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Abstract 

In this study, we examine the influence of the COVID-19 pandemic on stock market contagion. 

Empirical analysis is conducted on six major stock markets using a wavelet-copula GARCH approach 

to account for both the time and the frequency aspects of stock market correlation. We find strong 

evidence of contagion in the stock markets under consideration during the COVID-19 pandemic. 
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1. Introduction 

The present study looks for fresh insights into the extent to which stock markets have been affected 

by the COVID-19 crisis, asking whether the apparent market transmission is actually the effect of 

contagion or interdependence. 

To understand the transmission of shocks across stock markets, a two-step investigation has been 

conducted. In the first step, we analyse the wavelet spectrum for the return series using wavelet 

multiresolution decomposition. The advantage of such decomposition is that it enables the data analysis 

to take place at equally spaced intervals (see, for example, Crowley, 2007). In the second step, the 

filtered series has been used to measure the time-varying correlation dynamics. Motivated by the fact 

that different financial decisions occur at different frequencies, we examine stock market contagion at 

different frequencies and identify the timescales in which the benefits of portfolio diversification in 

terms of risk management are low. To this end, a novel wavelet-copula GARCH analysis is proposed 

to take into account both the time and the frequency aspects of stock market connectedness. Put 

differently, disentangling the behaviour of risk at the frequency level can capture its time-varying 

features. Consequently, both the evolving exposure to risk and the risks faced by short- and long-term 

investors can be distinguished and measured simultaneously. 

The remainder of this study is organized as follows. Section 2 outlines the methodology, whereas 

Section 3 presents the data and the empirical results. Finally, Section 4 contains some concluding 

remarks. 

2. Methodology 

2.1 The Maximum Overlap Discrete Wavelet Transform  

Wavelet is a well-established technique that decomposes a time series into small waves that begin 

at a specific point in time and end at a later specific point in time. A significant advantage of this 

approach is that frequency information can be obtained without losing the timescale dimension. Another 

advantage of wavelet analysis is that it does not need to assume anything about the data generating 

process for the return series under investigation (an insightful development of the theory and use of 

wavelets can be found in Percival and Walden, 2000; Gençay et al., 2001; Ramsey, 2002). 

Let the 𝐹(𝑡) ∈ 𝐿ଶ(𝑅) be a function (for 𝑡 = 1, … , 𝑇). The time dimensions can be expressed as a 

linear combination of a wavelet function 𝐹(𝑡) =  ∑ 𝑠௝,௞∅௝,௞(𝑡) +  ∑ 𝑑௝,௞௞௞ 𝜓௝,௞(𝑡) +  ∑ 𝑑௜ିଵ,௞௞ 𝜓௝ିଵ,௞(𝑡) + ⋯ + ∑ 𝑑ଵ,௞𝜓௝ିଵ,௞(𝑡),௞  (1) 

where the orthogonal basis functions  ∅௝,௞  and 𝜓௝,௞  are defined as  
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∅௝,௞ = ∅ቀ೟ష഍഍ ቁඥక   with ∫ ∅(𝑡)𝑑𝑡 = 1,       (2) 

 𝜓௝,௞ = టቀ೟ష഍ೖ഍ ቁඥక   with ∫ 𝜓(𝑡)𝑑𝑡 = 0.                   (3) 

The scale or the width of these functions is denoted by 𝜉 = 2௝, where 𝑗 and 𝑘 represent respectively 

the scale and translation parameters. Equation (2) presents the long-scale smooth components that are 

used to generate the scaling coefficients. Meanwhile, the differencing coefficients are generated the 

wavelets in Equation (3). The resulting multiscale decomposition in Equation (1) can be simplified as 𝐹(𝑡) = 𝑆௃ + 𝐷௃ + 𝐷௃ିଵ + ⋯ + 𝐷௝ + ⋯ + 𝐷ଵ ,      𝑗 = 1, … , 𝐽       (4) 

where 𝐷௝ is the 𝑗th level wavelet and 𝑆௃ represents the aggregated sum of variations at each detail of the 

scale.  

For the purpose of this study, the least asymmetric filter of length eight is taken to generate 

uncorrelated coefficients across scales. Further, the oscillation periods of 2–4, 4–8, 8–16, 16–32, 32–

64 and 64–128 days that corresponds to wavelet scales D1, D2, D3, D4, D5 and D6 respectively are 

obtained. These scale and wavelet coefficients are estimated using the maximum overlap discrete 

wavelet transform (MODWT).  

