��B and �
� behave quite well leaving

open the possibility of extending the bootstrap algorithm presented for the Bartlett correction in

Section 2 to other cases in which the ordinary residual based bootstrap procedure would fail.
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Table 4. Empirical sizes (in percent) for the 5% critical value. Case with ARCH and GARCH innovations.

� = 0:5 � = 0:8

"it � �B ��B �� � �B ��B ��

T = 50 D5 16:7 8:8
(1:474)

5:3 5:6 33:0 19:6
(1:562)

7:7 8:4

D6 19:4 10:6
(1:472)

6:0 6:2 34:8 21:1
(1:560)

8:1 9:3

D7 16:9 9:0
(1:476)

5:7 5:5 31:2 18:6
(1:561)

8:8 9:8

D8 16:5 8:8
(1:468)

5:5 5:5 31:8 18:7
(1:562)

8:6 9:3

T = 100 D5 8:5 5:6
(1:241)

5:2 5:5 19:3 13:5
(1:280)

6:9 7:4

D6 9:5 6:4
(1:235)

5:0 5:2 22:6 16:3
(1:279)

7:7 8:2

D7 9:6 6:4
(1:234)

5:4 5:1 20:9 14:8
(1:281)

6:8 6:9

D8 9:4 6:3
(1:238)

5:2 5:3 20:4 14:3
(1:283)

6:8 6:4

T = 250 D5 6:4 5:2
(1:095)

4:4 4:6 9:3 7:6
(1:113)

4:9 5:4

D6 6:5 6:4
(1:094)

4:6 4:4 10:2 8:6
(1:111)

5:1 5:0

D7 6:4 5:6
(1:096)

5:2 5:1 9:6 7:9
(1:106)

4:5 4:7

D8 6:7 5:7
(1:096)

5:0 5:1 9:5 7:7
(1:110)

4:9 4:8

Note: The estimated rejection probabilities of ��B and �� have been calculated using algorithm 2 in Section 2.

DGP with � = 0: For � and �B the number of replications is N=10,000, for ��B and �� N=1,000 and B=800.

The asymptotic size of the tests is 5%. The Bartlett corrections are given in parenthesis.

To wrap up the discussion, in Tables 2-4, � is greatly oversized in most instances. The error in

rejection probability of the test statistic crucially depends on the parameter values of the DGP ,

and violations of the Gaussian assumption worsen the performance of the test for �nite samples.

�B o¤ers improvements over the uncorrected statistic but its behavior mimics the performance of

� and thus, it is not entirely reliable. In contrast, the two bootstrap procedures are less sensitive

to the parameter values of the DGP and appear to be relatively robust to both non-Gaussian and

conditionally heteroskedastic innovations.

4.1 Results Under the Alternative Hypothesis

It is well known that the Bartlett correction factor is designed to bring the actual size of asymptotic

tests close to their respective nominal size, but it may lead to a loss in power. Accordingly, the

power properties of the proposed procedure are considered in this section.
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For the experiments evaluating the power of the tests, data were generated under the alternative

hypothesis

H1 : � = H' =

26664
1 0

(1�2)
�g 0

(1�2)
0

(2�1)
I

(2�2)

37775 '
(3�1)

;

where g 2 (1:2; 1:4; 1:6; 1:8:2) with � = 0:5; � = 0:5, and � = 1 in (5). The results of this set

of experiments are reported in Table 5. Once again, the case of �it i.i.d. N � (0; 1) serves as a

benchmark, then �it � D1 and �it � D5 are considered. Experiments using the other distributions

for the innovations considered in Table 3-4 produced similar power properties and results will be

omitted in the interest of brevity.

In Table 5 power estimates show that the sample size and the distance between the null and the

alternative hypothesis play an important role in determining the power of the test statistics under

consideration. Considering the asymptotic test �rst, it appears that the power of the � is badly

a¤ected by the choice of the distribution of the innovations: the test is relatively well behaved

when the innovation are fat-tailed but i.i.d., whereas the performance of the test deteriorate when

ARCH innovations are introduced in the DGP . Turning to the comparison of the power among

the di¤erent procedures, overall it is found that in small sample (i.e. T = 50) correcting the test

statistic for the size shifts the estimated power function down. There is evidence that ��B and �
�

share similar power properties, with no test uniformly outperforming its competitor. The results

for the sensitivity of the inference procedures to the parameters of the DGP are not reported in

detail here but simulation experiment showed that a slow adjustment to the equilibrium worsens

the rejection frequencies for ��B , �
�and �B . On the other side, changing the correlation between

the noises does not have an important impact on the power estimates.
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Table 5. Rejection frequencies under the alternative hypothesis (in percentage) for the 5% critical value.

