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A unified theory for the large family of ARMA models with 
varying coefficients: One solution fits all

M. Karanasos†.. A. Paraskevopoulos‡, A. Canepa?
†Brunel University London, ‡University of Piraeus, ? University of Turin

Abstract

For the large family of ARMA models with variable coefficients we obtain an explicit and computa-
tionally tractable solution that generates all their fundamental properties, including the Wold-Crámer
decomposition and their covariance structure, thus unifying the invertibility conditions which guaran-
tee both their asymptotic stability and main properties. The one sided Green’s function, associated
with the homogeneous solution, is expressed as a banded Hessenbergian formulated exclusively in
terms of the autoregressive parameters of the model. The proposed methodology allows for a unified
treatment of these ‘time varying’ systems.

We also illustrate mathematically one of the focal points in Hallin’s (1986) analysis. Namely,
that in a time varying setting the backward asymptotic efficiency is different from the forward one.
Equally important it is shown how the linear algebra techniques, used to obtain the general solution,
are equivalent to a simple procedure for manipulating polynomials with variable coefficients.

The practical significance of the suggested approach is illustrated with an application to U.S.
inflation data. The main finding is that inflation persistence increased after 1976, whereas from 1986
onwards the persistence reduces and stabilizes to even lower levels than the pre-1976 period.

Keywords: asymptotic forecasting efficiency, ARMA process, General solution, Green’s function,
Hessenbergians, invertibility, structural breaks, symbolic product of operators, time dependent per-
sistence, time varying models, Wold-Crámer decomposition.
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1 Introduction

Modelling time series processes with variable coefficients has received considerable attention in recent
years in the wake of several financial crises and high volatility due to frequent changes in the market.
Justification for the use of such structures can be found in Timmermann and van Dijk (2013); for example,
for the dynamic econometric modeling and forecasting in the presence of instability see the papers in the
corresponding Journal of Econometrics special issue, i.e., Pesaran et al. (2013), and Koop and Korobilis
(2013). ‘Time varying’ systems are extensively applied by practitioners, and their importance is widely
recognized (see, for example, Granger, 2007 and 2008).1 Crucial advances in both the theory and the
empirics for these structures are the works by Whittle (1965), Abdrabbo and Priestley (1967), Rao (1970),
Hallin (1978, 1986), Kowalski and Szynal (1990, 1991) and Grillenzoni (1993, 2000). 2

This research provides a general framework for the study of autoregressive moving average models
with time varying coefficients and heteroscedastic errors (hereafter, TV-HARMA). There are two large
classes of stochastic processes. The ones with deterministically and those with stochastically varying
coefficients. Both types have been widely applied in many fields of research, such as economics, finance
and engineering, but traditionally they have been examined separately. The new framework unifies them
by showing that one solution fits all. More specifically, we obtain explicit and computationally feasible
solution representations that generate the fundamental properties of this family of models, whereas the
useful tool which is traditionally used to obtain such representations, that is the characteristic polynomials
(see, for details, Hallin, 1978, and Grillenzoni, 1990), is not applicable when time variation is present.

Miller (1968) established an explicit (particular) solution associated with the above mentioned type of
models, which is expressed in terms of the (one-sided) Green’s function, including the multivariate case.
The Green’s function itself was not explicitly described, however, in order to overcome this difficulty
Hallin and Melárd (1977) proposed a recursive method for its computation. Moreover, Hallin (1978, for the
multivariate case) presented conditions in terms of the Green’s function, which make the above mentioned
models invertible. An efficient explicit representation of the Green’s function depends upon the availability
of a fundamental set of solutions whose elements (known as fundamental or linearly independent solutions)
are explicitly formulated and computationally handled, which is an ongoing research issue. In this work
we provide such a fundamental solution set yielding an explicit form of the Green’s function as a banded
Hessenbergian (determinant of a banded Hessenberg matrix), called here principal determinant. The
entries of the principal matrix determinant are defined in terms of the autoregressive (resp. moving
average) coefficients. The first fundamental solution sequence is represented by the principal determinant.
The remaining p − 1 fundamental solutions are also expressed as Hessenbergians. As a consequence, an
explicit form of the general solution is expressed in terms of the fundamental solutions and a particular
solution, all represented by Hessenbergians.

The Hessenbergian solution structure yields a simple (necessary and sufficient) condition, which gua-
rantees the asymptotic backward and forward stability of the process. It also generates easily handled ana-
lytic representations (as infinite sums are involved) for the fundamental properties of the aforementioned
models (such as forecasts, the unconditional first and second moments, the Wold-Crámer decomposition
and impulse response functions) and for the conditions that ensure their existence.

We also illustrate mathematically one of the focal points in Hallin’s (1986) analysis. Namely, that in a
time varying setting two forecasts with identical forecasting horizons, but at different times, have different
mean squared errors. This implies that backward asymptotic efficiency (when the initial observation
vector shifts into the remote past) is different from the forward (termed by Hallin Granger-Andersen)
one, that is when the time at which a forecast is intended moves into the far future. Equally important
we show how the linear algebra techniques, used to obtain the general solution, are equivalent to a simple
procedure for manipulating polynomials with variable coefficients. In order to do so we employ the
expression of the Green’s function as a Hessenbergian in conjunction with the so called skew multiplication
operator or symbolic operator (see, for example, Hallin, 1986, and Mrad and Farad, 2002).

Banded Hessenbergians are computationally tractable due to the linear running time for their calcu-
lation (see the Appendix A.1). Compact solution representations of banded Hessenbergians, established

1A growing empirical literature in macroeconomics is testimony to their importance. See, for example, Evans and
Honkapohja (2001, 2009).

2See also Francq and Gautier (2004a, 2004b). We refer to the introduction of Azrak & Mélard (2006) and Alj et al.
(2016) for further references.
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in Marrero and Tomeo (2012, 2016) and Paraskevopoulos and Karanasos (2019), can be applied to derive
a compact representation for the principal determinant. This result modernizes and enhances the explicit
representations of the ‘time varying’ models and their fundamental properties.

The definition of the principal determinant seems to be a somewhat arbitrary choice in our analy-
sis. It is naturally arises, however, from Paraskevopoulos’ work (2014), who (by employing the so called
infinite elimination algorithm) for the homogenous part of a HARMA(p, q) model with variable coeffi-
cients constructs the p elements of a fundamental solution set. We should highlight the fact that in the
present paper a self-contained proving process is demonstrated without invoking the infinite elimination
algorithm.

For various lengths of the forecasting horizon, k = 1, 2, . . ., it is described as a sequence of TV-HARMA
representations of order (p+k−1, q+k−1). The first term of the sequence, that is when k = 1, coincides
with the initial model, whereas when k →∞ we obtain its unique Wold-Crámer decomposition. In this
interpretation the fundamental solutions are portrayed as autoregressive coefficients.

This paper concludes with an empirical application on inflation persistence in the United States.
Our main contribution is that we measure persistence by employing a ‘time varying’ model of inflation
dynamics grounded on statistical theory. In particular, we estimate an autoregressive process with abrupt
structural breaks and we compute an alternative measure of second-order time dependent persistence,
which distinguishes between changes in the dynamics of inflation and its volatility and their persistence.
Our main conclusion is that persistence increased after 1976, whereas from 1986 onwards it reduces and
stabilizes to even lower levels than the pre-1976 period. Our results are in line with those in Cogley
and Sargent (2002), who find that the persistence of inflation in the United States rose in the 1970s and
remained high during this decade, before starting a gradual decline from the 1980s until the early 2000s.

The outline of the paper is as follows. Section 2 introduces the notation used in the paper and
the principal determinant. The next Section presents the general solution for the large family of ‘time
varying’ ARMA models. In Section 4, we obtain a necessary and sufficient condition which guarantees
the asymptotic stability of these processes. Section 5 derives explicit formulas for their fundamental
properties including the problem of producing asymptotically efficient forecasts, and Section 6 deals with
the invertibility issue. In Section 7 we introduce a simple procedure for manipulating polynomials with
variable coefficients. The next Section gives an illustrative example with abrupt structural breaks and
proposes a new measure of time varying persistence. Section 9 presents an empirical study on inflation
persistence. Finally, Section 10 contains some concluding remarks. Note that throughout the paper all
the proofs are delegated to the Appendix.

2 Time Varying HARMA

The aim of this section is to provide explicit solution expressions for a fairly large family of ARMA models
with time dependent coefficients.

2.1 Preliminaries

This Subsection introduces suitable notation and defines the basic process. Throughout the paper we
adhere to the following conventions: (Z>0) Z, and Z≥0 stand for the sets of (positive) integers, and non-
negative integers respectively. Similarly, (R>0) R and R≥0 stands for the set of (positive) real numbers,
and non-negative real numbers respectively. Let (Ω,F , P ) denote a complete probability space adapted
to some filtration, {Fs}, which is a non-decreasing sequence of σ-subfields of F , that is Fs−1 ⊆ Fs for all
s ∈ Z, such that Fs ⊆ F . The space of P -equivalence classes of finite random variables with finite p-order
moment is indicated by Lp. Finally, H = L2(Ω,F , P ) stands for a Hilbert space of random variables with
finite first and second moments.

A time varying ARMA(p, q) model (p, q ∈ Z≥0) with time dependent coefficients and heteroscedastic
errors, hereafter termed TV-HARMA(p, q), is defined as

yt = ϕ(t) +

p∑
m=1

φm(t)yt−m + ut, t ∈ Z (1)
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with moving average term ut given by

ut = εt +

q∑
l=1

θl(t)εt−l,

where ϕ(t) is the time varying drift and {εt} is a martingale difference defined on L2 with time varying
variance: 0 < σ2(t) ≤M , for each t and some L,M ∈ R>0. The forcing term of eq. (1) is assigned to be
the time varying drift plus the moving average term: υt = ϕ(t) + ut.

We have relaxed the assumption of homoscedasticity (see also, among others, Singh and Peiris, 1987,
Kowalski and Szynal, 1990, 1991, and Azrak and Mélard, 2006), which is likely to be violated in practice
and we allow εt to follow, for example, a stochastic volatility or a time varying GARCH type of process
(see, for example, the earlier versions of the current paper: Karanasos et al., 2014 [which is available
upon request], and Karanasos et al., 2017) or we allow for abrupt structural breaks in the variance of εt
(see the example in Section 7).

The above process nests the TV-HAR(p) model as a special case when q = 0 and the ARMA(p, q) speci-
fication when the drift, the autoregressive coupled with the moving average coefficients, and the variances
are all constants using the conventional identifications: ϕ(t) = ϕ, φm(t) = φm, θl(t) = θl, σ

2(t) = σ2 for
all t.

If the researcher wants to obtain a sensible insight into the ‘causal’ structure of the observed process
then the integer t, which is an arbitrary point in time, should be considered as the present and s = t− k,
k ∈ Z≥1 as the past. In this case the Wold-Crámer decomposition, which is obtained when s→ −∞ (or,
equivalently, when k →∞) and relates the process under study to its innovations, should be examined (see
Section 5.2.1). If forecasting is the main objective then t should be considered as the future, indicating
an arbitrary point of time at which a forecast is intended. In this case k is the forecasting horizon and s
represents the ‘present’ time (that is the right end-point of the information time interval Is = (−∞, s]∩Z.)
such that at time s and back the information sequence {ys, ys−1, ...} is accessible and generates the σ-field
Fs. Moreover, p consecutive terms of the information sequence are the components of the initial value
vector (ys+1−p = cp, ..., ys = c1). Backward forecasting refers to the case where we keep the future time t
fixed and we move the present, that is the initial observation on time s, backwards. Backward asymptotic
efficiency directs attention to s → −∞ (see Section 5.1). Forward forecasting refers to the case where
we keep the present time s fixed and we move the future time t forwards. Therefore, asymptotic forward
(called by Hallin, 1986, Granger-Andersen) efficiency directs attention to t→∞.

One of the goals of this work is to obtain the unique inverse of the time varying autoregressive (AR)
polynomial associated with eq. (1) and denoted by Φt(B), where B is the backshift or lag operator
(see Section 6). In a time varying environment, the usual procedure employs the Green’s function
instead of the characteristic polynomials, that are used in the time invariant case. However, this is an
implicit representation, due to the absence of an explicit and computationally feasible representation of
the Green’s function (therefore in the literature recursive methods are used to compute them, see, for
example, Grillenzoni, 2000, and Azrak and Mélard, 2006). To overcome this difficulty, we introduce the
principal determinant below and make use of the so called multiplication skew operator (see the analysis
in Section 6.1).

We should also mention that Kowalski and Szynal (1991) used the product of companion matrices
to obtain the Green’s function. Paraskevopoulos and Karanasos (2019) capitalized on the connection
between the product of companion matrices and ‘time varying’ stochastic difference equations but in
the opposite direction. That is, they went the other way around and by finding an explicit and com-
pact representation of the fundamental solutions for TV-HARMA models, they obtained an analogous
representation for the elements of the associated companion matrix product.

2.2 The Principal Determinant

In this Subsection, we introduce the main mathematical tool of this paper, which is employed for the
explicit representation of TV-HARMA models. This is the principal determinant (denoted as ξ(t, s))
associated with eq. (1). We show that amongst the various representations of the Green’s function via
corresponding fundamental sets of solutions (see Section 3.1 and Appendix A.2 for further details), the
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principal determinant provides an explicit and computationally tractable representation. As a conse-
quence the main properties of ‘time varying’ models acquire analogous representations, as presented in
Sections 4 and 5.

To distinguish scalars from vectors we adopt lower and uppercase boldface symbols within square
brackets for column vectors and matrices respectively: x = [xi], X = [xij ]. Row vectors are indicated
within round brackets and usually appear as transpositions of column vectors: x′ = (xi).

The principal matrix associated with the AR part of eq. (1), is defined by

Φt,s =



φ1(s+ 1) −1

φ2(s+ 2) φ1(s+ 2)
. . .

...
...

. . .
. . .

φp(s+ p) φp−1(s+ p)
. . .

. . .
. . .

φp(s+ p+ 1)
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

φp(t− 1) φp−1(t− 1) · · · φ1(t− 1) −1
φp(t) · · · φ2(t) φ1(t)


(2)

(for k = t− s > p), here and in what follows empty spaces in a matrix have to be replaced by zeros. The
matrix Φt,s is a lower Hessenberg matrix of order k. It is also a banded matrix, with total bandwidth
p + 1 (the number of its non-zero diagonals, i.e., the diagonals whose elements are not all identically
zero), upper bandwidth 1 (the number of non-zero super-diagonals) and lower bandwidth p − 1 (the
number of non-zero sub-diagonals). In particular, the elements of Φt,s are: (−1) occupying the entries
of the superdiagonal, the values of the first autoregressive coefficient φ1(·) (from time s + 1 to time t),
occupying the entries of the main diagonal, the values of the (1 + r)-th autoregressive coefficient φ1+r(·)
for r = 1, 2, . . . , p− 1 (from time s+ 1 + r to time t), occupying the entries of the r-th sub-diagonal, and
zero entries elsewhere. It is clear that for p ≥ k, Φt,s is a full lower Hessenberg matrix.

For every pair (t, s) ∈ Z2 with k ≥ 1 we define the principal determinant associated with eq. (2):

ξ(t, s) = det(Φt,s). (3)

Formally ξ(t, s) is a lower Hessenbergian (determinant of a lower Hessenberg matrix; for details on
Hessenbergians see, for example, the book by Vein, 1999). We further extend the definition of ξ(t, s) by
assigning the initial values:

ξ(t, s) =

{
1 for t = s
0 for t < s.

(4)

Under the initial values defined in (4), for each fixed s the sequence {ξ(t, s)}t≥s+1−p turns out to be a
particular solution of the homogeneous equation

yt =

p∑
m=1

φm(t)yt−m (5)

called primary fundamental solution (see Appendix A.2, Proposition A1 applied for m = 1). It is
well known that the Green’s function, often designated by H(t, s) for t > s, solves the homogeneous
equation (5), assuming the prescribed values H(s, s) = 1 and H(t, s) = 0 for t = s + 1 − p, ..., s − 1
(see Lakshmikantham and Trigiante, 2002, Theorem 3.4.1 p. 87). Since the principal determinant ξ(t, s)
solves eq. (5) under the same initial values, the uniqueness of the solution for an initial value problem
entails that for every arbitrary but fixed s ∈ Z it follows that H(t, s) = ξ(t, s) for all t : t ≥ s + 1 − p
(a proof from first principles is presented in Paraskevopoulos and Karanasos, 2019). Therefore we will
make use of two different terminologies: principal determinant or Green’s function.

We conclude this section with an illustrative example, concerning the ARMA(p, q) model with constant
coefficients. The AR polynomial Φ(B) = 1−

∑p
m=1 φmB

m associated with eq. (5), whenever φm(t) = φm,
is explicitly expressed in terms of the characteristic values as Φ(B) =

∏p
m=1(1 − λmB). The definition
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in eq. (3) gives the determinant of a Toeplitz matrix (for details on Toeplitz matrices see, for example,
the book by Gray, 2006) and satisfies the identity

ξk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1 −1
φ2 φ1 −1

φ3 φ2 φ1
. . .

...
...

...
. . .

. . .

φp φp−1 φp−2
. . .

. . .
. . .

φp φp−1
. . .

. . .
. . .

. . .

φp φp−1 φp−2 · · · φ1 −1
φp φp−1 · · · φ2 φ1 −1

φp · · · φ3 φ2 φ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

p∑
m=1

λk+p−1m∏p

n=1
n6=m

(λm − λn)
, (6)

where ξ(t, s) is now denoted as ξk, since it is not time varying but depends only on the forecasting horizon
(k = t − s) and the second equality follows (only if λm 6= λn) from standard results in ARMA models
(see, for example, Karanasos, 2001, and in particular, eq. (2.6) in his Corollary 2; see also Hamilton,
1994, pp. 12-13).

3 Solution Representations

The main result of this section is an explicit formula for the general solution of TV-HARMA processes.3

More specifically, we obtain explicit and computationally feasible solution representations that generate
the fundamental properties of this family of models, i.e. their first two conditional and unconditional
moments, the Wold-Crámer decomposition and their covariance structure.

3.1 Homogeneous Solution

The general solution of eq. (5) on the domain Zs+1−p = {s + 1 − p, ..., s, ..., t, ...} is denoted by yhomt,s

and it is expressed below in terms of the principal determinant, the autoregressive coefficients and the
prescribed values ys+1−m for m = 1, 2, ..., p of the information sequence, as follows:

yhomt,s =

p∑
m=1

p+1−m∑
r=1

φm−1+r(s+ r)ξ(t, s+ r)ys+1−m (7)

(a proof of this result is provided in Appendix A.4, Proposition A3).
Let us call

ξ(m)(t, s) =

p+1−m∑
r=1

φm−1+r(s+ r)ξ(t, s+ r) (8)

(superscripts within parentheses or brackets [e.g., (.)(m)] designate the index position of the corresponding
term [e.g., m-th term] of a sequence, so as to distinguish position indices from power exponents). The

principal determinant is identified with ξ(1)(t, s), that is ξ(t, s)
def
= ξ(1)(t, s). Applying eq. (8) with

s = t − 1 on account of ξ(t, t) = 1 and ξ(t, t − 1 + r) = 0 for r = 2, ..., p + 1 −m (see eq. (4)), we get:
ξ(m)(t, t− 1) = φm(t).