2.2 Copula-GARCH 

Non-linear dependence in high dimensional data may be modelled independently of the marginal 

distributions. A copula is an interesting approach often taken to link univariate models as a function of 

other variables as well as of its own lagged values (Joe, 1997; Nelsen, 2003). In the financial 

econometrics literature, authors have combined the copula functionwith GARCH models to model 

financial data in which the marginal time series that follows a usual time-varying process and the 

dependence structure between them is specified by a copula function. Such a combination as copula-

GARCH function offers an effective way of investigating the impact of certain joint stock-return 

realizations on the subsequent dependency of international markets (see, for example, Jondeau and 

Rockinger, 2002). 

For the p-dimensional random vector (𝑋) with 𝐹௜(𝑋௜) and 𝐻 defined marginal and joint distribution, 

respectively, a unique t-copula function 𝐶௧: [0,1]ఛ → [0,1] for a multivariate 𝑡 distribution with 

correlation matrix 𝜌 and 𝑣 degrees of freedom can be defined as  𝐶௧൫𝑥ଵ, … , 𝑥௣;  𝜌൯ = 𝑡௣,௩(𝑡௩ି ଵ(𝑥ଵ), … , 𝑡௩ି ଵ൫𝑥௣൯),                                                               (5) 
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𝐶௧ =  ∫ … ௧షభ(௫భ)ିஶ ∫ ௰ቀೡశ೙మ ቁ௰ቀೡమቁ(௩గ)೙మඥ|ఘ| ቀ 1 + ଵ௩ 𝑍்𝜌𝑍ቁି(ೡశ೙మ ) 𝑑𝑍ଵ … 𝑑𝑍௡.௧షభିஶ                            (6) 

Among different pair-copula families, Clayton’s is preferred for financial data since it allows for 

more asymmetric tail dependence in the negative tail than in the positive and is given by  

𝐶஼௟௔௬௧௢௡(𝑋ଵ, 𝑋ଶ) = ൫max൛𝑥ଵఏ + 𝑥ଶఏ − 1,0ൟ൯భഇ.                                                (7) 

For 𝜃 → ∞  the Clayton copula implies comonotonicity, and for 𝜃 →  0 it implies independence 

(for more details see, among others, Nikoloulopoulos et al., 2012).  

Having discussed the copula function, we are in a position to model the changes in the dependency 

structure between them. Suppose that the stock market return 𝑅௧ can be written as  𝑅௧ =  𝜇 + 𝜀௧;    ε୲ = Z୲ඥh୲ .                                                                 (8) 

Assume that each series 𝑌௜௧  follows the GJR GARCH (1,1) (see Glosten et al., 1993), represented by 

the expression 

𝜁௧ଶ = δ + 𝛼𝜀௧ଶ + 𝛾𝜀௧ିଵଶ 𝑑௧ିଵ + 𝛽 h୲ିଵ,                                                                  (9) 

where (𝛼) and (𝛽) measures the size effect and persistence of the shocks on volatility, while the sign 

effect is given by (𝛾). The impact of the shocks (news) is determined by the dummy such that 𝑑௧ = 1 

if 𝜀௧ < 0 (bad news) and 𝑑௧ = 1 otherwise. 

The marginal distribution function for each index is, therefore, defined as 𝐹௜(𝑋௜) = 𝐹ఌ௜( ௒೔ඥ୦೔). Further, 

the joint density, 𝑓(𝑌௧), is then specified in terms of marginal distributions for the error terms, 𝜖௧,  

combined with a copula function in Equation 5; that is  𝑓(𝑌ଵ, … , 𝑌୮) =  𝐶൫𝑥ଵ, … , 𝑥௣;  𝜌൯ ∏ ଵඥ୦೔ 𝐹௜(𝑋௜)௣ଵ .                           (10)  

The distribution function as well as the correlation matrix can then be obtained in the process of a 

model built by solving the maximum likelihood estimator of the parameter vector of each market return. 

3. Data and Empirical Results 

The data considered in this study are daily closing equity market price indices for six markets. In 

particular, we consider the Composite Index (S&P 500) for the United States, the S&P TSX Composite 

Index, (S&P/TSX) for Canada, the FTSE 100 Price Index (FTSE100) for the UK, the  Nikkei 225 Stock 

Average Index (N225) for Japan, the Hang Seng index (HIS) for Hong Kong and the Shanghai Share 
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Index (SSE) for China. The HIS index enables us to investigate stock market contagion between 

Mainland China’s markets and Honk Kong. Similarly, the S&P/TSX Composite Index is considered to 

investigate spill over effects in the North American region. Note that that the U.S. market is used as a 

numeral for the correlations. Therefore, below we consider the level of co-movement between the 

S&P500 and the stock markets listed above.  

The sample covers the period from 1st January 2014 to 8th April 2020. Following the literature, 

stock returns are calculated as the difference between the logarithm of the price index. Further, the 

missing data arising from holidays and special events are bypassed by assuming them to equal the 

average of the recorded previous price and the next one.   