"t g = 1:2 g = 1:4 g = 1:6 g = 1:8 g = 2

T = 50 N � 71.7 89.8 93.8 95.2 95.7
�B 60.7 84.0 89.6 91.6 92.5
��B 60.4 83.6 88.7 90.5 90.8
�� 60.6 83.0 89.2 90.6 91.0

D1 � 50.0 72.9 80.7 83.9 85.5
�B 37.0 61.6 72.0 75.7 77.5
��B 29.3 53.3 59.7 63.9 65.0
�� 30.2 54.5 61.5 64.8 66.4

D5 � 25.3 41.0 52.6 58.8 62.7
�B 15.7 28.3 39.3 46.5 50.3
��B 11.4 21.5 29.1 33.2 36.6
�� 11.1 24.4 29.5 33.9 37.3

T = 100 N � 98.2 99.9 100 100 100
�B 97.5 99.8 99.9 100 100
��B 96.8 99.0 100 100 100
�� 96.8 99.7 100 100 100

D1 � 86.1 98.1 99.4 99.7 99.8
�B 82.1 97.3 99.0 99.5 99.7
��B 80.1 96.7 99.0 99.3 99.4
�� 79.6 96.7 98.9 99.3 99.4

D5 � 44.5 77.2 89.1 93.6 95.3
�B 37.7 72.1 85.9 91.4 93.6
��B 32.7 66.7 80.9 87.2 89.5
�� 32.5 66.5 80.9 87.6 89.5

T = 250 � 99.9 100 100 100 100
N �B 99.9 100 100 100 100

��B 99.8 100 100 100 100
�� 99.8 100 100 100 100

D1 � 96.3 100 100 100 100
�B 95.8 100 100 100 100
��B 95.7 100 100 100 100
�� 96.7 100 100 100 100

D5 � 93.0 99.8 100 100 100
�B 92.0 99.8 100 100 100
��B 91.9 99.7 100 100 100
�� 91.9 99.7 100 100 100

Note: The estimated rejection probabilities of ��B and �� have been calculated using algorithm 1 and 2 in

Section 2 using N=1000 and B=800. DGP with � = 0:5, � = 0:5:
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Before concluding this section, an important point regarding the bootstrap algorithm used

to calculate the approximation of the �nite sample expectation of the LR test is discussed. In

algorithm 1 and 2 the residuals were resampled with replacement from the restricted model. In

alternative the resampling could be implemented using the unrestricted residuals. This implies

estimating the unconstrained VAR model and generating the pseudo-data on the basis of the

estimated unconstrained coe¢ cients. Omtzigt and Fachin (2006) argue that if the null hypothesis

is not true resampling from the unrestricted residuals greatly improve the power of the test statistic

and should be preferred. The authors also suggest that the p-value bootstrap test should be based

on the unrestricted estimates. However, Omtzigt and Fachin (2006) consider the analytical Bartlett

correction factor proposed by Johansen (2000) and it is not clear if their recommendations should

be followed in this context.

In order to check if the power properties of the bootstrap Bartlett corrected test was a¤ected

by the choice of the resampling procedure, a simulation experiment was undertaken comparing

the rejection frequencies for the size and power of the test generated using the restricted and the

unrestricted residuals. The results of this simulation experiment are reported in Table 6. In Table

6 the test statistic generated using the unrestricted residuals is labelled as ��Bu
. Once again,

the estimated rejection probabilities of ��B and �
�
Bu
were calculated using the DGP in (5) with

� = 0:5 and � = 0:5. The rejection frequencies for ��Bu
were obtained using the algorithm below.