It turns out (see eq. (A.5) in Proposition A1 of Appendix A.2) that {ξ(m)(t, s)}t≥s+1−p is the solution
sequence of eq. (5) under the prescribed initial values:

ys+1−m = 1 and ys+1−r = 0 for 1 ≤ r ≤ p and r 6= m. (9)

3In linear algebra there have been some isolated attempts to deal with the problem which have been criticized on a
number of grounds. For example, Mallik (1998) provides an explicit solution for the aforementioned equations, but it
appears not to be computationally tractable (see also Mallik, 1997 and 2000). Lim and Dai (2011) point out that although
explicit solutions for general linear difference equations are given by Mallik (1998), they appear to be unmotivated and no
methods of solution are discussed.

7



Applying the expression in eq. (8) to the right side of eq. (7), the homogeneous solution takes a more
condensed form:

yhomt,s =

p∑
m=1

ξ(m)(t, s)ys+1−m. (10)

Eq. (9) applied with m = 1 yields the initial condition vector: [ys+1−p, ..., ys−1, ys] = [0, ..., 0, 1]. With
these initial values, the right side of eq. (10) turns into ξ(1)(t, s) = ξ(t, s) and thus the homogeneous
solution in eq. (10) recovers the primary fundamental solution sequence {ξ(t, s)}t≥s+1−p.

In Appendix A.2 (as a result of Proposition A2), it is shown that the set

Ξs = {ξ(1)(t, s), ξ(2)(t, s), ..., ξ(p)(t, s) : t ≥ s+ 1− p}

is a fundamental (or linearly independent) set of solutions associated with eq. (5). Moreover the m-th
fundamental solution can be expressed as a single banded Hessenbergian too. The difference between any
two of these fundamental solutions lies only in the first column (see Proposition A1(i) in the Appendix).

3.2 Particular Solution

A particular solution of eq. (1) subject to the initial values ys = ys−1 = ... = ys+1−p = 0 is given by

ypart,s =

t∑
r=s+1

ξ(t, r)[ϕ(r) + ur]. (11)

A proof of the above formula is demonstrated in Appendix A.3 (see Proposition A4). Eq. (11) has to
be compared with the equivalent result presented in Miller (1968, p. 40, eqs. (2.8) and (2.9)).

Next we state a Proposition that we will use in the next Section. But first we will introduce the
following definition:

Definition 1 Let ξq(t, r) and ξs,q(t, r) be defined as follows

ξq(t, r) = ξ(t, r) +

q∑
l=1

ξ(t, r + l)θl(r + l), for r = s+ 1, . . . , t, (12)

ξs,q(t, r) =

q∑
l=s−r+1

ξ(t, r + l)θl(r + l), for r = s+ 1− q, . . . , s.

As ξq(t, r) is equal to ξ(t, r) plus a sum of terms which involves the first q ‘lead’ values of ξ(t, r) (a
banded Hessenbergian), it can also be expressed as a banded Hessenbergian (the proof is deferred to
the online Appendix F.1). The same applies to ξs,q(t, r). Therefore, we refer to ξq(t, r) and ξs,q(t, r) as
banded Hessenbergian coefficients. Notice also that ξq(t, t) = 1 and ξq(t, t + l) = 0 for all l such that
l ∈ Z≥1, which coincides with the corresponding values of ξ(t, r) (see eq. (4)). Finally, for a pure AR
model, that is when q = 0, ξ0(t, r) = ξ(t, r) and ξs,0(t, r) = 0.

Proposition 1 The stochastic component of the particular solution (11) can be decomposed into two
parts as follows:

t∑
r=s+1

ξ(t, r)ur =

t∑
r=s+1

ξq(t, r)εr +

s∑
r=s+1−q

ξs,q(t, r)εr. (13)

A formal proof of this result is given in Appendix A.4. If s = t − 1 (or k = 1), the first sum in the
right hand side of the above equation reduces to 1 and the second sum reduces to

∑r
l=1 θl(t), a result

which is in line with Remark 1 below (see also the online Appendix F.1). In the first summation in the
right hand-side of the above equation the time interval, extending from s + 1 to t, coincides with the
forecasting horizon. In the second one the time interval extends from s + 1 − q to s (all its time points
belong to the initial information sequence). The above equation together with the general solution (14)
will be used to obtain all the results in Section 5.
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3.3 General Solution

The general solution of eq. (1) is the sum of the homogeneous solution in eq. (10) plus the particular
solution in (11). Using the result of Proposition 1, a representation of the general solution is provided in
the following Theorem:

Theorem 1 The solution of eq. (1) under the initial values ys+1−m, m = 1, 2, ..., p, is

yt,s =

p∑
m=1

ξ(m)(t, s)ys+1−m︸ ︷︷ ︸
Homogeneous Solution(yhom

t,s )

+

t∑
r=s+1

ξ(t, r)ϕ(r)︸ ︷︷ ︸+

Particular Solution:
Deterministic Part

(
t∑

r=s+1

ξq(t, r)εr +

s∑
r=s+1−q

ξs,q(t, r)εr

)
︸ ︷︷ ︸

Particular Solution: Stochastic Part

(14)

In eq. (14), the general solution comprises four (summation) parts. The first sum (the homogeneous
solution, see eq. (10)) is a linear combination of m fundamental solutions times the initial values, taken
from the information sequence. The second sum (the deterministic part of the particular solution, see
eq. (11)) is formed by products involving the principal determinant ξ(t, r) times the drift ϕ(r). The
elements of the third sum (the first part of the ‘MA decomposition’, see eq. (13)) are the ‘lead’ values of
the banded Hessenbergian coefficients ξq(t, s) times the corresponding errors. Finally, the elements of the
fourth sum (the second part of the ‘MA decomposition’) are the ‘lead’ values of the banded Hessenbergian
coefficient ξs,q(t, s− q) times the corresponding errors.

Remark 1 When s = t− 1 (or k = 1) the general solution in Theorem 1 coincides with eq. (1). This is
a consequence of the following statements: i) ξ(m)(t, t − 1) = φm(t) (see the discussion next to eq. (8))
and ii)

∑t
r=t ξ(t, r)[ϕ(r) + ut] = ϕ(t) + ut.

The methodology presented in this Section can be used in the study of infinite order autoregression
models as well as in the case of the fourth order moments for time varying GARCH models. In the
interest of brevity the detailed examination of the aforementioned models will be the subject of future
papers. We should also mention that another mathematical tool of constant use in difference equations
is the generalized continuous fraction approach (see, Van de Cruyssen, 1979). The concept of matrix
continued fraction introduced in Hallin (1984), whereas Hallin (1986) show the close connection that
exists between the convergence of matrix continued fractions and the existence of dominated solutions of
multivariate difference equations of order 2.

Apart from the unified explicit and easily handled representation in eq. (14) another advantage of our
solution is its generality. That is, in deriving it we do not make any assumptions on the time dependent
coefficients. Therefore, it does not require a case by case treatment. In other words, we suppose that the
law of evolution of the coefficients is unknown, in particular they may be stochastic (either stationary
or non stationary) or deterministic. Therefore, no restrictions are imposed on the functional form of
the time varying autoregressive and moving average coefficients. In the non stochastic case the model
allows for periodicity, unknown abrupt changes, smooth changes and mixtures of them. If the changes are
smooth the coefficients can depend on an exogenous variable xt or t or both. In the case of stochastically
varying coefficients the model includes the generalized random coefficient (GRC) HAR specification (see,
for example, Glasserman and Yao, 1995, and Hwang and Basawa, 1998) as a special case or allows for
Markov switching behaviour (see, for example, Hamilton, 1989 and 1994, chapter 22). We should also
mention that the solution includes the case where the variable coefficients depend on the length of the
series (see the example in Section 5.2.3).

3.4 Gegenbauer Functions as Hessenbergians

We conclude this Section with an example. In particular, we show how the Gegengbauer functions can
be expressed as Hessenbergians.

The Gegenbauer (or ultrasherical) functions, denoted by c
(d)
j (φ) (hereafter, for notational simplicity

we use cj), are defined to be the coefficients in the power-series expansion of the following function:

(1− 2φz + z2)−d =

∞∑
j=0

cjz
j ,
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for |z| ≤ 1, |φ| ≤ 1, and 0 < d < 1
2 . It is well known that cj can be computed in several ways. The

easiest way to compute cj (for j ≥ 2) using computers is based on the following time varying second
order difference equation:

cj = 2φ

(
d− 1

j
+ 1

)
cj−1 −

(
2
d− 1

j
+ 1

)
cj−2 for j ≥ 2,

with initial values c0 = 1 and c1 = 2φd (see, for example, Chung, 1996, Baillie, 1996, and the references
therein). Notice that in this case the two variable coefficients are functions of the index j. Applying
Theorem 1 the following Proposition holds.

Proposition 2 The j-th Gegenbauer coefficient is given by:

cj = ξ(j, 1)c1 − dξ(j, 2)c0 or

cj = ξ(j, 1)2φd− dξ(j, 2),

where ξ(j, 1) is a j-th order banded Hessenbergian (or tridiagonal matrix):

ξ(j, 1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ(d+ 1) −1
−d 2φ

(
d+2
3

)
−1

− 2d+1
3 φ

(
d+3
2

)
−1

. . .
. . .

. . .

−
(

2d−1j−1 + 1
)

2φ
(
d−1
j−1 + 1

)
−1

−
(

2d−1j + 1
)

2φ
(
d−1
j + 1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

As a result of the multi-linearity property of determinants, the following Hessenbergian form of the
Gegenbauer polynomials is obtained.

Corollary 1 The j-th Gegenbauer polynomial can be expressed as a j-th order Hessenbergian:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d(4φ2d− 1) −1
−2φd2 φ(d− 1

2 ) −1
− 2d+1

3 2φ
(
d+2
3

)
−1

. . .
. . .

. . .

−
(

2d−1j−1 + 1
)

2φ
(
d−1
j−1 + 1

)
−1

−
(

2d−1j + 1
)

2φ
(
d−1
j + 1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

4 Asymptotic Stability

As pointed out by Grillenzoni (2000) stability is a useful feature of stochastic models because it is a
sufficient (although non necessary) condition for optimal properties of parameter estimates and forecasts.
Since model (1) can be expressed in Markovian form, the stability condition allows many other stability
properties, such as irreducibility, recurrence, regularity, non evanescence and tightness (see Grillenzoni,
2000 for details).

4.1 Stability Condition

The asymptotic stability of a model ensures that all the solutions approach a solution independently
of the initial values (the effect of the initial values is gradually dying out) as s → −∞ (backward
stability) or t → ∞ (forward stability), this being a standard requirement for a model to yield long-run
predictions (see Section 5 below). In both cases, backward and forward stability, the initial condition
vector c′ = [cm]1≤m≤p consists of p arbitrary but fixed components cm and the forecasting horizon
k = t− s is getting longer.
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In view of eq. (14), the TV-HARMA process in eq. (1) is backward asymptotically stable if for every
t, arbitrary but fixed, the sequence of homogeneous solutions {yhomt,s }s≤t of eq. (5), as a function of s,

whose terms are given in (7), tends to zero as s → −∞ (that is lims→−∞ yhomt,s = 0), for any initial
condition vector c′ = [cm]1≤m≤p such that ys+1−m = cm for all s < t and each m : 1 ≤ m ≤ p. That
is the initial condition vector c moves further to the past (s → −∞), while the future time t is fixed.
The TV-HARMA process in eq. (1) is forward asymptotically stable if for every s, arbitrary but fixed,
limt→∞ yhomt,s = 0 for any initial condition vector c. A sufficient and necessary stability condition for eq.
(1) is presented in the following Theorem (the proof is given in Appendix B).

Theorem 2 i) Let the autoregressive coefficients φm(t) be deterministic. If sup
t
|φm(t)| < ∞ for all m

such that 1 ≤ m ≤ p, then a necessary and sufficient condition for the TV-HARMA model in eq. (1) to
be backward asymptotically stable is: lim

s→−∞
ξ(t, s) = 0 for each t. Moreover, the condition lim

t→∞
ξ(t, s) = 0

is necessary and sufficient for the TV-HARMA model to be forward asymptotically stable.
ii) Let the autoregressive coefficients φm(t) be stochastic. If sup

t
E(φ2m(t)) < ∞ for 1 ≤ m ≤ p, then

a necessary and sufficient condition for the TV-HARMA process to be backward asymptotically stable is

ξ(t, s)
p→ 0, as s → −∞ (probability convergence) for each t. Moreover, the condition lim

t→∞
ξ(t, s)

p
= 0 is

necessary and sufficient for the TV-HARMA model with stochastic coefficients to be forward asymptoti-
cally stable.

Notice that in the above Theorem the conditions supt |φm(t)| <∞ and supt E(φ2m(t)) <∞, respecti-
vely, are not required for the forward asymptotic stability. Moreover, the conditions in Theorem 2(ii)
include the ‘bounded random walk’ of Giraitis et al. (2014). Properties such as stability characterize the
statistical properties (

√
T convergence and asymptotic normality, where T is the sample size) of least

squares (LS) and quasi-maximum likelihood (QML) estimators of the time varying coefficients.4

In the time invariant case since ξ(t, s) depends neither on t nor on s but only on their difference, that
is the forecasting horizon, k, the stability condition in Theorem 2(i) reduces to limk→∞ ξk = 0, which
holds if and only if all the roots λm in eq. (6) lie inside the unit circle.

Since the condition in Theorem 2 is necessary not only for stability but for the existence of the
moments as well (see Section 5) in a companion paper, we provide an explicit compact representation for
ξ(t, s) (see Paraskevopoulos and Karanasos, 2019; see also Marrero and Tomeo, 2012, 2016).

Kowalski and Szynal (1991) and Grillenzoni (2000) derived sufficient conditions for the model in eq. (1)
with zero drift and non stochastic coefficients to be second-order, that is for every t

∑t
r=−∞ ξ2(t, r) <∞

to hold (we provide not only sufficient but necessary conditions as well in Proposition 5 below), which,
therefore, are sufficient conditions for lims→−∞ ξ(t, s) = 0 for all t. These are presented in the following
Proposition.

Proposition 3 Two sufficient conditions for the stability condition in Theorem 2(i) are:
i) The deterministically varying polynomial Φt(z

−1) = 1 −
∑p
m=1 φm(t)z−m is regular. That is, φm(t)

are such that there exist the limits limt→∞ φm(t) = φm and
∑∞
r=1 %

2r < ∞, where % = %(Φ) + ε, ε > 0,
%(Φ) = max{|zm| , Φ(z−1m ) = 0} with Φ(z−1) = 1 −

∑p
m=1 φmz

−m (see eq. (8) in Kowalski and Szynal,
1991). 5

ii) The deterministically varying polynomial Φt(z
−1) should have roots whose realizations entirely lie

4Azrak and Mélard (2006) have considered the asymptotic properties of quasi maximum likelihood estimators for a
large class of ARMA models with time dependent coefficients and heteroscedastic innovations. The coefficients and the
variance are assumed to be deterministic functions of time, which depend on a finite number of parameters which need to
be estimated. Other researchers have also considered the statistical properties of maximum likelihood estimators for very
general non stationary models. For example, Dahlhaus (1997) has obtained asymptotic results for a new class of locally
stationary processes, which includes TV-HARMA processes (see Azrak and Mélard, 2006, and the references therein).

5Kowalski and Szynal (1991) showed that %(Φ) is the spectral radius of the matrix Φ =


0 0 · · · 0 −φm
1 0 · · · 0 −φm−1

0 1 · · · 0 −φm−2

...
...

...
...
...

...
...

0 0 · · · 1 −φ1


(see page 75 in their paper).
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inside the unit circle, with the exception, at most, of a finite set of points (see Proposition 1 in Grillenzoni,
2000).

The sufficient conditions in Proposition 3 are not, however, necessary, whereas they do not cover the
case of periodic coefficients, see Grillenzoni (1990) or Karanasos et al. (2014,a,b).

4.2 Two Illustrative Examples

As an example, consider the logistic smooth transition AR(1) model (see, for example, Teräsvirta, 1994)
where the autoregressive coefficient is given by (we drop the subscript 1): φ(t) = φ1F (t; γ, τ) + [1 −
F (t; γ, τ)]φ2 and F (t; γ, τ) = [1 + eγ(t−τ)]−1, γ ∈ Ṙ≥0, τ ∈ Z, is the first-order logistic function. Clearly,
if t > τ , then F (·) < 0.5 and regime 2 prevails, whereas if t < τ , then F (·) > 0.5 and regime 1 prevails.
Let also t2 be the value of t for which F (t; γ, τ) = 0 if t ≥ t2 and thus φ(t) = φ2. Similarly, let t1 be the
value of t for which F (t; γ, τ) = 1 if t ≤ t1 and thus φ(t) = φ1 (clearly t2 > t1, since F (·) is a decreasing

function of time). For this model, if t ≥ t2 and s ≤ t1 then ξ(t, s) = φt1−s+1
1

∏t2−1
r=t1+1 φ(r)φt−t2+1

2 .
Clearly, lims→−∞ ξ(t, s) = 0 if and only if |φ1| < 1, whereas limt→∞ ξ(t, s) = 0 if and only if |φ2| < 1.

We conclude this section with another example. Consider the periodic AR(1; `) model where ` ∈ Z≥1 is
the number of seasons (i.e., quarters) and let φr, r = 1, . . . , ` denote the periodically varying autoregressive
coefficients. Let T ∈ Z≥0 be the number of periods (i.e., years). Then t = T` + r is time expressed in
terms of seasons (i.e., if ` = 4, r = 4 and T = 1 then t = 8 quarters). If we want to forecast k` seasons

ahead, that is t−s = k` or s = t−k`, then: ξ(t, s) = [
∏`
r=1(φr)]

k. Clearly |φr| < 1 for all r is a sufficient
but not necessary condition for lims→−∞ ξ(t, s) = 0 (or equivalently limk→∞ ξ(t, s) = 0). The necessary

and sufficient condition is
∣∣∣∏`

r=1(φr)
∣∣∣ < 1.

5 Second Order Properties

Having specified a general method for manipulating the TV-HARMA type of models we turn our attention
to a consideration of their fundamental time series properties. In particular, we will provide their thorough
description by deriving explicit formulas for i) their multistep ahead linear predictors, the associated
forecast errors and the mean square errors (MSE), ii) the first two unconditional moments, iii) the
Wold-Crámer decomposition, and, therefore, impulse response functions (IRFs), and iv) their covariance
structure. In this section we shall restrict ourselves to a treatment of the models with HARMA structure
and deterministic coefficients; we will term these processes deterministic time varying (DTV). To save
space we will discuss the case of the stochastic coefficients in a future paper. However, in Appendix D
we present a process with stochastically varying coefficients, which incorporates the GRC and double
stochastic AR models.

5.1 Conditional Moments

In what follows we present an explicit formula for the first conditional moment of the DTV-HARMA(p, q)
model.

Taking the conditional expectation of eq. (14) with respect to the σ field Fs generated by the
information sequence {ys, ys−1, . . .}, the following Proposition follows immediately.

Proposition 4 The k-step-ahead optimal (in L2-sense) linear predictor of the DTV-HARMA(p, q) pro-
cess is

E(yt |Fs ) =

p∑
m=1

ξ(m)(t, s)ys+1−m +

t∑
r=s+1

ξ(t, r)ϕ(r) +

s∑
r=s+1−q

ξs,q(t, r)εr. (15)

In addition, the forecast error for the above k-step-ahead predictor, FEt,s = yt − E(yt,s | Fs), and the
associated MSEt,s = Var(FEt,s) are given by

FEt,s =

t∑
r=s+1

ξq(t, r)εr, MSEt,s =

t∑
r=s+1

ξ2q (t, r)σ2(r) (16)
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(we recall that ξs,q(t, r) and ξq(t, r) have been defined in Definition (1)).

The explicit form of the variance for a Gaussian process is necessary for the determination of the
confidence intervals of E(yt |Fs ).

Singh and Peiris (1987), Kowalski and Szynal (1990, 1991), and Grillenzoni (1990, 2000), obtained
the optimal forecasts using prediction algorithms and recursive computation.

As an alternative to the above computational approaches, in Proposition 4 we obtain an explicit
formula for the optimal linear predictors, which enables us to study the asymptotic forecasting efficiency
of the DTV-HARMA(p, q) process. We should also mention that Whittle (1965) showed that in general
the linear least-square predictor obeys a recursion (see his eq. (12)) and gave a recursive method for
obtaining its coefficients. In Appendix D we describe how we can apply this technique in conjunction
with our methodology to derive the optimal forecasts when the coefficients are varying stochastically.
In particular, we examine the GRC-HAR specification and a model with coefficients that follow AR
processes.

Next we formulate one of the main arguments made by Hallin (1986), which states that unlike the time
invariant case, in a time varying setting two MSEs with the same forecasting horizon, but at different
time points, are not any more equal. At this aim, consider two pairs of time points, say (t1, s1) and
(t2, s2), such that t1 − s1 = t2 − s2 = k. The MSEs associated with these two time points are:

MSEt1,s1 =

t1∑
r=s1+1

ξ2q (t1, r)σ
2(r), MSEt2,s2 =

t2∑
r=s2+1

ξ2q (t2, r)σ
2(r).

Shifting the time intervals in the summation from [s1 + 1, t1] and [s2 + 1, t2] both to [0, k − 1], we get:

MSEt1,s1 =

k−1∑
r=0

ξ2q (t1, t1 − r)σ2(t1 − r), MSEt2,s2 =

k−1∑
r=0

ξ2q (t2, t2 − r)σ2(t2 − r).

A comparison between MSEt1,s1 and MSEt2,s2 associated with a time varying environment, in the general
case, entails that : MSEt1,s1 6= MSEt2,s2 . On the other hand, in the time invariant case ξq(t, t− r), which

will now be denoted by ξ
(q)
r , becomes ξ

(q)
r = ξr +

∑q
l=1 ξr−lθl (see eqs. (6) and (12)). In this case the two

MSEs coincide, as being identical to:

MSEk = σ2
k−1∑
r=0

(ξ(q)r )2.

Having derived an explicit formula for the first two conditional moments in the next Section we turn
our attention to the unconditional moments.

5.2 Unconditional Moments

In this Section we present analytic formulae for the first and second unconditional moments coupled
with sufficient and necessary conditions ensuring their existence. In what follows we assume that
sups≤t |ϕ(s)| <∞ and supt |θl(t)| <∞ for all t and l such that 1 ≤ l ≤ q.

Sufficient and necessary conditions ensuring that the first and second unconditional moments of the
DTV-HARMA family of processes exist are given below. In particular, in the following Proposition we
provide sufficient and necessary conditions ensuring that i)

∑t
r=−∞ ξ(t, r) convergence for all t, and thus

for
∑t
r=s+1 ξ(t, r)ϕ(r) to converge as s → −∞ for all t, and ii)

∑t
r=−∞ ξ2q (t, r)σ2(r) < ∞ for all t, and

thus for
∑t
r=s+1 ξq(t, r)εr to converge in L2 as s → −∞ for all t (backward asymptotic efficiency). We

recall that ξq(t, r) has been defined in Definition 1.

Proposition 5 A sufficient condition for the DTV-HARMA(p, q) model to be second-order is

t∑
r=−∞

|ξ(t, r)| <∞, for all t (absolute summability).
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Under the absolute summability condition the unconditional mean of the process yt in eq. (1), that is
E(yt) = lims→−∞ E(yt |Fs ), with non stochastic coefficients, exists in R and is given by

E(yt) =

t∑
r=−∞

ξ(t, r)ϕ(r). (17)

Under the absolute summability condition the unconditional variance of the process yt in eq. (1), that
is Var(yt) = lims→−∞MSEt,s, with non stochastic coefficients, exists in R and is given by

Var(yt) =

t∑
r=−∞

ξ2q (t, r)σ2(r). (18)

Necessary conditions for the DTV-HARMA(p, q) model to be first and second order respectively, are:

lim
s→−∞

ξ(t, s)ϕ(s) = 0 and lim
s→−∞

ξ2q (t, s)σ2(s) = 0 for all t.

Moreover, the stability condition, that is lims→−∞ ξ(t, s) = 0, is sufficient for the above two limits to
exist, while it is necessary for the absolute summability to hold.

All logical connections between the conditions, employed in the above Proposition, are illustrated in
the following commutative diagrams:

t∑
r=−∞

ξ(t, r)ϕ(r) ∈ R ⇐=

t∑
r=−∞

|ξ(t, r)| <∞ =⇒
t∑

r=−∞
ξ2q (t, r)σ2(r) ∈ R≥0

=⇒ =⇒ =⇒ =⇒ =⇒

lim
s→−∞

ξ(t, s)ϕ(s) = 0 ⇐= lim
s→−∞

ξ(t, s) = 0 =⇒ lim
s→−∞

ξ2q (t, s)σ2(s) = 0

(19)

Commutative Diagrams

Notice that the absolute summability condition is the unique condition guaranteeing the first and
second unconditional moments coupled with the backward asymptotic stability. A proof of Proposition
5 along with the Diagrams in (19) is provided in Appendix C.1. Notice that the mean is the same for
both the AR and the ARMA processes.

5.2.1 Wold-Crámer Decomposition

In view of the general solution in eq. (14) we obtain: yt
L2= lims→−∞ ypart,s . The Wold-Crámer decompo-

sition6 (see Crámer, 1961) of the DTV-HARMA(p, q) model is described in the following Theorem.

Theorem 3 Let the absolute summability condition in Proposition 5 holds. The Wold-Crámer decom-
position takes the form

yt =

t∑
r=−∞

ξ(t, r)ϕ(r) +

t∑
r=−∞

ξq(t, r)εr. (20)

A formal proof of this result is given in Appendix C.2. In the above Theorem yt is a solution of
eq. (1) decomposed into a non random part and a zero mean random part. In particular, E(yt) is the
non random part of yt while lims→−∞ FEt,s is the zero mean random part. Hallin (1978), Singh and
Peiris (1987), Kowalski and Szynal (1991), Grillenzoni (2000), and Azrak and Mélard (2006) obtained
the Wold-Crámer decomposition through recursion. In sharp contrast, eq. (20) in Theorem 3 provides
an analytic formula for the one-sided MA representation.

6As pointed out by Hallin (1986) since a non-stationary generalization of Wold’s result was given by Cramér it is referred
to as Wold-Cramér decomposition.
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5.2.2 Autocovariance Function

Another consequence of Theorem 1 is the following Proposition (the proof is contained in Appendix C.3),
where we state expressions for the second moment structure of the DTV-HARMA(p, q) process.

Proposition 6 Let the absolute summability condition in Proposition 5 hold. Then the time varying `
order autocovariance function γt(`) = Cov(yt, yt−`), ` ∈ Z≥0, is given by

γt(`) =

t−∑̀
r=−∞

ξq(t, r)ξq(t− `, r)σ2(r). (21)

The time varying variance of yt, that is γt(0) = Var(yt), is given by eq. (18). Notice again that for
the AR process ξ0(t, r) = ξ(t, r), and that the absolute summability condition implies absolute summable
autocovariances:

∑∞
`=0 |γt(`)| <∞ for all t.

From a computational viewpoint, the covariance structure of {yt}t can be numerically evaluated by
computing the banded Hessenbergian coefficients, ξq(t, r) in eq. (12) and substituting these in eq. (21).

The next remark highlights the importance of the existence of finite second moments.

Remark 2 Azrak and Mélard (2006) considered the asymptotic properties of QML estimators for the TV
HARMA family of models where the coefficients depend not only on t but on T as well (see Alj et al., 2017,
for the multivariate case). In their Theorem and Lemma 1 the existence of finite second moments was
required. They also show that the dependence of the model with respect to T has no substantial effect on
their conclusions except that a.s. convergence is replaced by convergence in probability since convergence
in L2 norm implies convergence in probability (see Lemma 1′ in their paper).

We conclude this Section with two more examples and a discussion of forward asymptotic stability.

5.2.3 Two More Examples

In this Section we consider two examples concerning AR(1) processes with variable autoregressive coef-
ficients, taken from Azrad and Mélard (2006). In the first example, the autoregressive coefficient is a
periodic function of time. In the second example, the coefficient is an exponential function of time. In
particular, we consider the process defined by

yt = φ(t)yt−1 + εt,

where εt is a martingale difference defined on L2 with constant variance σ2. In the first example, the
autoregressive coefficient is given by φ(t) = βt−n[t/n], where n ∈ Z≥1 and [x] is the larger integer less or
equal to x (see also Dahlhaus, 1996). By specializing the results of Proposition 5 and Theorem 3, the
Wold-Crámer decomposition (if and only if |β| < 1, where β = β0 · β1 · · · · βs−1) is given by

yt =

t∑
r=−∞

ξ(t, r)εr,

with unconditional variance

Var(yt) = σ2
t∑

r=−∞
ξ2(t, r),

where

ξ(t, r) = β[ t−r
n ]

t−r−1−n[ t−r
n ]∏

j=0

βt−j − n[
t− j
n

]

 ,

and, therefore
t∑

r=−∞
ξ2(t, r) =

1

1− β2

t∑
r=t−n+1

t−r−1−n[ t−r
n ]∏

j=0

βt−j − n[
t− j
n

]
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(see also eq. (4.2) in Azrak and Mélard, 2006).
In the second example (see example 2 in Azrak and Mélard, 2006), the autoregressive coefficient is

given by

φ(t) =


φ for t ≤ 0,
φλt/T for t = 1, . . . , T − 1,
φλ for t ≥ T,

where T ∈ Z≥1 is the sample size. For this case (assuming that t > T )

ξ(t, r) =


(φλ)t−r for r ∈ [T, t],

(φλ)tφ−rλ−(T+1
2 +

r(r−1)
2T ) for r = 1, . . . , T − 1,

φ1−rξ(t, 1) for r ≤ 0.

The condition |φ| < 1 (necessary and sufficient) entails:

t∑
r=−∞

ξ2(t, r) =
1

1− φ2
ξ2(t, 1) + (φλ)2t

T−1∑
r=1

φ−2rλ−(T+1+
r(r−1)

T ) +
1− (φλ)2(t−T+1)

1− (φλ)2
.

As pointed out by Azrak and Mélard (2006) the use of variable coefficients, which depend on the length
of the series is compatible with the approach of Dahlhaus (1997).

5.2.4 Forward Asymptotic Efficiency

As a consequence of the work of Hallin (1986), if a researcher wants to obtain a sensible insight into the
‘causal structure’ of the observed process then he should examine the Wold-Crámer decomposition relating
the process under study to its innovations (see Theorem 3 in Section 5.2.1 of the above cited reference).
If forecasting is the main objective then the forecast produced by the model should be asymptotically
efficient in some sense. Of course the asymptotic forecasting properties of the model rely on its behaviour
in the far future, whereas its causal properties involve its remote past only. If stationary processes take
place, these two issues coincide. In the non-stationary case, however, they apparently differ strongly.

To reiterate one of the main purposes, in building models for stochastic processes, is to provide
convenient forecast procedures. The researcher would like to minimize (asymptotically) the MSE or in
other words to achieve asymptotic efficiency. The asymptotic efficiency of a forecasting procedure can be
defined in two alternative ways (seemingly, analogous to each other, but indeed basically different). The
first one (termed by Hallin backward efficiency, see Definition 5.1 in his paper) is obtained by considering
the asymptotic forecasting performance of a model as the initial observation on time s tends to −∞ (see
Proposition 5). A model produces backward efficient forecasts if and only if it is an invertible model.

A more realistic approach to efficiency consists of considering the asymptotic behaviour of the mean
square forecasting error as t→∞ for s being arbitrary but fixed. This forward efficiency concept is also
called the Granger-Andersen efficiency (see Definition 5.2 in Hallin, 1986, and the references therein).

Sufficient conditions for the forward asymptotic efficiency of a DTV-HARMA(p, q) process are pre-
sented below.

Proposition 7 Let

t∑
r=−∞

|ξ(t, r)| < ∞ for each t ∈ Z ( absolutely summability condition). Let us call

Ft =

t∑
r=−∞

|ξ(t, r)|. If {Ft}t∈Z≥0
is bounded, then the sequence {MSEs(t)}s defined by MSEs(t) = MSEt,s,

is uniformly bounded.

A proof of the above Proposition is provided in Appendix C.4. In Lemma C3 a weaker condition is
assumed, which guarantees the boundedness of MSEt,s as a function of t for each s. In particular, if

F (t, s)
def
=
∑t
r=s+1 |ξ(t, r)| is bounded, as a function of t for each s, we show that {MSEt,s}t is also

bounded. As a direct consequence, for every arbitrary but fixed s either {MSEt,s}t is convergent in t
(namely lim

t→∞
MSEt,s exists in R≥0) or oscillating with oscillation: Ω(s) = lim

t→∞
(sup
r≥t

MSEr,s− inf
r≥t

MSEr,s).

As the absolutely summability condition in Proposition 7 holds, all the results previously stated
(asymptotic stability, Wold-Crámer Decomposition, e.t.c) also hold.
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5.3 Invertibility

In Section 5.1 we obtained the k-step-ahead optimal (in L2 sense) linear predictor along with the associ-
ated MSE.

For some given time t optimal forecasts are possible if and only if an invertible model is used. The
model is invertible if and only if the current value of the input martingale difference can be recovered as
a (converging) linear combination of the present and past values of the observed series. Our Theorem 4
(see below) establishes a sufficient invertibility condition (this has to be compared with Theorem 3.1 in
Hallin, (1986), where he derives such conditions for the deterministically time varying multivariate MA).

The TV-HARMA model is backward efficient if and only if it is an invertible model. If it is not an
invertible model, then the corresponding mean square forecasting error is unbounded.

The TV-HARMA model in eq. (1) can be rewritten as

εt = −ϕ(t)−
q∑
l=1

θl(t)εt−l + yt −
p∑

m=1

φm(t)yt−m. (22)

The principal matrix associated with the moving average part, is defined by

Θ(t, s) =



−θ1(s+ 1) 1

−θ2(s+ 2) −θ1(s+ 2)
. . .

...
...

. . .
. . .

−θq(s+ p) −θq−1(s+ q)
. . .

. . .
. . .

−θq(s+ q + 1)
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

−θq(t− 1) θq−1(t− 1) · · · −θ1(t− 1) 1
−θq(t) · · · −θ2(t) −θ1(t)


(23)

(for t − s > q). The matrix Θ(t, s) has a similar structure to the principal determinant associated with
the AR operator, Φ(t, s), that is both matrices are banded lower Hessenberg. It is clear that for q ≥ t−s,
Θ(t, s) is a full lower Hessenberg matrix.

For every pair (t, s) ∈ Z2 with t− s ≥ 1 we define the principal determinant associated with eq. (23):

ϑ(t, s) = det(Θ(t, s)).

Formally ϑ(t, s) (and similarly to ξ(t, s)), is a Hessenbergian. We further extend the definition of ϑ(t, s)
by assigning the initial values: ϑ(s, s) = 1 and ϑ(t, s) = 0 for t < s.

In analogy with the definition of ξq(t, r) (see eq. (12)), we define

ϑp(t, r) = ϑ(t, r)−
p∑

m=1

ϑ(t, r +m)φm(r +m) for r = s+ 1, . . . , t.

In the following Theorem we give a sufficient condition for the DTV-HARMA(p, q) model to be
invertible.

Theorem 4 Let the absolute summability condition
∑t
r→−∞ |ϑ(t, r)| < ∞ holds for each t. Then the

TV-HARMA model in eq. (22) is invertible, that is

εt = −
t∑

r=−∞
ϑ(t, r)ϕ(r) +

t∑
r=−∞

ϑp(t, r)yr

solves eq. (22)
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The proof of Theorem 4 essentially repeats the arguments of the proof of Theorem 3; switching the
roles of yr and εr, and replacing ξ(t, r) with ϑ(t, r), ξq(t, r) with ϑp(t, r) and ϕ(r) with −ϕ(r).

Following laborious research work, the literature contains a diversity of linear ‘time varying’ speci-
fications whose main time series properties either remain unexplored or have not been fully examined.
Making progress in interpreting seemingly different models requires us to provide a common platform for
the investigation of their time series properties. In this Section we have developed a theoretical founda-
tion on which work in synthesizing these models can be done. With the help of a few detailed examples,
i.e., smooth transition AR processes, periodic and cyclical formulations, we have demonstrated how to
encompass various time series processes within our unified theory. The main strength of our general
solution and the way we have expressed it is that researchers can use it for a multiplicity of problems.
The significance of our methodology is almost self-evident from the large number of problems that it can
solve. Our proposed approach allows us to handle ‘time varying’ models of infinite order. An advantage
of our technique is that it can be applied with ease in a multivariate setting and provides a solution to
the problem at hand without adding complexity.

6 Time Varying Polynomials

In Section 3 we employed techniques of linear algebra in order to obtain the general solution of the TV-
HARMA(p, q) model and its first two (conditional and unconditional) moments. The main mathematical
tool used was the Hessenbergian determinant. Now that we have expressed the Green’s function as a
Hessenbergian we will see how the summation terms in the various equations in Sections 3 and 5 can be
expressed as time varying polynomials.

Recall that B denote the backshift (or lag operator), defined such that Byt = yt−1. The time varying
AR and moving average (MA) polynomial (backshift) operators associated with the TV-HARMA(p, q)
model are denoted as:

Φt(B) = 1−
p∑

m=1

φm(t)Bm, Θt(B) = 1 +

q∑
l=1

θl(t)B
l. (24)

Under this notation eq. (1) can be written in a more condensed form

Φt(B)yt = ϕ(t) + Θt(B)εt. (25)

In the time invariant case one can employ the roots of the time invariant polynomial Φ(z−1) to obtain
its general time series properties such as the Wold decomposition and the second moment structure. In
a time varying environment, according to Grillenzoni (1990) the generating sequence {ξ(t, s)}t≥s+1−p
cannot be obtained as in stationarity, by expanding in Taylor series the rational polynomial Φt(B)−1. As
an alternative Hallin (1986) introduced some results on difference operators such as the symbolic product
of operators, which has also been termed by researchers in the field of engineering the skew multiplication
operator (see, for example, Mrad and Farag, 2002). Hence, now that we have at our disposal an explicit
and computationally tractable representation of the Green’s function as a Hessenbergian, coupled with
the use of the time-domain noncommutative multiplication operation- which, as pointed out by Mrad
and Farag (2002), is based on the manipulation of polynomial operators with time varying coefficients
using operations restricted to the time domain-we are able to state some important Theorems in relation
to the results in Sections 3 and 5.