4.1.1 Algorithm 3

Step (i): Estimate the model in (2) under the null hypothesis and calculate the unrestricted

residuals

"̂t = �Yt � �̂�
�
Yt�1 + �̂

0Dt

�
�
k�1X
i=1

�̂i�Yt�i � �̂dt:

Step (ii): Compute Y �t recursively from

�Y �t = �̂
�
�0Y �t�1 + �̂

0Dt

�
+
k�1X
i=1

�̂i�Y
�
t�i + �̂dt + "

�
t ;

with sampled residuals ("�1; :::; "
�
T ) drown with replacement from ("̂1; :::; "̂T ).

Step (iii) Using the bootstrap sample compute the unrestricted and restricted estimates of the

coe¢ cients and calculate ��j :

Step (iv) Follow Step (4) to compute �
�
u and refer �

�
Bu
= q�

�u
� to a �2 (q) distribution (with

q = r (p� s)).
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In the case were innovations are heteroskedastic the rejection probabilities were calculated by

simply replacing the wild bootstrap DGP in step 1 and then following the other three steps as for

algorithm 2.

For ease of interpretation the rejection frequencies for the power of ��B in Table 5 are also

reported in Table 6.
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Table 6. Rejection frequencies for ��B and ��Bu
for the 5% critical value.

Size Power
"t g = 1:2 g = 1:4 g = 1:6 g = 1:8 g = 2

T = 50 ��B N 5.3 60.4 83.6 88.7 90.5 90.8
��Bu

5.7 64.9 87.0 90.8 96.6 98.9

��B D1 6.3 29.3 53.3 59.7 63.9 65.0
��Bu

8.3 38.4 60.6 65.7 72.4 73.1

��B D2 6.2 28.2 44.0 52.6 57.4 60.5
��Bu

10.1 32.8 54.1 65.0 62.0 66.0

��B D5 5.3 11.4 21.5 29.1 33.2 36.6
��Bu

6.1 12.7 26.8 34.7 39.0 42.3

��B D8 5.5 9.4 18.6 31.0 37.1 39.9
��Bu

8.8 12.4 25.1 35.1 42.3 46.9

T = 100 ��B N 5.1 96.8 99.0 100 100 100
��Bu

5.2 99.3 99.5 99.8 100 100

��B D1 5.9 80.1 96.7 99.0 99.3 99.6
��Bu

6.1 86.8 98.3 99.3 99.8 100

��B D2 5.0 58.9 87.6 95.1 96.8 98.0
��Bu

7.3 62.8 87.7 96.5 98.9 99.9

��B D5 5.2 32.7 66.7 80.9 87.2 89.5
��Bu

4.9 35.2 70.7 82.3 92.3 97.1

��B D8 5.2 22.1 56.8 75.5 83.3 86.3
��Bu

5.6 26.4 60.0 76.6 83.9 87.9

T = 250 ��B N 5.0 99.8 100 100 100 100
��Bu

4.0 100 100 100 100 100

��B D1 5.0 91.9 99.7 100 100 100
��Bu

5.5 99.2 100 100 100 100

��B D2 5.1 99.4 100 100 100 100
��Bu

5.2 96.4 100 100 100 100

��B D5 4.4 91.9 99.7 100 100 100
��Bu

4.8 98.3 99.9 100 100 100

��B D8 5.0 75.5 98.8 99.9 100 100
��Bu

5.5 78.4 98.0 99.7 99.9 100

Note: DGP with � = 0:5, � = 0:5: N = 1000; B = 800:
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Simulations results in Table 6 show that there is some loss in power when the bootstrap algo-

rithm is based on the restricted DGP. However, type I error control is superior when the bootstrap

DGP is based on the restricted estimates. This suggests that, for practical implementations, the

choice between the restricted and the unrestricted residuals has to be based on the speci�c appli-

cation.