6.1 The Skew Multiplication Operator

In a time varying environment, the time varying polynomial operators in eq. (24) can be manipulated
by using the ‘skew’ multiplication operator “◦” defined by

Bi ◦Bj = Bi+j and Bi ◦ f(t) = f(t− i)Bi, (26)

where f(t) is a function of time. This time-domain multiplication operation is associative but noncummu-
tative (see Karmen, 1988, Bouthellier and Ghosh, 1988, and Mrad and Farag, 2002). Using the properties
of “◦”, from eq. (25), under the necessary and sufficient conditions in Proposition 5, we can obtain the
unique inverse of Φt(B), that is Φt(B)−1 ◦ Φt(B) = 1.
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6.2 Polynomial Operators

Next, and equally important, we will provide a critical and essential further link between the linear
algebra techniques used in Section 3 (to obtain the general solution of the TV-HARMA model) and the
time varying polynomial approach, in which we make use of the ‘skew’ multiplication operator. Certainly,
from an operational point of view, both are equally satisfying and recommendable. First, let us define
the two time varying polynomial (backshift) operators associated with the general solution.

Definition 2 I) Let Ξ
(k)
t,p (B) be defined as follows

Ξ
(k)
t,p (B) = 1−

p∑
m=1

ξ(m)(t, s)Bk−1+m (27)

IIa) Let Ξ
(k)
t (B) be defined as follows

Ξ
(k)
t (B) =

t∑
r=s+1

ξ(t, r)Bt−r =

k−1∑
r=0

ξ(t, t− r)Br (28)

IIb) The limit of Ξ
(k)
t (B) as k →∞ is denoted by Ξt(B).

Remark 3 Ξ
(k)
t,p (B) in Definition 2(I) is a polynomial of order p+k−1 associated with the homogeneous

solution (10), and it is expressed in terms of the m fundamental solutions, defined in eq. (8).

Notice that: i) Ξ
(1)
t,p (B) = Φt(B), since ξ(m)(t, t− 1) = φm(t) (see the discussion next to eq. (8)), and ii)

under the stability condition in Theorem 2, limk→∞ Ξ
(k)
t,p (B) = Ξt,p(B) = 1, since lims→−∞ ξ(m)(t, s) = 0

(see in Appendix B, Lemma B1).

Remark 4 Ξ
(k)
t (B) is a polynomial of order k − 1 associated with the particular solution (11), and it is

expressed in terms of the ‘lead’ values of the principal determinant, ξ(t, t − k). It can also be expressed

as a single banded Hessenbergian (see the online Appendix F.2). Notice also that Ξ
(1)
t (B) = 1.

Next we define two additional time varying polynomial operators associated with the MA part of the
particular solution and the Wold-Crámer decomposition respectively.

Definition 3 I) Let Ξ
(k)
t,q (B) be defined as follows

Ξ
(k)
t,q (B) =

k−1∑
r=0

ξq(t, t− r)Br +

k−1+q∑
r=k

ξs,q(t, t− r)Br. (29)

II) Let Ξt,q(B) be defined as follows

Ξt,q(B) =

∞∑
r=0

ξq(t, t− r)Br.

Remark 5 Ξ
(k)
t,q (B) is a polynomial of order q+k−1 associated with the stochastic part of the particular

solution, and is expressed in terms of the ‘lead’ values of the two Hessenbergian coefficients, ξq(t, t − k)
and ξs,q(t, t− k − q), which have been defined in Definition 1.

Notice that, i) for the pure AR model Ξ
(k)
t,0 (B) = Ξ

(k)
t (B), since ξ0(t, t − r) = ξ(t, t − r) and the second

summation in eq. (29) (adopting the convention
∑k−1
r=k ar = 0) vanishes. ii) Ξ

(1)
t,q (B) = Θt(B), since the

first summation is equal to ξ(t, t) = 1, and the second summation is equal to 1−Θt(B) (see the discussion
next to Proposition 1).
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6.3 General Solution

The next Proposition is analogous to Proposition 1.

Proposition 8 Similarly to the decomposition in eq. (13) we can also decompose Ξ
(k)
t (B) ◦ ut into two

parts as follows

Ξ
(k)
t (B) ◦ ut = Ξ

(k)
t,q (B)εt, (30)

where the two parts of the right side of (30) are indicated in (29).

The following Theorems can be deduced by applying the properties of the skew multiplication operator
“◦”(see eq. (26)). The first of these Theorems (Theorem 5) is equivalent to Theorem 1.

Theorem 5 The general solution in eq. (14), can be equivalently expressed, in terms of the polynomial
operators given in Definitions 2 and 3, as:

Ξ
(k)
t,p (B)yt = Ξ

(k)
t (B) ◦ [ϕ(t) + ut] = Ξ

(k)
t (B) ◦ ϕ(t) + Ξ

(k)
t,q (B)εt. (31)

Clearly, the results for the pure AR model are obtained by setting ut = εt in the first equality of eq.

(31) or by noticing that in the second equality of eq. (31) Ξ
(k)
t,0 (B) = Ξ

(k)
t (B) (see Definition 3).

Notice also that Proposition 4 can be expressed in terms of the time varying polynomial operators as
well (results not reported).

In what follows we will make use of the infinite order polynomials, Ξt(B) and Ξt,q(B), which have
been defined in Definitions 2(IIb) and 3(II), respectively.

The next Theorem shows that Ξt,q(B) is the time varying Wold-Crámer polynomial operator associ-
ated with the TV-HARMA(p, q) model.

Theorem 6 Under the absolute summability condition in Proposition 5, the Wold-Crámer operators are
given by

Ξt,q(B) = Φt(B)−1 ◦Θt(B) and Ξt(B) = Φt(B)−1. (32)

The Wold-Crámer decomposition in Theorem 3 can be written in terms of the Wold-Crámer operator
as

yt = Ξt(B) ◦ ϕ(t) + Ξt,q(B)εt, (33)

which of course implies that
E(yt) = Ξt(B) ◦ ϕ(t).

Appendix E contains the proofs of Theorems 5 and 6.
In the online Appendix Section G, we show how the time varying techniques, introduced here, that

is, time varying polynomials with the time dependent coefficients expressed as Hessenbergians (coupled
with the usage of the ‘skew’ multiplication operator), incorporate as a special case the standard approach
to time series analysis which is based on characteristic polynomials. In the online Appendix Section I we
present a summary of the ‘time varying polynomials’ results.

6.4 Interpretation

In Section 3.1 we show that each fundamental solution ξ(m)(t, s), m = 1, . . . , p, is the solution of eq. (5)
under the initial conditions ys+1−m = 1 and ys+1−r = 0 for 1 ≤ r ≤ p and r 6= m. In this Section we
make use of the general solution, expressed in terms of the three time varying polynomial operators (see
Theorem 5), in order to provide a further interpretations of the p fundamental solutions.

Infinite TV-HARMA( p+ k − 1, q + k − 1) Models

First, we will set side by side
(

1− Ξ
(k)
t,p (B)

)
yt (seeeq. (27)) and (1− Φt(B))yt (see eq. (25)). What

does
(

1− Ξ
(k)
t,p (B)

)
in comparison to (1−Φt(B))? It simply shifts, k−1(= t−s−1) periods backward in
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time, each of the p lagged values of yt. In doing so it ‘converts’ each of the p time dependent autoregressive
coefficients, φm(t), into the corresponding fundamental solution, ξ(m)(t, s), and therefore it ‘transforms’
the AR(p) order to an AR(p+ k− 1) order, where of course the first k− 1 autoregressive coefficients are
all equal to zero.

Next we will set side by side the ‘new’ moving average term, Ξ
(k)
t,q (B)εt and Θt(B)εt. The former is of

order p+k−1. Thus Ξ
(k)
t,q (B) ‘transforms’ the MA(q) part to a MA(q+k−1) one. In doing so it ‘converts’

each of the q time dependent moving average coefficients, θl(t), assuming without loss of generality that
k > q, into the corresponding ξq(t, t− l) banded Hessenbergian coefficient. It also ‘generates’ k− 1 more
moving average coefficients.

In a nutshell, the general solution is telling us that we have an infinite sequence of TV-HARMA(p+
k−1, q+k−1) models/representations, k ∈ Z≥1, all of which, are of course equivalent to each other. That
is, for each forecasting horizon, k, we have one TV-HARMA model/representation of order (p + k − 1,
q+k−1). The model in eq. (25), is the first representation in the sequence, when k = 1. The TV-HMA(∞)
model in eq. (33) is the last representation (the Wold-Cràmer one) in the sequence, when k → ∞. Put
it differently ‘in-between’ the TV-HARMA model and its unique Wold-Crámer decomposition lies an
infinite sequence of TV-HARMA representations.

To show how our results can be easily applied to a framework with abrupt structural breaks, in the
next section we examine a DTV-HARMA model with abrupt breaks.

7 An Example

In this Section we will consider the AR(2) process with 2 deterministic abrupt breaks [DAB-HAR(2; 2)]
at fixed points of time t1 and t2, where t1 > t2. That is,

yt =

 ϕ1 + φ1,1yt−1 + φ2,1yt−2 + σ1et for t > t1,
ϕ2 + φ1,2yt−1 + φ2,2yt−2 + σ2et for t2 < t ≤ t1,
ϕ3 + φ1,3yt−1 + φ2,3yt−2 + σ3et for t ≤ t2,

(34)

where et ∼i.i.d (0, 1) for all t and L < σ2
i < M , i = 1, 2, 3. Applying the results of Theorem 3 the

following Corollary provides the general solution (at time t1 + l, l ∈ Z≥0) of eq. (34). But first, we define
the following matrices.

Definition 4 Let the two tridiagonal matrices of order r ∈ Z≥1, denoted by Φ
(j)
r , j = 1, 2, be defined as

Φ(j)
r =



φ1,j −1
φ2,j φ1,j −1

φ2,j φ1,j −1
. . .

. . .
. . .

φ2,j φ1,j −1
φ2,j φ1,j


,

Definition 5 i) The tridiagonal matrix (of order l − r) Φt1+l,t1+r, for r = 1, . . . , l − 1 and l ≥ 1, is
defined as:

Φt1+l,t1+r = Φ
(1)
l−r,

where its determinant is ξ(t1 + l, t1 + r) = |Φt1+l,t1+r| with initial values ξ(t1 + l, t1 + l) = 1 and
ξ(t1, t1 + r) = 0
ii) The Hessenberg matrix Φt1+l,t1−r, for r = 0, . . . , t1 − t2 and r + l > 0, is defined as:

Φt1+l,t1−r =

[
Φ

(2)
r 0

0̃ Φ
(1)
l

]
,

where (for r, l 6= 0) 0 is an r× l matrix of zeros except for −1 in its r× 1 entry, and 0̃ is an l× r matrix
of zeros except for φ2,1 in its 1× r entry. Notice that Φt1+l,t1−r is a block square matrix of order l + r.
Its determinant is ξ(t1 + l, t1 − r) = |Φt1+l,t1−r| with initial value ξ(t1, t1) = 1.
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Applying Theorem 1 to the DAB-HAR(2; 2) model we obtain the following Corollary.

Corollary 2 The general solution of yt1+l in eq. (34), subject to the initial conditions yt2 , yt2−1, is given
by

yt1+l,t2 =

t1+l∑
r=t2+1

ξ(t1 + l, r)(ϕr + εr) + ξ(t1 + l, t2)yt2 + φ2,1ξ(t1 + l, t2 + 1)yt2−1, (35)

7.1 Second Moment Structure

In this section we will examine the second moment structure of the DAB-HAR (2; 2) model. To obtain
the time varying variance of yt1+l, we will directly apply Corollary 2.

First, let 1− φ1,iB − φ2,iB2 = (1− λ1,iB)(1− λ2,iB), for i = 1, 2, 3.
Assumption 1 (Second-Order). |λm,i| < 1, m = 1, 2, for i = 1, 3.
Assumption 1 implies that the DAB-HAR(2; 2)-process is second-order.

The following Proposition states expressions for the time varying variance of yt1+l in eq. (35).

Proposition 9 Consider the general model in eq. (34). Then under Assumption 1, the Var(yt1+l) is
given by

Var(yt1+l) = At1+lσ
2
1 +Bt1+lσ

2
2 + Ct1+lσ

2
3 , (36)

where

At1+l =

l∑
r=1

ξ2(t1 + l, t1 + r), Bt1+l =

t1−t2−1∑
r=0

ξ2(t1 + l, t1 − r),

Ct1+l =

[
(1− φ2,3)

(
ξ2(t1 + l, t2) + φ22,1ξ

2(t1 + l, t2 + 1)
)

+ 2φ1,3ξ(t1 + l, t2)φ2,1ξ(t1 + l, t2 + 1)
]

(1 + φ2,3)[(1− φ2,3)2 − φ21,3]
.

Further, if in the above expression we set: t1 = t2, and therefore φm,1 = φm,2 for m = 1, 2, and σ1 = σ2,
then we obtain the Var(yt2+l), which is equivalent to the case of one break (notice that in this case
Bt2+l = 0):

Var(yt2+l) = At2+lσ
2
2 + Ct2+lσ

2
3 .

Finally, if in addition we set l = 0 then we obtain the Var(yt2), which (since At2 = 0, ξt2,t2 = 1,
ξt2,t2+1 = 0) is the well known formula for the time invariant AR(2) model:

Var(yt2) =
(1− φ2,3)σ2

3

(1 + φ2,3)[(1− φ2,3)2 − φ21,3
.

In the next section we will show how the above results can be used to derive a time varying second-
order measure of persistence.

7.2 Time Varying Persistence

The most often applied time invariant measures of first-order (or mean) persistence are the largest auto-
regressive root (LAR), and the sum of the autoregressive coefficients (SUM); see, e.g., Pivetta and Reis
(2007). As pointed out by Pivetta and Reis in relation to the issue of recidivism by monetary policy its
occurrence depends very much on the model used to test the natural rate hypothesis, i.e., the hypothesis
that the SUM or the LAR for inflation data is equal to one. Obviously, if both measures ignore the
presence of breaks then will potentially under or over estimate the persistence in the levels. The LAR has
been used to measure persistence in the context of testing for the presence of unit roots (see, for details,
Pivetta and Reis, 2007).

In the following, we suggest a time varying second-order (or variance) persistence measure that is able
to take into account the presence of breaks not only in the mean but in the variance as well. Fiorentini
and Sentana (1998) argue that any reasonable measure of shock persistence should be based on the
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IRFs. For a univariate process xt with i.i.d errors, et, they define the persistence of a shock et on xt
as P (xt |et ) = Var(xt)/Var(et). Clearly P (xt |et ) will take its minimum value of one if xt is white
noise and it will not exist (will be infinite) for an I(1) process. It follows directly from eq. (36) that

P (yt1+l |εt1+l ) =
Var(yt1+l)

σ2
1

, is given by

P (yt1+l |εt1+l ) = At1+l +Bt1+l
σ2
2

σ2
1

+ Ct1+l
σ2
3

σ2
1

. (37)

If Assumption 1 is violated then conditional measures of second-order persistence can be constructed
using the variance of the forecast error instead of the unconditional variance (results not reported but
are available upon request).

Having derived explicit formulas for time varying second-order (or variance) persistence measures, in
the next section we show the empirical relevance of these results using U.S. inflation data.7

8 Inflation Data

In this Section we directly link econometric theory with empirical evidence. In our empirical application
we consider the possible presence of structural breaks in inflation for United States. We use quarterly
data on the GDP deflator as measure of price level. The data set consists of observations from 1963Q4
to 2018Q1. Inflation is calculated as the quarterly change of price level at annualized rate calculated as
πt = 400(ln(Pt/Pt−1).

In term of inflation modelling, the period under consideration is of particular interest as it covers the
boom-time inflation of the late 1960s, the stagflation in the 1970s, and the double-digit inflation of the
early 1980s. During this period substantial shifts in monetary policy occurred, most notably the Fed
radical step of switching policy from targeting interest rates to targeting the money supply in the early
1980s. Therefore when modelling inflation it is important to allow for time varying parameters.

8.1 Unit Root Tests

Although we allow for regime shifts, we are particularly interested in modelling changes in inflation
persistence. In the related literature inflation persistence is defined as the tendency of inflation to converge
at slow pace to the long run equilibrium level after a shock. Monetary policy authorities are particularly
interested in knowing the speed at which the inflation rate converges to the central bank’s inflation
target following macroeconomics shocks. However, as shown in Levin and Piger (2004) not accounting
for structural breaks may lead to overestimate inflation persistence. In this regards, a growing body of
research has found evidence that monetary policy target has an impact on the persistence properties of
inflation as well as on its volatility (see for example Brainard and Perry, 2000 or Taylor, 2000). That
monetary policy actions affect persistence of inflation is of interest as it has important implications for
inflation modelling as changes in regimes of monetary policy may leave econometric models open to the
Lucas critique.

In the empirical literature a common approach for modelling inflation persistence is to estimate a
univariate AR(p) model where the sum of the estimated autoregressive coefficients is used to approximate
the slugginess with which the inflation process responds to macroeconomic shocks (see for example Pivetta
and Reis, 2007) and/or apply unit root tests.

Accordingly, in Table 2 a number of common unit roots tests are reported. Namely: ADF (Augmented
Dickey–Fuller), ERS, by Elliott et al. (1996), and MZ GLS, suggested by Perron and Ng (1996) and Ng
and Perron ( 2001). As recommended by Ng and Perron (2001), the choice of the number of lags is based
on the modified Akaike information criterion (AIC). The results in Table 2 show that, in general, we can
reject the null hypothesis of a unit root in inflation series.

7Cogley and Sargent (2002) measured persistence by the spectrum at frequency zero, S0. As an example, for the time

invariant AR(2) model this will be given by: S0 =
σ2
ε

2π(1−φ1−φ2)2
.
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Table 2. Unit root Tests.

Test Statistic
ADF −3.229∗∗

ERS −3.154∗∗

MZa −19.642∗

MZt −3.1331∗

8.2 Structural Breaks

Next we estimate AR(p) models with abrupt structural breaks. The optimal model is the DAB-AR(2; 2)
model in eq. (34). The choice of the number of lags was based on the modified AIC and the Bayesian
information criteria. The break points are treated as unknown. Note that breaks in the variance are
permitted provided that they occur at the same dates as the break in the autoregressive parameters.
Benati (2008) also used an AR model allowing for time varying volatility. Cogley and Sargent (2005)
also estimated a model in which the variance of innovations can vary over time. For each l partition
(T1, ..., Tl) the DAB-HAR(2; l) model can be estimated using the least-squared principle by minimizing
the sum of the squared residuals where the minimization is taken over all partitions. Since the break
points are discrete parameters and can only take a finite number of values they can be estimated by grid
search using dynamic programming (see Bai and Perron, 2003, for more details).

Coming to the estimation procedure, the first step is to identify possible points of parameter changes.
In order to do so the Bai and Perron (2003) sequential tests on inflation rates is used to identify possible
breaks during the sample period. Bai and Perron (2003) propose an F -type test for l versus l+ 1 breaks,
which we refer to as supFt(l + 1|l). The testing procedure allows for a specific to general modelling
strategy for the determination of the number of breaks in each series. The test is applied to each segment
containing the Ti−1 to Ti (i = 1, ..., l+1). In particular, the procedure involves using a sequence of (l+1)
tests, where the conclusion of a rejection in favour of a model with (l + 1) breaks if the overall minimal
value of the sum of squared residuals is sufficiently smaller than the sum of the squared residuals from
the l break model.

Note that the sum of the squared residuals is calculated over all segments where an additional break
is included and compared with the residuals from the l model. Therefore, the break date selected is the
one associated with the overall minimum.

The results of the structural break test are reported in Panel A of Table 3. The first column reports
the null hypothesis of l breaks versus the alternative hypothesis of l+1 breaks, the second column reports
the calculated value of the statistics and the third column the critical value of the test. Looking at the
calculated values of the test it appears that the null hypothesis zero versus one break is rejected in
favour of the alternative hypothesis. Similarly, the hypothesis of one break versus two breaks is rejected.
However, the null hypothesis of two versus three breaks in not rejected, therefore we conclude that there
are two structural breaks.

The first break occurred in the mid-1970’s, when the Fed tightened monetary policy to fight high
inflation rate after the end of the Bretton Woods period. The second break occurred in 1986 when the
Fed embarked in an aggressive policy to reduce inflation which reached unusually high levels starting
from the 70s. As a result, inflation fell from 10.5% at the end of 1980 to 1.1% in 1986Q2 which is also
the date of the estimated break. 8

8McConnell and Perez-Quiros (2000) have a detected a fall in the volatiity of output after 1984 as well.
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Table 3. Structural break test and estimation results.

Panel A: Bai-Perron tests of L+ 1 vs. L sequentially determined breaks
Null hypotheses F-Statistic Critical Value

H0 : 0 vs 1 57.96∗∗ 13.98
H0 : 1 vs 2 18.13∗∗ 15.72
H0 : 2 vs 3 13.57 16.83

Panel B: Model Estimation and Misspecification Tests
Period ϕi φ1,i φ2,i σi

1964Q2-1976Q3 0.496∗∗
(0.224)

0.470
(0.108)

∗ 0.376∗
(0.102)

1.077

1976Q4-1986Q2 3.637∗
(0.954)

0.710∗
(0.119)

0.127
(0.112)

2.300

1986Q3-2018Q1 2.859∗
(0.396)

0.247∗
(0.082)

−0.314∗

(0.077)
2.160

R2 0.614
Breusch-Godfrey Test 2.055

(0.561)

White Test 3.103
(0.376)

Panel A reports the calculated Bai-Perron test for structural breaks along with the critical value of the test taken from

Bai-Perron (2003). Panel B reports the estimated parameters and associated standard errors. The notation: *), **), ***)

indicates statistical significance at 1%, 5% and 10%, respectively. The p-values for the misspecification tests are given

parenthesis.

8.3 Estimation Results

As far as the estimation results are concerned Panel B of Table 3 reports the estimated model and the
relative misspecification tests. Looking now at the estimated parameters, according to the estimates in
Panel B the inflation process is well approximated by a second-order autoregression. With respect to
the estimated parameters, the drift parameters ϕi, i = 1, 2, 3 increased from ϕ3 = 0.496 before 1976Q3
to ϕ2 = 3.637 during the period 1976-1986. The increase in the drift reflects the fact that toward the
second half of the 70s until the middle of the 80s inflation level was stubbornly high. After 1986 the
smaller magnitude of the estimated drift reflects the lower average inflation rates that US enjoyed over
the last three decades. This is in line with the finding in Levin and Piger (2004) who provide statistical
evidence for a fall in the intercept after the early 1990s. Kozicki and Tinsley (2002) interpreted this shift
as change in the long-run inflation target of the Federal Reserve.

Considering now the estimated autoregressive parameters, φ1,i and φ2,i, according to the estimates
until 1986 the inflation process had a high intrinsic persistence (φ1,3+φ2,3 = 0.846 ' φ1,2+φ2,2 = 0.837),
but it has fallen ever since. These results are consistent with the findings in Cogley and Sargent (2002)
(see also Brainard and Perry, 2000, and Taylor, 2000). With respect to the variance parameter σi, we
see that the volatility of the innovation was relatively high during the decade 1976-1986 (σ2 = 2.30) and
it has slightly reduced in the last thirty years (σ3 = 2.160). However, it did not go back to the relatively
low level before the 1976 (σ1 = 1.077). This is probably due to the fact that the last period included the
turmoil of the financial crisis that started in 2005 (see, for example, Stock and Watson, 2009).

Our estimated model confirms that changes in inflation dynamics can be explained by changes in the
drift, the intrinsic persistence and the variance parameter. To summarize our results, we find evidence
that the parameters in the models capturing persistence change over time. Therefore, not allowing for time
varying coefficients in the estimation procedure would result in a less accurate modelling of the inflation
process. This, in light of the simulation results in Section 8.4 may lead to poor forecasting. Finally, the
misspecification tests are reported at the bottom of Panel B. It appears that the Breusch-Godfrey for
autocorrelation does not reject the null hypothesis of no serial correlation. Similarly, the White test for
heteroscedasticity does not reject the null hypothesis of homoscedasticity, therefore indicating that the
model does not suffer from misspecification.
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8.4 Forecasting

We now consider the out-of-sample forecasting performance of the model estimated in Table 3. In order to
investigate the effect of model misspecification on the forecasted inflation level we compare three models.
The first model, which we label as Model 1, is the estimated DAB-AR(2;2). The second model, which
we refer to as Model 2, is the true model which we obtained by simulating the inflation process using the
estimated parameters in Table 3 as data generating process. Finally, the third model is the misspecified
AR(2) model with no time varying parameters, which we label as Model 3.

The evaluation of the out-of-sample forecast exercise does not rely on a single criterion; for robustness
we compare the results of three different forecasting measures, namely, the root mean square forecast
error (RMSE), the mean absolute error (MAE) and the Theil Inequality Coefficient (U Coefficient).
Table 4 reports the results of the forecasting exercise. 9 In columns 1 and 2 the forecasting horizon and
the performance measure are reported, respectively; whereas in columns 3-5 the forecasting results are
reported.

Table 4. Forecasting inflation in the United States: point predictive performances.

Forecast Horizon Forecast Error Measure Model 1 Model 2 Model 3

1 RMSE 0.0134 0.0110 0.0194

4 0.0141 0.0121 0.0167

8 0.0132 0.0149 0.0242

1 MAE 0.0166 0.0111 0.0944

4 0.0112 0.0101 0.0144

8 0.0112 0.0104 0.0208

1 U Coefficient 0.323 0.251 0.293

4 0.258 0.241 0.243

8 0.327 0.287 0.407

Note: The table compares the out-of-sample point forecasts of three model. Model 1 is the model DAB-AR (2;2) model

estimated in Table 3, Model 2 is obtained using simulated data, and Model 3 is an AR(2) process with no time varying

parameters. The forecast measures are i) the root mean square forecast error (RMSE), ii) the mean absolute error (MAE),

iii) the Theil Inequality Coefficient (U Coeff.). The forecast horizon is 1, 4,and 8 quarters.

From Table 4 it is clear that according to the RMSE and MAE criteria the DAB-AR (2;2) model
performs better than its misspecified counterpart. According to these two performance measures Model
1 has forecasting properties in line with those obtained using the true model, Model 2. However, looking
at the U coefficient measure the results are more mixed with Model 3 outperforming Model 1 in the short
horizon and Model 1 having superior performance in longer horizon.

Having investigated the out-of-sample forecasting performance of the DAB-AR-(2;2) model we next
investigate whether inflation and its volatility are highly persistent.

8.5 Inflation Persistence

Pivetta and Reis (2007) employ different estimation methods and measures of persistence. Estimating
the persistence of inflation over time using different measures and procedures is beyond the scope of
this paper.10 In this Section we depart from their study in an important way, that is we contribute to

9For forecasting under structural breaks, see for example, Pesaran and Timmermann (2005).
10Pivetta and Reis (2007) applied a Bayesian approach, which explicitly treats the autoregressive parameters as being

stochastically varying and it provides their posterior densities at all points in time. From these, they obtained posterior
densities for the measures of inflation persistence. Such estimates of persistence are forward-looking, since they are meant
to capture the perspective of a policy maker who at a point in time is trying to forsee what the persistence of inflation will
be. They also estimated backward-looking measures of persistence that the applied economist forms at a point in time,
given all the sample until then.

Pivetta and Reis (2007) also used an alternative set of estimation techniques for persistence. They assumed time invariant
autoregressive parameters and re-estimated their AR model on different sub-samples of the data, obtaining median unbiased
estimates of persistence for each regression. Finally, Pivetta and Reis also employed rolling and recursive unit root tests.
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the measurement over time of inflation persistence by taking a different approach to the problem and
estimate a DAB-HAR model of inflation dynamics grounded on econometric theory, and we compute
an alternative measure of persistence, that is, the second-order persistence (using the methodology in
Sections 7.1 and 7.2), which distinguishes between changes in the dynamics of inflation and its volatility
(and their persistence).

As pointed out by Pivetta and Reis (2007) estimates of the persistence of inflation affect the tests
of the natural hypothesis neutrality. Therefore detecting whether persistence has recently fallen is key
in assessing the likelihood of recidivism by the central bank. In addition, if the central bank feels
encouraged to exploit an illusory inflation-output trade off, the result could be high inflation without
any accompanying output gains. Furthermore, research on dynamic price adjustment has emphasized
the need for theories that generate inflation persistence.

Table 5 presents the within each period time invariant first and second-order measures of persistence
for all three periods. The first three columns report the three first-order measures of persistence (LAR,
1/(1−SUM) and E(πt)). For the first two measures Period 1 yields the highest persistence. In particular,
the persistence (measured by 1/(1− SUM)) decreases by 5.5% in the post-1976 period and it decreases
further by 85% in the post-1986 period. The mean of inflation, E(πt), increases by 59.3% in the second
period and it decreases by 88% in the third period.

The last three columns report the three second-order measures of persistence (S0, P (πt |εt ), and
Var(πt)). For two out of the three measures the post-1986 period exhibits the lowest persistence whereas
in the second period the persistence is the highest. The variance of inflation, V ar(πt), from 1976 to
1986 is almost five times the variance of inflation of the pre-1976 period and it is almost three times the
variance of the post-1986 period.

Table 5. Persistence for each of the three periods/models.

First and Second-order Measures of Persistence

First-Order Second-Order
LAR 1/(1-SUM) E(πt) S0 P (πt |εt ) Var(πt)

1964Q2 − 1976Q3 0.892 6.493 3.221 7.784 2.692 3.122
1976Q4 − 1986Q2 0.858 6.135 22.313 31.688 3.002 15.881
1986Q3 − 2018Q1 0.560 0.937 2.679 0.652 1.150 5.365

Note: For each period, n = 1, 2, 3 we use the six alternative measures to calculate

the (within each period time invariant) first and second-order persistence.

The following graphs of the measures P (πt |εt ) and Var(πt) reflect the dynamics of the second-order
time varying inflation persistence. Details of how we construct the graphs are presented in the online
Appendix H. In the x-axis each unit represents a year-quarter starting with 1964Q2, chosen as first. In
particular, 1976Q3 = 48 (48-th year-quarter) and 1986Q2 = 87 (87-th year-quarter).
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The main futures for the graph of the inflation variance V ar(πt) are discussed below: i) In the pre-76
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period the graph is constant: V ar(πt) = 3.122. ii) Within the post-76 and pre-86 period, the graph
increases abruptly next to the quarter 1976Q4, but at a decreasing rate, reaching in the end the highest
value V ar(πt) = 15.881. iii) In the post-86 period the graph stabilizes to V ar(πt) = 5.365, after an abrupt
drop next to the quarter 1986Q3. Analogous statements can be addressed for the inflation persistence
graph P (πt |εt ). As illustrated above, the main difference between the shapes of the two graphs is due
to the abrupt drop next to the quarter 1976Q4 followed shortly afterwards by an abrupt increase at a
decreasing rate.

The graphs of the two measures P (πt |εt ) and E(πt) for the first-order persistence are shown below.
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In sum our main conclusion is that for our chosen specification (DAB-HAR model) the preferred
measure of persistence, that is the second-order persistence, as measured by the conditional variance
of inflation, increased considerably from 1976 onwards, whereas in the post-1986 period the persistence
reduces to even lower levels than the pre-1976 period. Our results are in line with those in Cogley and
Sargent (2002), who find that the persistence of inflation in the United States rose in the 1970s and
remained high during this decade, before starting a gradual decline from the 1980s until the early 2000s
(similar to the results of Brainard and Perry, 2000, and Taylor, 2000). Stock and Watson (2002) found
no evidence of a change in persistence in U.S. inflation. However, they found strong evidence of a fall in
volatility. Therefore their results are in agreement with ours.

9 Conclusions and Future Work

It is important to understand the fundamental properties of ‘linear’ time series models with variable
coefficients in order to efficiently handle these more complicated structures. We have put forward a
methodology for solving linear stochastic time varying difference equations. The theory presented makes
no claim to being applicable in all ‘linear’ processes with variable coefficients. However, the cases covered
are those which belong to the large family of ‘time varying’ models with ARMA representations. Our
methodology is a practical tool that can be applied to many dynamic problems. As an illustration we
studied an AR specification with abrupt breaks, which is grounded on econometric theory. The second
moment structure of this construction was employed to obtain a new time varying measure of second-order
persistence.

To summarize, we identified a lack of a universally applicable approach yielding an explicit solution to
TV-HARMA models. Our response was to try and fill the gap by developing a coherent body of theory,
which implicitly contains the invertibility of a time varying polynomial, and, therefore, can replace the
convenient tool of characteristic polynomials. In particular, the general theory does three things: first, it
provides a new technique that gives the general solution of such schemes; second, it derives the necessary
and sufficient conditions for their stability; and third it generates the second moments of these schemes as
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well as necessary and sufficient conditions for their existence, which (in the case of the deterministically
varying coefficients) are required for the quasi maximum likelihood and central least squares estimation.

We developed this new technique, which can be applied virtually unchanged in every ‘ARMA’ envi-
ronment, that is to the even larger family of ‘time varying’ models, with ARMA representations (i.e.,
GARCH type of [or stochastic] volatility and Markov switching processes; for the abundant literature on
weak ARMA representations see, for example, Francq and Zaköıan, 2005, and the references therein).
Thus our results are applied to TV-GARCH models as well without any significant difficulties. This
generic framework that forms a base for such a general approach releases us from the need to work with
characteristic polynomials and, by enabling us to examine a variety of specifications and solve a number
of problems, helps us to deepen our familiarity with their distinctive features.

The empirical relevance of the theory has been illustrated through an application to inflation rates.
Our estimation results led to the conclusion that U.S. inflation persistence has been high since 1976,
whereas after 1986 the persistence reduces to even lower levels than the pre-1976 period, a finding which
agrees with those of Brainard and Perry (2000), Taylor (2000) and Cogley and Sargent (2002).

The usefulness of our unified theory is apparent from the fact that it enables us to analyze an abun-
dance of models and solve a plethora of problems. In particular, just to mention a few examples, it
allows us to: i) tackle infinity and examine in depth infinite order autoregressions with either constant
or variable coefficients, since it releases us from the need to work with characteristic polynomials, ii)
obtain the fourth moments of TV-GARCH models, which themselves follow linear time varying diffe-
rence equations of infinite order, taking advantage of the fact that the various GARCH formulations have
weak ARMA representations (see, for example, Karanasos, 1999, and Francq and Zaköıan, 2005) and, in
view of being easily applied to a multivariate setting (see, for example, Karanasos et al., 2014) to: iii)
work out the fundamental time series properties of time varying linear VAR systems, iv) derive explicit
formulas for the nonnegativity constraints and the second moment structure of both constant and time
varying multivariate GARCH processes (thus extending the results in He and Teräsvirta, 2004, Conrad
and Karanasos, 2010, and Karanasos and Hu, 2017).

Hallin (1986) applied recurrences in a multivariate context to obtain the Green’s matrices. Work is at
present continuing on the multivariate case. When this has been completed one should be able to apply
the methods of this paper to multivariate TV HARMA and GARCH models.

Some of these research issues are already work in progress and the rest will be addressed in future
work.
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[4] AZRAK, R. AND G. MÉLARD (2006): “Asymptotic Properties of Quasi-Maximum Likelihood Es-
timators for ARMA Models with Time-Dependent Coefficients,” Statistical Inference for Stochastic
Processes, 9, 279-330.

[5] BAI, J. AND P. PERRON (2003): “Computation and Analysis of Multiple Structural Change
Models,” Journal of Applied Econometrics, 18, 1-22.

[6] BAILLIE, R. (1996): “Long Memory Processes and Fractional Integration in Econometrics,” Journal
of Econometrics, 73, 5-59.

[7] Chung, C-F. (1996): “Estimating a Generalized Long Memory Process,” Journal of Econometrics,
73, 237-259.

29



[8] BENATI, L. (2008): “Investigating Inflation Persistence Across Monetary Regimes,” The Quarterly
Journal of Economics, 123, 1005-1060.

[9] BOUTHELLIER, P. AND GHOSH. P. K. (1988): “Robust Stabilization of Discrete Time, Single
Input Single Output, Linear Time Varying Systems,” Proceedings of the 27th IEEE Conference on
Decision and Control, Austin, Texas.

[10] BRAINARD, W, AND G. PERRY (2000): “Making Policy in a Changing World,” IN: Perry, G.,
Tobin, J. (Eds.), “Economic Events, Ideas, and Policies: The 1960s and After”, Brookings Institution
Press.

[11] COGLEY, T. AND T. J. SARGENT (2002): “Evolving Post-World War II U.S. Inflation Dyna-
mics,” In Getler, M., Rogoff, K. (Eds.), NBER Macroeconomics Annual, pp. 331-373. MIT Press,
Cambridge.

[12] COGLEY, T. AND T. J. SARGENT (2005): “Drifts and Volatilities: Monetary Policies and Out-
comes in the Post WWII US,” Review of Economic Dynamics, 8, 262-302.

[13] CONRAD, C. AND M. KARANASOS (2010): “Negative Volatility Spillovers in the Unrestricted
ECCC-GARCH Model,” Econometric Theory, 26, 838-862.

[14] CRAMER, H. (1961): “On Some Classes of Nonstationary Stochastic Processes,” Proc. 4th Berkeley
Symp. Math. Statist. Prob. 2, 57-78.

[15] DAHLHAUS, R. (1996): “Maximum Likelihood Estimation and Model Selection for Locally Statio-
nary Processes,” Journal of Nonparametric Statistics 6, 171–191.

[16] DAHLHAUS, R. (1997): “Fitting Time Series Models to Nonstationary Processes,” The Annals of
Statistics, 25, 1-37.