5 An Empirical Application

As an illustration, the bootstrap Bartlett procedure discussed in Section 2 has been applied to

investigate purchasing power parity (PPP) relationship. According to economic theory, once

converted to a common currency, national price levels should be equal. In other words,

P = �P + E

where P is the log of the domestic price level, �P is the log of the foreign price level, and E denotes

the log of the spot exchange rate (home currency price of a unit of foreign currency). Therefore,

departures from PPP relationship at time t can be de�ned as

PPPt = Pt � �Pt � Et: (9)

Equation (9) implies that if the PPP mechanism is functioning, one should observe the tendency

of the two markets to adjust toward the long-run equilibrium level of exchange rates, meaning

that PPPt should be a stationary stochastic process. However, using conventional unit root tests

a number of studies examining the empirical validity of the PPP relationship for the period of

�oating exchanges rates have failed to reject the null hypothesis of non-stationarity for PPPt

leading to what Rogo¤ (1996) de�nes as the "PPP puzzle".

Reviewing the existing empirical works on PPP a large consensus on two facts emerges. First,

consensus estimates suggest that the marginal distributions of prices and exchange rates exhibit

excess kurtosis and nonzero skewness such that a Gaussian conditional distribution for the innova-

tions is typically counterfactual. Second, there is fairly persuasive evidence that it takes long time

before PPP returns to its steady-state value, meaning that speed of adjustment toward PPP equi-

librium is very slow. Because ��B is less sensitive to parameter values of the DGP (the empirical

levels of ��B reported in Table 2 showed much less variation over the grid of parameters consid-

ered in the Monte Carlo experiment) and better able to cope with deviations from the Gaussian

assumption, this test statistic may be appropriate when using Johansen�s procedure for testing

PPP hypotheses.
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As an application PPP, relationship using the data in Johansen and Juselius (1992) is consid-

ered. The data set contains quarterly data from 1971:1 to 1987:1 for the nominal dollar exchange

rate for the UK (Et) ; the domestic consumer price index (Pt) ; and the US consumer price index�
�Pt

�
. The �rst two columns in the top of Table 6 summarize the misspeci�cation tests for the

unrestricted VAR

Yt =
h �

Pt � �Pt

�
Et

i0
estimated with an unrestricted constant, two lags and T = 64. The diagnostic tests involve Far for

the hypothesis that there is no serial correlation against the fourth-order autoregression, �2no that

residuals are normally distributed, Farch that there is no autoregressive conditional heteroskedas-

ticity (against fourth order) and �2het for the hypothesis that there is no heteroskedasticity. Look-

ing at the misspeci�cation tests it emerges that Far does not reject the null hypothesis of no

autocorrelation against fourth order autoregression for both equations determining
�
Pt � �Pt

�
and

Et. There is, however, evidence of non normality and heteroskedasticity of the ARCH type for�
Pt � �Pt

�
given that the �2no and Farch-tests reject the null hypotheses for this equation. Johansen

and Juselius argue that by looking at the residual plots, excess of kurtosis is found to coincide

with signi�cant changes in oil prices, and thus they condition their model on �pot and �pot�1,

where pot measures the world price of crude oil. Accordingly, in order to investigate the e¤ects

of removing "problematic" data features on the empirical sizes of the test statistics an alternative

model that includes weakly exogenous variable is estimated. Note that �pot and �pot�1 enter

dt only in (2). The diagnostic tests for the conditional model are reported in third and fourth

columns of the top panel of Table 7. From Table 7 it is clear that there is a signi�cant reduction

in the kurtosis associated with
�
Pt � �Pt

�
, moreover heteroskedasticity and non-normality are no

longer a problem.

On the basis of the rank tests reported in the middle panel, it is possible to accept the hy-

pothesis that there is one cointegration vector, since the trace statistics associated with the null

hypothesis that r = 0 are rejected at the 10% and 5% levels for the unconditional and conditional

models, respectively. Note that the trace test is likely to su¤er from the same size distortion

problem as �; but looking at the property of the VAR(2) companion matrix of the unconditional

model the moduli of the largest unit root is 0.9157, suggesting that r = 1 is correct.

In the bottom panel of Table 7, the empirical sizes and their associated p-values for �;�B ;��B

and �� are reported. Empirical levels for ��B and �
� in the second column were obtained using

algorithm 2 in Section 2, whereas the levels for ��B and �
� in the forth column were obtained using

algorithm 1 in the same section. The null hypothesis under consideration is that
�
Pt � �Pt

�
� Et

is stationary, or equivalently, that the vector (1;�1)0 2 sp(�). This can be formulated as the

hypothesis H0 : � = H'̂ with
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H 0 =
�
1 �1

�
versus the alternative H1 : � unrestricted. Based on the evidence from the misspeci�cation tests

the empirical sizes for ��B and �
� are calculated using algorithm 2 in Section 2 for the unconditional

VAR(2) model and algorithm 1 for the conditional model with B = 5; 000. The p-values for �

are calculated by taking the 95% percentile from the �2 (1) and calculating the actual p-value as

the frequency of rejection. The test statistic is corrected with the Bartlett correction factor using

(4) ; and the rejection frequency is then recalculated, thus providing corrected p-values for �B .