[17] ELAYDI, S. (2005): “An Introduction to Difference Equations,” Springer.

[18] ELLIOTT, G., T. J. ROTHENBERG, AND J. H. STOCK (1996): “Efficient Tests for an Autore-
gressive Unit Root,” Econometrica, 75, 813-836.

[19] EVANS, G. W. AND S. HONKAPOHJA (2001): Learning and Expectations in Macroeconomics.
Princeton University Press.

[20] EVANS, G. W. AND S. HONKAPOHJA (2009): “Learning and Macroeconomics,” Annual Review
of Economics, 1, 421-449.

[21] FIORENTINI, G. AND E. SENTANA (1998): “Conditional Means of Time Series Processes and
Time Series Processes for Conditional Means,” International Economic Review, 39, 1101-1018.

[22] FRANCQ, C. AND A. GAUTIER (2004a): “Large Sample Properties of Parameter Least Squares
Estimates for Time-Varying ARMA Models,” Journal of Time Series Analysis, 25, 765-783.

[23] FRANCQ, C. AND A. GAUTIER (2004b): “Estimation of Time-Varying ARMA models with Mar-
kovian Changes in Regime,” Statistics & Probability Letters, 70, 243-251.
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Appendices

In the appendices we provide proofs for the statements and formulas presented in the paper. The standard
notation used in the main body of the paper is adopted throughout the appendices.

A Time Varying ARMA

In this Appendix Section, we present an autonomous procedure for the proofs of the statements of
Section 3. The mathematical origins of the solution sequences including the main tool of our analysis
(the principal determinant ξ(t, s); see eq. (3)) introduced in this paper along with some computational
issues, are discussed in Subsection A.1. We show in Subsection A.2, that the functions ξ(m)(t, s) for
t ≥ s+ 1− p (s fixed), defined in Subsection 2.2 eq. (8), form a fundamental solution set associated with
eq. (1).

A.1 The Principal determinant

Linear difference equations with variable coefficients of order p (TV-LDEs(p)), thus TV-HARMA(p, q)
models as well, can be represented as infinite linear systems whose coefficient matrix is row-finite11 of
dimension N× N consisting of the autoregressive coefficients:


φp(s+ 1) φp−1(s+ 1) φp−2(s+ 1) ... φ1(s+ 1) −1 0 0 ...

0 φp(s+ 2) φp−1(s+ 2) ... φ2(s+ 2) φ1(s+ 2) −1 0 ...
0 0 φp(s+ 3)... φ3(s+ 3) φ2(s+ 3) φ1(s+ 3) −1 ...
...

...
...

...
...

...
...





ys−p+1

ys−p+2

ys−p+3
...
ys

ys+1,s

ys+2,s
...


=

 vs+1

vs+2

...

 (A.1)

Row-finite systems, in a general form, were first studied by Toeplitz (1909), in which some results on
finite linear systems were extended to cover infinite row-finite ones. The representation of their solution
was further developed in Fulkerson (1951). He devised a reduced form (defined by three postulates) of any
arbitrary row-finite matrix with the aid of which the general solution of the system is derived. The lack of a
method transforming row-finite matrices into a Fulkerson’s reduced form has been recently highlighted in
Paraskevopoulos (2012), who has introduced a modified version of the Gauss-Jordan elimination algorithm
in responding to this challenge. In a companion paper, Paraskevopoulos (2014) has further developed the
infinite Gauss-Jordan elimination algorithm yielding an analytic form to the general solution of row-finite
linear systems. The algorithm is effectively applied there to infinite system representations of TV-LDEs
of p order constructing a fundamental solution set. The fundamental solution sequences occupy the first
p columns in the Fulkerson’s reduced matrix and the principal determinant, ξ(t, s), represents the first of
these solution sequences of the homogeneous system associated with (A.1), that is

ys−p+1 = ys−p+2 = ... = ys−1 = 0, ys = 1, ys+1,s = φ1(s+ 1), ys+2,s =

∣∣∣∣ φ1(s+ 1) −1
φ2(s+ 2) φ1(s+ 2)

∣∣∣∣ , ...
This is easily verified by applying the above values of ys+r,s for r = s− p+ 1, ..., s, s+ 1, s+ 2, ... to eq.
(A.1), assuming the right side values being zero, that is vs+i = 0 for all i ∈ Z≥1. Moreover, fundamental
solutions come out as expansions of banded Hessenbergians in terms of the time varying coefficients.

11A row-finite matrix is an infinite matrix, each row of which comprises a finite number of non-zero entries.
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Applying the same sequence of elementary operations to the sequence of forcing terms, a particular
solution sequence is constructed whose elements are represented by banded Hessenbergians too. The
general solution turns out to be a linear combination of fundamental solutions (that is the homogeneous
solution) with coefficients the initial condition values plus the particular solution mentioned above.

As it is shown in the following Subsection, the first fundamental solution sequence, herein identified
as primary fundamental solution, is represented by the principal determinant ξ(t, s).

The linear time complexity for the calculation of banded-matrix determinants of order k, that is
O(k), entails that the principal determinant is computationally tractable. This is due to the Gaussian

elimination algorithm, which uses approximately k(p+1)2

4 multiplications, where (p+ 1) is the bandwidth
of the matrix (see Thorson (2000)). We remark that the O(k) time complexity is comparable with the
computational time complexity of algorithms that calculate the Hessenbergians by recursion.

A.2 A Fundamental Set of Solutions

In the literature of ‘time varying’ models fundamental solution sets play a decisive role in the explicit
representation of their solution. Their existence is theoretically guaranteed by the Fundamental Theorem
of LDEs (see the Fundamental Theorem of LDEs in Elaydi, 2005 pp. 74). As a consequence of the
superposition principle (see the previously cited reference) the general homogeneous solution of eq. (5)
is explicitly expressed as a linear combination of the fundamental solutions with coefficients arbitrary
constants determined by the initial conditions. Moreover, distinct terms of the p fundamental solutions
are involved in the entries of the matrices defining the determinant form of the Green’s function (see
Agarwal, 2000 pp. 77, eq. (2.11.7)). Having a fundamental solution set at our disposal, the Green’s
function is also explicitly expressed yielding a particular solution, which involves this function and the
forcing term (see Miller, 1968 pp 40, eqs. (2.8), (2.9)).

In this Appendix Section, the principal matrix is slightly modified to provide an explicit representation
of the remaining p− 1 elements of a fundamental solution set associated with any arbitrary TV-LDE of
p order. Moreover, we derive the formula (A.4) below, which shows that every fundamental solution can
also be expressed in terms of the principal determinant ξ(t, s) exclusively.

In order to save space, we shall interchangeably use the notation t− s and k. We define:

Φ
(m)
t,s = (A.2)



φm(s+ 1) −1

φm+1(s+ 2) φ1(s+ 2)
. . .

...
...

. . .
. . .

φp(s+ p+ 1−m) φp−m(s+ p+ 1−m)
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .

φp−1(s+ p)
. . .

. . .
. . .

. . .
. . .

φp(s+ p+ 1)
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

φp(t− 1) φp−1(t− 1) · · · φp−m(t− 1) · · · φ1(t− 1) −1
φp(t) · · · φp+1−m(t) · · · φ2(t) φ1(t)



,

We show next that the sequences {ξ(m)(t, s)}t≥s−p+1 for 1 ≤ m ≤ p determined by

ξ(m)(t, s) =

 det(Φ
(m)
t,s ) If t > s

1 If t = s+ 1−m
0 If s+ 1− p ≤ t ≤ s and t 6= s+ 1−m,

(A.3)

form a fundamental solution set associated with the eq. (5).
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The matrix Φ
(m)
t,s , m ≥ 2, is derived by replacing the first column of Φt,s (see eq. (2) in the main

body of the paper) with the column vector: [φ
(m)
t,s ], given by

[φ
(m)
t,s ]′ =

(
φm(s+ 1), φm+1(s+ 2), . . . , φp(s+ p+ 1−m), 0, . . . , 0

)
.

Formally Φ
(m)
t,s is a banded Hessenberg matrix of order k = t − s. Each matrix in the sequence

{Φ(m)
t,s }1≤m≤p, differs from any other matrix in this sequence only in the first column [φ

(m)
t,s ]. The prin-

cipal matrix Φt,s (resp. principal determinant ξ(t, s)) is identified with Φ
(1)
t,s (resp. ξ(1)(t, s)), that is

Φ
(1)
t,s = Φt,s (resp. ξ(1)(t, s) = ξ(t, s)) (for notational convenience we will interchangeably use Φ

(1)
t,s (resp.

ξ(1)(t, s)) in place of Φt,s (resp. ξ(t, s)).
Next, we show that ξ(m)(t, s), defined by the sum expansion in eq. (8), coincides with the definition in

eq. (A.3). In the proof we use the following Lemma (see Paraskevopoulos and Karanasos (2019) Lemma
1 for a formal proof of the next Lemma):

Lemma A1
i) The cofactor of the coefficient φm+i(s+ i) in the first column of Φ

(m)
t,s coincides with ξ(t, s+ 1 + i) for

i = 0, 1, ..., p−m.

ii) The cofactor of the coefficient φi(t), in the last row of Φ
(m)
t,s coincides with ξ(m)(t− i, s).

As a consequence of the above Lemma, we have:

Proposition A1 i) The cofactor expansion of ξ(m)(t, s) along the first column of Φ
(m)
t,s is given by

ξ(m)(t, s) =

p+1−m∑
r=1

φm−1+r(s+ r)ξ(t, s+ r), (A.4)

that coincides with the definition in eq. (8) in Subsection 3.1.

ii) The cofactor expansion of ξ(m)(t, s) along the last row of Φ
(m)
t,s gives

ξ(m)(t, s) = φ1(t)ξ(m)(t−1, s)+φ2(t)ξ(m)(t−2, s)+...+φp(t)ξ
(m)(t−p, s) =

p∑
j=1

φj(t)ξ
(m)(t−j, s). (A.5)

Eq. (A.5) entails that {ξ(m)(t, s)}t≥s+1−p is the solution sequence of eq. (5) under the initial values given
in eq. (9), that is ξ(m)(s+ 1−m, s) = 1 and ξ(m)(s+ 1− r, s) = 0, whenever r = 1, 2, ..., p and r 6= m.

The linear independence of the solutions ξ(m)(t, s) for 1 ≤ m ≤ p, is verified in the following Propo-
sition:

Proposition A2 For any arbitrary but fixed s ∈ Z the set of the solutions

Ξs = {ξ(1)(t, s), ξ(2)(t, s), ..., ξ(p)(t, s) : t ≥ s+ 1− p}

is a fundamental solution set associated with eq. (5).

Proof. Let us consider the sequence of Casorati matrices associated with the set Ξs:

Ξt,s =


ξ(1)(t, s) ξ(2)(t, s) ... ξ(p)(t, s)

ξ(1)(t− 1, s) ξ(2)(t− 1, s) ... ξ(p)(t− 1, s)

...
...

...
...
...

...
ξ(1)(t+ 1− p, s) ξ(2)(t+ 1− p, s) ... ξ(p)(t+ 1− p, s)

 .
The Definition in (A.3) entails that the matrix Ξs,s is the identity matrix of order p. Therefore the first
Casoratian |Ξs,s|, of the set Ξs is |Ξs,s| = 1 6= 0. It turns out that |Ξt,s| 6= 0 for all t ≥ s and the set
Ξs is linearly independent (see Elaydi (2005) Corollary 2.14. pp 69). Moreover, as the dimension of the
homogeneous solution space of eq. (5) is p, the set Ξs is a fundamental solution set associated with eq.
(5).
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A.3 Decomposition

In this Appendix Subsection we prove Proposition 1, that is the decomposition of the stochastic part of
the particular solution.

Proof of Proposition 1. Let us write ut in eq. (1) as ut =

q∑
l=0

θl(r)εr−l, provided that θ0(t) = 1 for

all t. The left side of eq. (13) can be expressed as:

t∑
r=s+1

ξ(t, r)ur =

t∑
r=s+1

ξ(t, r)

q∑
l=0

θl(r)εr−l =

q∑
l=0

t∑
r=s+1

ξ(t, r)θl(r)εr−l

=

t∑
r=s+1

ξ(t, r)θ0(r)εr +

q∑
l=1

t∑
r=s+1

ξ(t, r)θl(r)εr−l

By splitting the second double sum in the right side of the above equation into two parts, it takes the
form:

t∑
r=s+1

ξ(t, r)ur =

t∑
r=s+1

ξ(t, r)θ0(r)εr +

q∑
l=1

s+l∑
r=s+1

ξ(t, r)θl(r)εr−l +

q∑
l=1

t∑
r=s+1+l

ξ(t, r)θl(r)εr−l. (A.6)

As the extended definition of ξ(t, s) in eq. (4) entails that ξ(t, r+ l) = 0, whenever r+ l > t (or r > t− l),
the second sum in the last double sum of eq. (A.6) can be rewritten as:

t∑
r=s+1+l

ξ(t, r)θl(r)εr−l =

t−l∑
r=s+1

ξ(t, r + l)θl(r + l)εr =

t∑
r=s+1

ξ(t, r + l)θl(r + l)εr.

Substituting the above sum in eq. (A.6) we get:

t∑
r=s+1

ξ(t, r)ur =

t∑
r=s+1

ξ(t, r)θ0(r)εr +

q∑
l=1

t∑
r=s+1

ξ(t, r + l)θl(r + l)εr +

q∑
l=1

s+l∑
r=s+1

ξ(t, r)θl(r)εr−l,

or equivalently

t∑
r=s+1

ξ(t, r)ur =

q∑
l=0

t∑
r=s+1

ξ(t, r + l)θl(r + l)εr +

q∑
l=1

s+l∑
r=s+1

ξ(t, r)θl(r)εr−l. (A.7)

Using the definition of ξq(t, r) in eq. (12), eq. (A.7) can be rewritten as:

t∑
r=s+1

ξ(t, r)ur =

t∑
r=s+1

ξq(t, r)εr +

q∑
l=1

s+l∑
r=s+1

ξ(t, r)θl(r)εr−l. (A.8)

By expanding the double sum in eq. (A.8), we have:

q∑
l=1

s+l∑
r=s+1

ξ(t, r)θl(r)εr−l = ξ(t, s+ 1)θ1(s+ 1)εs︸ ︷︷ ︸
l=1, r=s+1

+ ξ(t, s+ 2)θ2(s+ 2)εs + ξ(t, s+ 1)θ2(s+ 1)εs−1︸ ︷︷ ︸
l=2, r=s+1,s+2

+ ξ(t, s+ 3)θ3(s+ 3)εs + ξ(t, s+ 2)θ3(s+ 2)εs−1 + ξ(t, s+ 1)θ3(s+ 1)εs−2︸ ︷︷ ︸
l=3, r=s+1,s+2,s+3

+ · · ·

+ ξ(t, s+ q)θq(s+ q)εs + · · ·+ ξ(t, s+ 1)θq(s+ 1)εs+1−q︸ ︷︷ ︸
l=q, r=s+1,s+2,...,s+q

.
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By rearranging terms, we can rewrite the latter double sum as:

q∑
l=1

s+l∑
r=s+1

ξ(t, r)θl(r)εr−l = [ξ(t, s+ 1)θ1(s+ 1) + ξ(t, s+ 2)θ2(s+ 2) + · · ·+ ξ(t, s+ q)θq(s+ q)]εs︸ ︷︷ ︸
q∑

l=1

ξ(t,s+l)θl(s+l)εs

+ [ξ(t, s+ 1)θ2(s+ 1) + · · ·+ ξ(t, s+ q − 1)θq(s+ q − 1)]εs−1︸ ︷︷ ︸
q∑

l=2

ξ(t,s−1+l)θl(s−1+l)εs−1

+ · · ·+ ξ(t, s+ 1)θq(s+ 1)εs+1−q︸ ︷︷ ︸
q∑

l=q

ξ(t,s+1−q+l)θl(s+1−q+l)εs+1−q

=

s∑
r=s+1−q

q∑
l=s−r+1

ξ(t, r + l)θl(r + l)εr. (A.9)

Therefore, substituting the result of eq. (A.9) back into eq. (A.8), we obtain the expression:

t∑
r=s+1

ξ(t, r)ur =

t∑
r=s+1

ξq(t, r)εr +

s∑
r=s+1−q

q∑
l=s−r+1

ξ(t, r + l)θl(r + l)εr. (A.10)

Substituting the defining formula of ξs,q(t, r) (see eq. (12)) into eq. (A.10) the latter takes the form:

t∑
r=s+1

ξ(t, r)ur =

t∑
r=s+1

ξq(t, r)εr +

s∑
r=s+1−q

ξs,q(t, r)εr,

that is eq. (13), as required.

A.4 The General Solution

In this Section we show the explicit representation of the solution in eq. (14).
An expression of the homogeneous solution as a linear combination of the fundamental solutions is

given below.

Proposition A3 The solution of eq. (5) assuming the prescribed initial values {ys−m+1}m=1,2,...,p is
given by

yhomt,s =

p∑
m=1

ξ(m)(t, s)ys+1−m. (A.11)

Proof. As Ξs, defined in Proposition A2, is a fundamental solution set, every solution can be expressed

as yhomt,s =
∑p

m=1
amξ

(m)(t, s). Fixing the initial conditions at ys−m+1 = cm for m = 1, 2, ..., p, it remains

to show that cm = am for all m : 1 ≤ m ≤ p. Taking into account that for 1 ≤ m ≤ p

ξ(m)(s+ 1−m, s) = 1 and ξ(m)(s+ 1− r, s) = 0, whenever 1 ≤ r ≤ p and r 6= m,

we have: cm = ys+1−m = yhoms+1−m,s =
∑p
r=1 arξ

(r)(s + 1 − r, s) = amξ
(m)(s + 1 −m, s) = am and the

proof is complete.
In the following Proposition we provide a particular solution for eq. (1) and we show that this solution

is a Hessenbergian representation of eq. (11).

Proposition A4 i) The solution of eq. (1) subject to zero initial values ys−r = 0 for 0 ≤ r ≤ p− 1, can
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be expressed as

y∗t,s =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

vs+1 −1

vs+2 φ1(s+ 2)
. . .

...
...

. . .
. . .

vs+p+1−m φp−m(s+ p+ 1−m)
. . .

. . .

...
...

. . .
. . .

. . .

vs+p φp−1(s+ p)
. . .

. . .
. . .

vs+p+1 φp(s+ p+ 1)
. . .

. . .
. . .

. . .

...
. . .

. . .
. . .

. . .
. . .

vt−1 φp(t− 1) φp−1(t− 1) · · · φp−m(t− 1) · · · φ1(t− 1) −1
vt φp(t) · · · φp+1−m(t) · · · φ2(t) φ1(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(A.12)

ii) The expressions in eqs. (11) and (A.12) are identical, that is ypart,s = y∗t,s.

Proof. i) Working with elementary properties of determinants, it turns out that the cofactor of the
coefficients φm(t) for 1 ≤ m ≤ p, in the last row of the determinant in eq. (A.12) is
y∗t−m,s =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

vs+1 −1

vs+2 φ1(s+ 2)
. . .

...
...

. . .
. . .

vs+p φp−1(s+ p)
. . .

. . .

vs+p+1 φp(s+ p+ 1)
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .

...
. . .

. . .
. . .

. . .

vt−m−1 φp(t−m− 1) φp−1(t−m− 1) · · · φ1(t−m− 1) −1

vt−m φp(t−m) · · · φ2(t−m) φ1(t−m)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(see Paraskevopoulos and Karanasos (2019) for an alternative proof). Moreover the cofactor of vt in eq.
(A.12) is (−1)k+1(−1)k−1 = 1. As a consequence, the cofactor expansion of (A.12) along the last row
gives:

y∗t,s =

p∑
m=1

φm(t)y∗t−m,s + vt.

Adding to the right side of this expression the homogeneous solution in (A.11) with ys+1−m = 0, we
conclude that y∗t,s satisfies eq. (1) subject to zero initial values, as required.
ii) Working similarly, the cofactor of vs+i in the first column of eq. (A.12) is ξ(t, s+ i+ 1) for 1 ≤ i ≤ k.
Thus, the cofactor expansion of the determinant in (A.12) along the first column is identical to the
expression (11).

Using the result in Proposition 1 we can rewrite the particular solution in (11) as

ypart,s =

t∑
r=s+1

ξ(t, r)ϕ(r) +

t∑
r=s+1

ξq(t, r)εr +

s∑
r=s+1−q

ξs,q(t, r)εr. (A.13)
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Proof of Theorem 1. The solution of eq. (1), represented by eq. (14), can be obtained by adding the
homogeneous and particular solutions in eqs. (A.11) and (11) respectively, yielding:

yt,s =

p∑
m=1

ξ(m)(t, s)ys+1−m +

t∑
r=s+1

ξ(t, r)ϕ(r) +

t∑
r=s+1

ξ(t, r)ur.

Applying eq. (A.13) to the above expression of yt,s, eq. (14) follows.
An explicit representation to the general solution of eq. (14) and its equivalence with the single

determinant representation (see Kittappa (1993)), are shown in Paraskevopoulos and Karanasos (2019).

B Asymptotic Stability

In this Appendix Section we provide a proof for the stability of DTV-HARMA processes associated with
non-stochastic coefficients, presented in Theorem 2. In the case of stochastic coefficients, the proof is
analogous.

In the following Lemma we adhere to the notation:

φ̃t,m,r = sup
s≤t
|φm+r−1(s+ r)| and φ̃t,m = max

1≤r≤p−m+1
φ̃t,m,r.

The hypothesis supt |φm(t)| < ∞ for each m such that 1 ≤ m ≤ p, in the stability Theorem 2, entails

that φ̃t,m,r <∞. It follows from the finiteness of the range values of r that φ̃t,m <∞ too.

Lemma B2 i) If the backward stability condition holds, that is if lim
s→−∞

ξ(t, s) = 0 for each t ∈ Z, then

lim
s→−∞

ξ(m)(t, s) = 0 for all t ∈ Z and m ∈ Z : 1 ≤ m ≤ p, (B.1)

provided that supt |φm(t)| <∞ for each m.
ii) If the forward stability condition holds, that is lim

t→∞
ξ(t, s) = 0 for each s ∈ Z, then

lim
t→∞

ξ(m)(t, s) = 0 for each s ∈ Z and m ∈ Z : 1 ≤ m ≤ p. (B.2)

Proof. i) In view of eq. (A.4) we have:

∣∣ξ(m)(t, s)
∣∣ =

∣∣∣∣∣
p+1−m∑
r=1

φm−1+r(s+ r)ξ(t, s+ r)

∣∣∣∣∣ ≤
p+1−m∑
r=1

|φm−1+r(s+ r)||ξ(t, s+ r)|

≤
p+1−m∑
r=1

φ̃t,m|ξ(t, s+ r)|

= φ̃t,m

p+1−m∑
r=1

|ξ(t, s+ r)|.

Letting s→ −∞ in the above inequalities we get:

lim
s→−∞

|ξ(m)(t, s)| ≤ lim
s→−∞

φ̃t,m

p+1−m∑
r=1

|ξ(t, s+ r)| = φ̃t,m

p+1−m∑
r=1

lim
s→−∞

|ξ(t, s+ r)| = 0.

Hence lim
s→−∞

ξ(m)(t, s) = 0 for each t,m.

ii) The assertion follows from:

lim
t→∞

ξ(m)(t, s) = lim
t→∞

p+1−m∑
r=1

φm−1+r(s+ r)ξ(t, s+ r) =

p+1−m∑
r=1

φm−1+r(s+ r) lim
t→∞

|ξ(t, s+ r)| = 0.

This completes the proof of Lemma.
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The above Lemma states that if the primary fundamental sequence {ξ(t, s)}s≤t converges to zero, as
s→ −∞ (or t→∞), then all of the fundamental sequences {ξ(m)(t, s)}s≤t converge to zero too.

In the proof of the backward stability in Theorem 2, we shall use the notation of Subsection 4.1. Let
us further call z(s) = c for all s such that s ≤ t, where c′ = [cm]1≤m≤p is the initial condition vector.
Accordingly, z is a constant vector valued function yielding the sequence of the same repeated term, the
vector c. In view of the solution expression in eq. (7), the TV-HARMA process associated with eq. (1)
is backwards asymptotically stable if and only if yhomt,s → 0, as s → −∞ for the initial values being the
components of c. In other words, as the initial condition vector z(s) = c moves further to the past, i.e.
s→ −∞, its effects on the solution yt,s are gradually dying out.

Proof of Theorem 2. (Sufficient) In view of eq. (A.11), Lemma B2 implies that

lim
s→−∞

yhomt,s = lim
s→−∞

p∑
m=1

cm ξ(m)(t, s) =

p∑
m=1

cm lim
s→−∞

ξ(m)(t, s) =

p∑
m=1

cm · 0 = 0,

which shows the backward stability of the process, as required.

(Necessary) The formula yhomt,s =

p∑
m=1

ξ(m)(t, s)cm applied with {c1 = 1, c2 = 0, c3 = 0, ..., cp = 0}

yields ξ(1)(t, s) (ξ(t, s) for short), that is yhomt,s = ξ(t, s). It amounts to the same as saying that ξ(t, s)
is the solution of eq. (5) subject to the initial values: {ys = 1, ys−1 = 0, ..., ys−p = 0} for all s with
s ≤ t. The assumption lim

s→−∞
yhomt,s = 0 for any initial condition vector z(s) = c and all t, implies that

lim
s→−∞

ξ(t, s) = 0 for all t, as required.

Replacing (s→ −∞) by (t→∞) in the above statements we deduce the forward asymptotic stability
of the model.

C Second Order Properties

In this section we show that the first and the second unconditional moments exist, provided that the
absolute summability condition holds. Under the above mentioned condition the Wold-Cramér decom-
position of the DTV-HARMA(p, q) processes is derived along with the second order structure of these
processes.

C.1 Unconditional Moments

In this Subsection we give a proof for the existence of the first and second unconditional moments, descri-
bed in Proposition 5, completed by the logical implications that render Diagrams I and II commutative.

Proof of Proposition 5. First, we verify that the first unconditional moment in eq. (17) exists in R,
that is

∑t
r=−∞ ξ(t, r)ϕ(r) converges, provided that

∑t
r=−∞ |ξ(t, r)| <∞ for each t (absolute summability

condition). Employing the notation ϕ̃t = sups≤t |ϕ(s)| ∈ R≥0 for each t, we have:

t∑
r=s

|ξ(t, r)ϕ(r)| =
t∑

r=s

|ξ(t, r)||ϕ(r)| ≤
t∑

r=s

|ξ(t, r)|ϕ̃t = ϕ̃t

t∑
r=s

|ξ(t, r)|, for all s : s ≤ t. (C.1)

Letting s → −∞ in the inequality (C.1) and taking into account that absolute summability implies
summability, the result follows from:

t∑
r=−∞

|ξ(t, r)ϕ(r)| ≤ ϕ̃t
t∑

r=−∞
|ξ(t, r)| <∞ for all t. (C.2)

Second, we show that the second unconditional moment in eq. (18) exists in R≥0, provided that
t∑

r=−∞
|ξ(t, r)| < ∞ for all t. In view of eq. (12), we show first that

∑t

r=−∞
|ξq(t, r)| < ∞ for all t. Let
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us call θ̃l = supr |θl(l + r)| ∈ R≥0 for each l = 1, ..., q and Θ = max
0≤l≤q

θ̃l, where θ0(t)
def
= 1 for all t. Then

ξq(t, r) can be rewritten as ξq(t, r) =
∑q
l=0 ξ(t, r + l)θl(r + l) and

|ξq(t, r)| ≤

∣∣∣∣∣
q∑
l=0

ξ(t, r + l)θ̃l

∣∣∣∣∣ ≤ Θ

∣∣∣∣∣
q∑
l=0

ξ(t, r + l)

∣∣∣∣∣ . (C.3)

It follows from Tonelli’s Theorem for series (either convergent or divergent) that we can switch the
summation order, that is

∑t
r=−∞

∑q
l=0 |ξ(t, r + l)| =

∑q
l=0

∑t
r=−∞ |ξ(t, r + l)|, whence

t∑
r=−∞

|ξq(t, r)| ≤
t∑

r=−∞
Θ

∣∣∣∣∣
q∑
l=0

ξ(t, r + l)

∣∣∣∣∣ ≤ Θ

t∑
r=−∞

q∑
l=0

|ξ(t, r + l)| = Θ

q∑
l=0

t∑
r=−∞

|ξ(t, r + l)|. (C.4)

The hypothesis

t∑
r=−∞

|ξ(t, r)| <∞ along with the fact that

t+l∑
r=t+1

|ξ(t, r)| = 0 imply that

t∑
r=−∞

|ξ(t, r + l)| =
t+l∑

r=−∞
|ξ(t, r)| =

t∑
r=−∞

|ξ(t, r)|+
t+l∑

r=t+1

|ξ(t, r)| =
t∑

r=−∞
|ξ(t, r)| <∞ (C.5)

for all t and any l : 0 ≤ l ≤ q. Let us call g(t, l) =
∑t
r=−∞ |ξ(t, r + l)|. It follows from (C.5) that

g(t, l) ∈ R≥0 for all t and any l : 0 ≤ l ≤ q. Accordingly Θ
∑q
l=0 g(t, l) ∈ R≥0 for all t and any l such that

0 ≤ l ≤ q (as being a multiple of a finite sum of real numbers). It follows from inequality (C.4) that

t∑
r=−∞

|ξq(t, r)| ≤ Θ

q∑
l=0

t∑
r=−∞

|ξ(t, r + l)| = Θ

q∑
l=0

g(t, l) <∞,

for all t, as claimed. We recall that 0 < σ2(r) ≤ M for all r. Taking into account that absolute

summability implies square summability, that is:

t∑
r=−∞

|ξq(t, r)| <∞ =⇒
∑t

r=−∞
ξ2q (t, r) <∞ for all t,

the existence of variance follows from:

Var(yt) =

t∑
r=−∞

ξ2q (t, r)σ2(r) ≤
t∑

r=−∞
ξ2q (t, r)M = M

t∑
r=−∞

ξ2q (t, r) <∞ for all t. (C.6)

It follows from eqs. (C.2) and (C.6) that lims→−∞ ξ(t, s)ϕ(s) = 0 and lims→−∞ ξ2q (t, s)σ2(s) = 0,
respectively, are necessary conditions for the existence of the first and second unconditional moments
respectively.

Finally, in view of diagrams in eq. (19), it remains to show the following implications:

lim
s→−∞

ξ(t, s)ϕ(s) = 0

=⇒
lim

s→−∞
ξ(t, s) = 0 for all t ∈ Z.

=⇒
lim

s→−∞
ξ2q (t, s)σ2(s) = 0

(C.7)

Since
|ξ(t, s)ϕ(s)| = |ξ(t, s)||ϕ(s)| ≤ |ξ(t, s)|ϕ̃t = ϕ̃t|ξ(t, s)| for all t, s ∈ Z,

and ϕ̃t lim
s→−∞

|ξ(t, s)| = 0 it follows from the squeeze Theorem that lim
s→−∞

|ξ(t, s)ϕ(s)| = 0 for all t ∈ Z.

As

(
lim

s→−∞
|ξ(t, s)ϕ(s)| = 0 ⇐⇒ lim

s→−∞
ξ(t, s)ϕ(s) = 0

)
, the first implication in diagram (C.7) follows.

Taking into account the implications
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t∑
r=−∞

|ξ(t, r)| <∞ =⇒
t∑

r=−∞
ξ2q (t, r) <∞ =⇒ lim

s→−∞
ξ2q (t, s) = 0 =⇒ lim

s→−∞
Mξ2q (t, s) = 0, for all t ∈ Z

along with the fact that ξ2q (t, s)σ2(s) ≤ Mξ2q (t, s) for all t, s ∈ Z, it follows from the squeeze Theorem

that lim
s→−∞

ξ2q (t, s)σ2(s) = 0. This shows the second implication in (C.7) and the proof is complete.

C.2 Wold-Cramér Decomposition

In the next Theorem we prove the Wold-Cramér decomposition of the DTV-HARMA(p, q) process.

Proof of Theorem 3. The homogeneous solution subject to the information sequence {ys+1−m}1≤m≤p
is given by eq. (10). For each t ∈ Z arbitrary but fixed, we define the random variables in the extended
real line (R ∪ {±∞}): ỹt,m = sups≤t |ys+1−m|, for each m and ỹt = max1≤m≤p ỹt,m. The following
inequality holds:

∣∣yhomt,s

∣∣ =

∣∣∣∣∣
p∑

m=1

ξ(m)(t, s)ys+1−m

∣∣∣∣∣ ≤
p∑

m=1

∣∣∣ξ(m)(t, s)
∣∣∣ ỹt = ỹt

p∑
m=1

|ξ(m)(t, s)|.

Taking the limits to both sides of the above inequality and using the measure theory convention that
+∞ · 0 = 0 we have:

lim
s→−∞

∣∣yhomt,s

∣∣ ≤ lim
s→−∞

ỹt

p∑
m=1

|ξ(m)(t, s)| = ỹt

p∑
m=1

lim
s→−∞

|ξ(m)(t, s)| = ỹt

p∑
m=1

0 = 0

(notice that we allow ỹt = +∞). As a consequence lim
s→−∞

yhomt,s = 0. In view of the definition of ur in eq.

(1) we have:
t∑

r=s+1

ξ(t, r)ur =

t∑
r=s+1

q∑
l=0

ξ(t, r)θl(r)εr−l. (C.8)

As we have shown in the proof of Proposition 5 the infinite sum

t∑
r=−∞

ξ(t, r)[ϕ(r) + ur] converges in L2,

provided that the condition of the absolute summability holds. Taking the limits in eq. (C.8) as s→ −∞
and recalling that ξ(t, r) = 0 for r > t we have:

t∑
r=−∞

ξ(t, r)ur =
t∑

r=−∞

q∑
l=0

ξ(t, r)θl(r)εr−l

(switchig summation) =

q∑
l=0

t∑
r=−∞

ξ(t, r)θl(r)εr−l

(changing the summation limits) =

q∑
l=0

t−l∑
r=−∞

ξ(t, r + l)θl(r + l)εr

(adding some zero terms) =

q∑
l=0

t−l∑
r=−∞

ξ(t, r + l)θl(r + l)εr +

q∑
l=0

t∑
r=t−l+1

ξ(t, r + l)θl(r + l)εr

(condensed sum) =

q∑
l=0

t∑
r=−∞

ξ(t, r + l)θl(r + l)εr

(switchig summation) =

t∑
r=−∞

q∑
l=0

ξ(t, r + l)θl(r + l)εr

(definition in eq. (12)) =

t∑
r=−∞

ξq(t, r)εr.

(C.9)
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As lim
s→−∞

yhomt,s = 0, it follows from eqs. (14), (11) and (C.9) that:

lim
s→−∞

yt,s = lim
s→−∞

yhomt,s + lim
s→−∞

ypart,s = lim
s→−∞

ypart,s

=

t∑
r=−∞

ξ(t, r)[ϕ(r) + ur] =

t∑
r=−∞

ξ(t, r)ϕ(r) +

t∑
r=−∞

ξq(t, r)εr.
(C.10)

Let us recall the notation vr = φ(r) +ur. It remains to show that yt =

t∑
r=−∞

ξ(t, r)vr (or yt = lim
s→−∞

yt,s)

solves eq. (1). Applying the expression yt−m =

t−m∑
r=−∞

ξ(t−m, r)vr for m = 0, 1, ..., p to eq. (1), we show

below that its right side, i.e.

p∑
m=1

φm(t)

t−m∑
r=−∞

ξ(t−m, r)vr, equals its left side, i.e.

t∑
r=−∞

ξ(t, r)vr:

p∑
j=1

φj(t)

t−j∑
r=−∞

ξ(t− j, r)vr =

p∑
j=1

t−j∑
r=−∞

φj(t)ξ(t− j, r)vr

(adding some zero terms) =

p∑
j=1

t−j∑
r=−∞

φj(t)ξ(t− j, r)vr +

p∑
j=1

t∑
r=t−j+1

φj(t)ξ(t− j, r)vr

(condensed sum) =

p∑
j=1

t∑
r=−∞

φj(t)ξ(t− j, r)vr

(switching summation) =

t∑
r=−∞

p∑
j=1

φj(t)ξ(t− j, r)vr

(factoring) =

t∑
r=−∞

vr

p∑
j=1

φj(t)ξ(t− j, r)

(applying eq. (A.5) for m = 1) =

t∑
r=−∞

vrξ(t, r).

(C.11)
This completes the proof of the Theorem.

C.3 Autocovariance Function

By virtue of Theorem 3, the stochastic part of the one sided MA representation of the stochastic process
{yt}t associated with a DTV-HARMA(p, q), is given by

yt =

t∑
r=−∞

ξq(t, r)εr.

Next, we give a proof to Proposition 6.

Proof of Proposition 6. In what follows we use the statements:
i) As {εt} is a martingale difference, it follows that: E(εr1 · εr2) = 0, whenever r1 6= r2.
ii) As φm(t) are deterministic, it follows that ξq(t, r) is deterministic too, whence: E(ξq(t, r)·ξq(t−`, r)) =
ξq(t, r) · ξq(t− `, r).
iii) As shown in the proof of Proposition 5, it follows from our general condition

∑t

s=−∞
|ξ(t, s)| < ∞

that
∑t

s=−∞
|ξq(t, s)| < ∞. We remark that the absolute summability is a sufficient condition for

switching expectation with infinite summation.
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iv) It follows from statements (i)-(iii), that

E

(
t∑

r=t−`+1

ξq(t, r)εr ·
t−∑̀

r=−∞
ξq(t− `, r)εr

)
= 0. (C.12)

Employing the autocovariance function notation γt(`)
def
= Cov(yt, yt−`), in view of Theorem 3, the

following equalities hold:

γt(`)= E

(
t∑

r=−∞
ξq(t, r)εr ·

t−∑̀
r=−∞

ξq(t− `, r)εr

)

(breaking first sum) = E

(
(

t−∑̀
r=−∞

ξq(t, r)εr +

t∑
r=t−`+1

ξq(t, r)εr)

t−∑̀
r=−∞

ξq(t− `, r)εr

)

(associative law) = E

(
t−∑̀

r=−∞
ξq(t, r)εr

t−∑̀
r=−∞

ξq(t− `, r)εr +

t∑
r=t−`+1

ξq(t, r)εr

t−∑̀
r=−∞

ξq(t− `, r)εr

)

(by eq.(C.12)) = E

(
t−∑̀

r=−∞
ξq(t, r)εr

t−∑̀
r=−∞

ξq(t− `, r)εr

)

(by statement(i)) = E

(
t−∑̀

r=−∞
ξq(t, r)ξq(t− `, r)ε2r

)

(by statements (ii) & (iii))) =

t−∑̀
r=−∞

ξq(t, r)ξq(t− `, r)σ2(r),

as required.