Table 7. Model evaluation diagnostics and test statistics and actual rejection probabilities for the PPP rela-

tionship using the UK data.

Misspecification Tests (k = 2; T = 64):

Unconditional Model Conditional Model�
Pt � �Pt

�
Et

�
Pt � �Pt

�
Et

Far(4; 50) = 0:761 Far(4; 50) = 0:091 Far(4; 48) = 1:541 Far(4; 48) = 0:807
�2no (2)= 10:19

� �2no (2)= 0:886 �2no (2)= 3:120 �2no (2)= 0:713
Farch (4; 46)= 6:689

� Farch (4; 46)= 0:549 Farch (4; 44)= 0:745 Farch (4; 44)= 0:189
�2het(14; 39) = 1:559 �2het(14; 39) = 0:429 �2het(14; 37) = 1:141 �2het(14; 37) = 0:460

I(1) Analysis:

Unconditional Model Conditional Model

Rank �̂ Trace Test �̂ Trace Test
0 0:150 14:420��� 0:159 20:168��

1 0:074 4:661 0:149 9:743

Tests for Linear Restrictions (5% Nominal Level)

Unconditional Model Conditional Model

�2 (1) p-val. �2 (1) p-val.

� 6:213 0:013 2:161 0:141
�B 4:891 0:031 1:639 0:200
��B 3:675 0:055 1:490 0:216
�� � 0:057 � 0:219

Note: Diagnostic tests involve Far for the hypothesis that there is no serial correlation against the fourth-order

autoregression, that residual are normally distributed
�
�2no
�
; that there is no heteroskedasticity

�
�2het

�
; and that
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there is no autoregressive conditional heteroskedasticity ( Farch). *), **), ***) reject the null at 1%, 5% and 10%,

respectively. The p-values of a nominal 5% test are obtained by the frequency of rejections. Note that �� does not

yield an adjusted LR test.

As far as test results are concerned, from Table 7 it appears that the i.i.d. assumption on

the innovations clearly a¤ects the test results. When considering the conditional model PPP

relationship cannot be rejected according to test statistics under consideration, thus con�rming

the results of Johansen and Juselius. However, inference based on the analytical Bartlett correction

is a¤ected by heteroskedastic innovations since �B rejects H0 for the unconditional model, but the

opposite is true for the conditional model. On the other side, inferences based on the bootstrap

method appear to be robust to deviations from the i.i.d. assumption since for the unconditional

model the p-values reported in Table 7 are 0.055 and 0.057 for ��B and �
�, respectively, thus the

PPP hypothesis cannot be rejected. It is also noteworthy that �B , ��B and �
� perform equally

well when assumptions on the innovations are not violated.

6 Concluding remarks

Johansen�s (2000) Bartlett corrected LR test relies on Gaussian innovations. However, in empirical

applications, there is limited information on the distributional form of the innovations. Therefore

there is a need to investigate procedures that do not rest on the Gaussian assumption (or on any

other speci�c distribution).

This paper considers a non-parametric bootstrap Bartlett LR test, and �nds that the bootstrap

Bartlett correction serves two purposes at once. First, it is able to control for the size distortion

generated by a slow speed of adjustment to the cointegrated equilibrium as well as other crucial

parameters of the data generating process. Second, it is robust to violations of the Gaussian

assumption. No matter the distribution of innovations under consideration, (i.e., mixture of

normals, ARCH or GARCH) there is little evidence that the size of the bootstrap Bartlett statistic

depends in any important way on the form of innovations. Together, these results constitute an

important improvement with respect to the analytical Bartlett correction, particularly in light of

the fact that in empirical applications, the true underlying data generating process is not known.
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