C.4 Forward asymptotic efficiency

Before proving Lemma C3 and Proposition 7, we provide some useful notes on oscillation.
Let {xt}t∈Z≥0

be a bounded sequence, that is |xt| ≤M for some M ∈ R≥0 and for all t ∈ Z≥0. Every
bounded sequence is either convergent or oscillating and divergent with oscillation given by

Ω
def
= lim sup

t→∞
xt − lim inf

t→∞
xt

or
= lim
t→∞

(sup
r≥t

xr − inf
r≥t

xr)
or
= inf

t
(sup
r≥t

xr − inf
r≥t

xr) (C.13)

If the oscillation is zero, then the sequence converges, otherwise diverges.

Lemma C3 Let F (t, s) =
∑t
r=s+1 |ξ(t, r)| for t > s. If {F (t, s)}t is bounded, as a function of t for

each fixed s, then the mean square error is also bounded, as a function of t. Equivalently, under the
boundedness condition of {F (t, s)}t, for every s either lim

t→∞
MSEt,s exists in R≥0 or {MSEt,s}t oscillates

with oscillation: Ω(s) = inf
t

(sup
r≥t

MSEr,s − inf
r≥t

MSEr,s).

Proof of Lemma C3. As {F (t, s)}t is bounded, there exists some Ns ∈ R≥0 such that F (t, s) ≤ Ns for

all t. Fist we show that the sequence {Fq(t, s)}t defined by Fq(t, s) =
∑t
r=s+1 |ξq(t, r)| is also bounded,

as a function of t, for each fixed s. Using the notation of the proof of Proposition 5 and taking into

45



account inequality (C.3) we deduce that:

t∑
r=s+1

|ξq(t, r)| ≤
t∑

r=s+1

Θ

∣∣∣∣∣
q∑
l=0

ξ(t, r + l)

∣∣∣∣∣ ≤ Θ

t∑
r=s+1

q∑
l=0

|ξ(t, r + l)|

(switching summation) = Θ

q∑
l=0

t∑
r=s+1

|ξ(t, r + l)|

(breaking summation) = Θ

q∑
l=0

(
t−l∑

r=s+1

|ξ(t, r + l) +

t∑
r=t−l+1

|ξ(t, r + l)|

)

(subtracting zero terms) = Θ

q∑
l=0

t−l∑
r=s+1

|ξ(t, r + l)|

(shifting summation index) = Θ

q∑
l=0

t∑
r=s+l+1

|ξ(t, r)|

(by definitions) = Θ

q∑
l=0

F (t, s+ l) ≤ Θ

q∑
l=0

Ns+l

The first requirement follows from:

Fq(t, s) ≤ Θ

q∑
l=0

Ns+l for all t. (C.14)

Let us call S(t, s) =
∑t
r=s+1 ξ

2
q (t, r) for t > s. Employing the notation of Proposition 7, it follows

from the well known identity

(

t∑
r=s+1

|ξq(t, r)|)2 =

t∑
r=s+1

ξ2q (t, r) + 2

t−1∑
i=s+1

t∑
j=i+1

|ξq(t, i)ξq(t, j)|

that

S(t, s) =

t∑
r=s+1

ξ2q (t, r)≤
t∑

r=s+1

ξ2q (t, r) + 2

t−1∑
i=s+1

t∑
j=i+1

|ξq(t, i)ξq(t, j)| = (

t∑
r=s+1

|ξq(t, r)|)2 =F 2
q (t, s) (C.15)

for all t > s. As Fq(t, s) ≥ 0, inequality (C.14) implies: for every s ∈ Z, F 2
q (t, s) ≤ (Θ

q∑
l=0

Ns+l)
2 ∈ R≥0

for all t > s. Thus {F 2
q (t, s)}t is bounded in t for each s. Let us call Ss

def
= supt F

2
q (t, s). Now inequality

(C.15) implies that for every s: 0 ≤ S(t, s) ≤ F 2
q (t, s) ≤ Ss for all t > s. Thus {S(t, s)}t is bounded in t

for each s ∈ Z. As 0 < σ2(r) ≤M , we have:

MSEt,s =

t∑
r=s+1

ξ2q (t, r)σ2(r) ≤M
t∑

r=s+1

ξ2q (t, r) = M · S(t, s) ≤M · Ss.

Accordingly {MSEt,s}t is bounded in t for each s and the result follows.

Proof of Proposition 7. Let us call U = supt Ft. Then

F (t, s) =

t∑
r=s+1

|ξ(t, r)| ≤
t∑

r=−∞
|ξ(t, r)| = Ft ≤ U.

Thus the condition of Lemma C3 is fulfilled and therefore {MSEt,s}t is bounded in t for each s. The
uniformly boundedness is derived as follows. If we replace Ns by U , in the proof of Lemma C3, then
inequality (C.14) entails that: Fq(t, s) ≤ Θ(q+1)U . Also, it follows from inequality (C.15) that: S(t, s) ≤
(Θ(q + 1)U)2. Thus, MSEt,s ≤M · (Θ(q + 1)U)2. As the latter bound is in R≥0 and independent of t, s
the result follows.
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D Stochastic Coefficients

In this Appendix we will examine a HAR model where the drift and the autoregressive coefficients are
stochastically varying (STV). That is, yt satisfies the following process:

yt = φ0t +

p∑
m=1

φmtyt−m + εt, (D.1)

where {εt} is a martingale difference defined on L2, with supt σ
2
ε(t) <∞.

The conditional expectations of yt and φmt, for m = 0, . . . , p, with respect to the sigma field Fs are
denoted as

yt,s
def
= E(yt |Fs ) and φ

(m)
t,s

def
= E(φmt |Fs ). (D.2)

It is assumed that the conditional expectation of the product φmtyt−m satisfies the following hypot-
hesis:

Assumption 1 E(φmtyt−m |Fs ) = φ
(m)
t,s yt−m,s for all m such that 1 ≤ m ≤ p.

The STV-HAR process incorporates two classes of models:
Model Class 1. The GRC (see section 3.3) model, where φmt is independent of ετ and φmτ , τ ∈ Z,

for all m and t 6= τ . It integrates the following AR processes (for details, see Hwang and Basawa, 1998):
I. Random coefficient model: φmt = φm+ηmt, where φm are constant coefficients, {ηmt} is a sequence

of i.i.d random variables with E(ηmt) = 0, and {ηmt} is independent of {ετ} for all m, t and τ . Notice
also that if we set ηmt = 0, for all m and t, we get the ordinary AR(p) process.

II. Markovian bilinear model: φmt = φm + ϑmεt, with φm as defined in I, and ϑm are constant
coefficients.

III. Generalized Markovian bilinear model: φmt = φm + ϑmε
rm
t , rm ∈ Z>0, (φm and ϑm are as in I

and II, respectively), and εrmt has finite moments E(εrmt ) for all m. Note that if we set rm = 1, for all m,
we get Markovian bilinear model.

IV. Random coefficients exponential model: φmt = φm + (ϑm1 + ϑm2e
−ϑm3ε

2
t )εt (with φm as defined

in I), where ϑmi, i = 1, 2, 3, are constant coefficients.

To sum up, φ
(m)
t,s (which in all Class 1 models is time invariant) is given by:

Models I and II: φ
(m)
t,s = φm, (D.3)

Model III: φ
(m)
t,s = φm + ϑmE(εrmt ),

Model IV: φ
(m)
t,s = φm + ϑm2E(e−ϑm3ε

2
t εt).

Model Class 2. The double stochastic HAR model, hereafter termed DSHAR (for double stochastic
processes, and in particular ARMA processes with ARMA coefficients, see Grillenzoni, 1993, and the
references therein). In this case the random drift and autoregressive coefficients, φmt, for m = 0, . . . , p,
follow AR processes:

φmt = ϕm0 +

pm∑
l=1

ϕmlφm,t−l + emt, (D.4)

where ϕm0 and ϕml are constant coefficients and pm ∈ Z≥0 for all m. {emt} are martingale differences
defined on L2, where emt and εt±b, b ∈ Z, are independent of each other for all m, and t.
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Definition 6 i) Let h
(m,1)
r , r ∈ Z≥1, be an r-th order Toeplitz determinant

h(m,1)r =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕm1 −1

ϕm2 ϕm1
. . .

...
...

. . .
. . .

ϕmpm ϕm,pm−1
. . .

. . .
. . .

ϕmpm
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

ϕmpm ϕm,pm−1 · · · ϕm1 −1
ϕmpm · · · φm2 ϕm1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

with initial values

h(m,1)r =

{
1 for r = 0
0 for r < 0.

ii) Let h
(m,l)
k (we recall that k = t− s), l = 2, . . . , pm, be defined as follows

h
(m,l)
k =

pm−l+1∑
r=1

φm,l−1+rh
(m,1)
k−r .

Proposition D1 The k-step-ahead optimal (in L2-sense) linear predictors of the stochastically varying
drift and autoregressive coefficients, φmt (m = 0, . . . , p) in eq. (D.4), are given by

φ
(m)
t,s =

pm∑
l=1

h
(m,l)
k φm,s+1−l + ϕm0

k−1∑
r=0

h(m,1)r , (D.5)

(the above Proposition is analogous to Proposition 4 when the coefficients are constant, thus its proof
is omitted).

We have derived φ
(m)
t,s for the two classes of models (see eqs. (D.3) and (D.5)). In the next Proposition

we will obtain the linear optimal forecast yt,s (see eq. (D.2)). But first, we will introduce the following
definition.

Definition 7 i) Let ξ(t, s) be a k-th order Hessenbergian

ξ(t, s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ
(1)
s+1,s −1

φ
(2)
s+2,s φ

(1)
s+2,s

. . .
...

...
. . .

. . .

φ
(p)
s+p,s φ

(p−1)
s+p,s

. . .
. . .

. . .

φ
(p)
s+p+1,s

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

φ
(p)
t−1,s φ

(p−1)
t−1,s · · · φ

(1)
t−1,s −1

φ
(p)
t,s · · · φ

(2)
t,s φ

(1)
t,s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

with initial values

ξ(t, s) =

{
1 for t = s
0 for t < s.

ii) Let ξ(m)(t, s), m = 1, . . . , p, be defined as follows

ξ(m)(t, s) =

p−m+1∑
r=1

φ
(m−1+r)
s+r,s ξ(t, s+ r).
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Proposition D2 Under Assumption 1, the k-step-ahead optimal (in L2-sense) linear predictor of the
STV-HAR(p) process in eq. (D.1) satisfies the following ‘time varying’ difference equation12:

yt,s = φ
(0)
t,s +

p∑
m=1

φ
(m)
t,s yt−m,s, (D.6)

with solution given by

yt,s =

p∑
m=1

ξ(m)(t, s)ys+1−m +

t∑
r=s+1

ξ(t, r)ϕ(0)
r,s . (D.7)

Proof of Proposition D2. Under Assumption 1, taking conditional expectations as of time s on both
sides of eq. (D.1), we obtain eq. (D.6). Applying to eq. (D.6) the methodology in the proof of Theorem
1, eq. (D2) follows.

E Time Varying Polynomials

In this Appendix we will prove Theorems 5, 6 and Proposition 8. Let us recall eq. (8) in the main body
of the paper:

ξ(m)(t, s) =

p−m+1∑
r=1

φm−1+r(s+ r)ξ(t, s+ r). (E.1)

Applying the above equation for m = 1, it gives:

ξ(t, s) =

p∑
r=1

φr(s+ r)ξ(t, s+ r). (E.2)

Next, we evaluate ξ(t, s), by applying eq. (E.2) for specific values of s starting from t − 1 and moving
backwards, that is for s = t− 1, t− 2, ..., as illustrated below:

ξ(t, t− 1) = φ1(t)
ξ(t, t− 2) = φ1(t− 1)ξ(t, t− 1) + φ2(t)
ξ(t, t− 3) = φ1(t− 2)ξ(t, t− 2) + φ2(t− 1)ξ(t, t− 1) + φ3(t)

...
...

...
ξ(t, t− i) =

∑p
r=1 φr(t− i+ r)ξ(t, t− i+ r)

(E.3)

Applying eq. (E.1) for specific values of 2 ≤ m ≤ p, we get:

ξ(2)(t, s) =
∑p−1
r=1 φ1+r(s+ r)ξ(t, s+ r)

ξ(3)(t, s) =
∑p−2
r=1 φ2+r(s+ r)ξ(t, s+ r)

...
...

...
ξ(p−1)(t, s) = φp−1(s+ 1)ξ(t, s+ 1) + φp(s+ 2)ξ(t, s+ 2)
ξ(p)(t, s) = φp(s+ 1)ξ(t, s+ 1).

(E.4)

Proof of Theorem 5. It suffices to show that

Ξ
(k)
t (B) ◦ Φt(B) = Ξ

(k)
t,p (B).

The left-hand side of the above equation, using eqs. (28) and (24), is equal to

Ξ
(k)
t (B) ◦ Φt(B) =

(
1 +

k−1∑
r=1

ξ(t, t− r)Br
)
◦

(
1−

p∑
m=1

φm(t)Bm

)
. (E.5)

12Actually, for the GRC specification, since φ
(m)
t,s , m = 0, 1, . . . , p, are constants, the difference equation is time invariant.
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Multiplying the two polynomials (using the properties of ‘◦’) and collecting terms with the same powers
of the backshift operator, the right-hand side of eq. (E.5) (separated into two the parts S1, S2) gives:
i) for powers from zero up to k − 1:

S1 = 1 + [ξ(t, t− 1)− φ1(t)]B + [ξ(t, t− 2)− φ1(t− 1)ξ(t, t− 1)− φ2(t)]B2

+[ξ(t, t− 3)− φ1(t− 2)ξ(t, t− 2)− φ2(t− 1)ξ(t, t− 1)− φ3(t)]B3

· · ·

+

[
ξ(t, t− k + 2)−

p∑
r=1

φr(t− k + 2 + r)ξ(t, t− k + 2 + r)

]
Bk−2

+

[
ξ(t, t− k + 1)−

p∑
r=1

φr(t− k + 1 + r)ξ(t, t− k + 1 + r)

]
Bk−1

(E.6)

ii) for powers from k up to k − 1 + p:

S2 =−

[
p∑
r=1

φr(s+ r)ξ(t, s+ r)

]
Bk−1+1 −

[
p−1∑
r=1

φ1+r(s+ r)ξ(t, s+ r)

]
Bk−1+2

−

[
p−2∑
r=1

φ2+r(s+ r)ξ(t, s+ r)

]
Bk−1+3

· · ·
− [φp−1(s+ 1)ξ(t, s+ 1) + φp(s+ 2)ξ(t, s+ 2)]Bk−1+p−1

− φp(s+ 1)ξ(t, s+ 1)Bk−1+p. (E.7)

The final step of the proof is to notice that
i) on account of eq. (E.3), the `th (` = 1, . . . , k − 1) coefficient of the (k − 1)th order polynomial in eq.
(E.6) is equal to zero and ξ(t, t− `)−

∑p
r=1 φr(t− `+ r)ξ(t, t− `+ r) = 0 thus S1 = 1, and

ii) in view of eqs. (E.2) and (E.4), the time varying coefficient of Bk−1+m (m = 1, . . . , p) in the
polynomial in eq. (E.7) is equal to minus the mth fundamental solution, ξ(m)(t, s), and, therefore:
S2 = −

∑p
m=1 ξ

(m)(t, s)Bk−1+m.
Thus eq. (E.5) gives

Ξ
(k)
t (B) ◦ Φt(B) = 1−

p∑
m=1

ξ(m)(t, s)Bk−1+m = Ξ
(k)
t,p (B),

as required.
Theorems 5 and 1 are equivalent, therefore, the former implies the latter and vice versa. The proof

of Theorem 6 (under the absolute summability condition in Proposition 5) follows along the same lines
as the proof of Theorem 5 except that this time we let k →∞, thus only the argument in part i) (see eq.
E.6) applies.

Next we will proof Proposition 8. But first, we will rewrite (by replacing r with t−r) the two equations
in Definition 1 as follows:

ξq(t, t− r) = ξ(t, t− r) +

q∑
l=1

ξ(t, t− r + l)θl(t− r + l), for r = 0, . . . , k − 1, (E.8)

ξs,q(t, t− r) =

q∑
l=r−k+1

ξ(t, t− r + l)θl(t− r + l), for r = k − 1 + q, . . . , k. (E.9)

Proof of Proposition 8. It suffices to show that

Ξ
(k)
t (B) ◦Θt(B) = Ξ

(k)
t,q (B).
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In view of eqs. (28) and (24), the above equation can be rewritten as:

Ξ
(k)
t (B) ◦Θt(B) =

k−1∑
r=0

ξ(t, t− r)Br ◦

(
1 +

q∑
l=1

θl(t)B
l

)
.

Multiplying the two polynomials (using the properties of ‘◦’), and collecting terms with the same powers
of the backshift operator, the right-hand side of the above equation (separated into two parts) gives:
i) for powers from zero up to k − 1:

ξ(t, t) + [ξ(t, t− 1) + ξ(t, t)θ1(t)]B + · · ·+
[ξ(t, s+ 2) + ξ(t, s+ 3)θ1(s+ 3) + · · ·+ ξ(t, s+ 2 + q)θq(s+ 2 + q)]Bk−2

+ [ξ(t, s+ 1) + ξ(t, s+ 2)θ1(s+ 2) + · · ·+ ξ(t, s+ 1 + q)θq(s+ 1 + q)]Bk−1.

On account of eq. (E.8) the latter summation is condensed to
∑k−1
r=0 ξq(t, t− r)Br.

ii) for powers from k up to k + q − 1:

[ξ(t, s+ 1)θ1(s+ 1) + · · ·+ ξ(t, s+ q)θq(s+ q)]Bk

+ [ξ(t, s+ 1)θ2(s+ 1) + · · ·+ ξ(t, s− 1 + q)θq(s− 1 + q)]Bk+1 + · · ·+
[ξ(t, s+ 1)θq−1(s+ 1) + ξ(t, s+ 2)θq(s+ 2)]Bk−2+q + ξ(t, s+ 1)θq(s+ 1)Bk−1+q.

In view of eq. (12) the latter summation is condensed to
∑k−1+q
r=k ξs,q(t, t − r)Br. Adding the two

parts/summations we obtain

Ξ
(k)
t (B) ◦Θt(B) =

k−1∑
r=0

ξq(t, t− r)Br +

k−1+q∑
r=k

ξs,q(t, t− r)Br
eq. ( 29)

= Ξ
(k)
t,q (B),

as claimed.
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