As mentioned in the introduction, in the first step of the analyses, the maximal overlap discrete 

wavelet transforms (MODWT) is undertaken to obtain the multiscale decomposition of the return series 

under investigation. The return series are decomposed into different periodicity series, ranging from the 

shortest-periodicity series to the longest. In Figure 1-6, the WLMC maps are presented in a time-

frequency domain on a scale by scale basis. For ease of interpretation, the left-hand horizontal axis is 

transformed to show the number of days in which the scale moves from low to high wavelengths. The 

heat maps indicate the increasing strength of the correlation among the stock markets indexes as they 

move from blue (lowest correlation) to red (highest correlation).  

From Figures 1-6, there is clear evidence of long-run interdependence (at low frequency) between 

the U.S. stock market and the other markets before the start of the COVID-19 pandemic in December 

2019. To be specific, starting with the correlation between the U.S. stock market and the U.K. market, 

Figure 1 indicates no sign of co-movement for the first 8-16 days, but correlation increases in the time 

scale D6 between January 2014 and June 2017.  Similarly, in Figure 2, it appears that the U.S. and Japan 

stock markets have stronger long-term co-movement (at low frequency) since once again, we see the 

red colour in the D6 time scale. As for the correlation between the U.S. and China, weak correlation 

can be seen for the time scale D3 and below, as highlighted in Figure 3. Signs of contagion between the 

U.S. and Hong Kong stock markets can be observed in Figure 4, where shock events in the S&P 500 

directly diffused to HIS. The correlation between the stock markets in U.S. and Canada, shown in Figure 

5, indicates persistent co-movements between these financial markets since Canada has close 

commercial and financial ties to the US economy. 

Once the impact of COVID-19 pandemic was felt worldwide, financial assets were immediately 

repriced. Panic spilled over all the major financial markets as indicated by the wavelet power of pairwise 

analysis analysed at lower scale brackets. Put differently, the co-movements (either positive or negative) 

seem to have been stronger during the COVID-19 pandemic in most of the series under consideration. 

Specifically, with the exception of Japan, the financial markets under consideration showed significant 
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dominant signs of co-movement at periods of high frequency up to 2-4 days in length. In the case of the 

correlation UK and Canada, the market contagion appears to be even stronger, as indicated by the red 

colour in Figures 1 and 5.   

 

 

Figure 1: Wavelet multiple correlation between S&P500 and FT100 stock markets returns. 

 

 
Figure 2: Wavelet multiple correlation between S&P500 and N225 stock markets returns. 

 

 



7 
 

 
Figure 3: Wavelet multiple correlation between S&P500 and HIS stock markets returns. 

 

 

 

Figure 4: Wavelet multiple correlation between S&P500 and SSE stock markets returns. 
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Figure 5: Wavelet multiple correlation between S&P500 and S&P/TSX stock markets returns. 

 

 

Once the filtered series were extracted in the second step of our analysis, appropriate univariate 

GARCH model was estimated for the six stochastic processes at hand. Comparing a number of 

GARCH-type models, we concluded that the specification that best fitted the data under consideration 

was a GJR-GARCH model with a GHYP distribution for the innovation terms. § Table 1 reports the 

results of the copula-GARCH model for the pairwise dynamic correlation between the S&P500 index 

returns and the stock market returns for the other five countries considered in the scale frequencies D1-

D6 as defined in Equation (4).  

 

 Table 1. Copula-Wavelets correlation between the S&P500 and other stock markets. 
 D1 D2 D3 D4 D5 D6 

FTSE100 -0.133 -0.157 -0.413 -0.570 -0.818 0.769 
N225 -0.056 0.114 0.178 0.359 0.456 0.782 
SSE 0.062 0.067 0.041 -0.187 0.269 0.414 
HIS -0.144 0.186 -0.331 -0.407 0.431 0.584 

S&P/TSX 0.596 0.674 0.563 0.631 0.762 0.863 
Note: the table reports the copula-wavelet correlations for oscillation periods 2-4, 4-8, 8-16, 16-32, 32-64 and 64-128 days 
defined as D1, D2, D3, D4, D5 and D6, respectively between the U.S. and the other stock markets under consideration.     

 
§ Note that the estimation results for the six GJR-GARCH models are not reported here, but they are available 

upon request.     
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In Table 1, it appears that the correlations substantially increase when the timescale increases. In 

this regard, from columns two, three and four it seems that the tail dependence is relatively weak in the 

short-run (time scales D1, D2 and D3) and increased by each decomposition in the pre-crisis period (as 

noted above). For time scale D4, in column five, it appears that the correlations are higher for all of the 

markets. In particular, the stock returns can be divided into closely correlated markets (Canada and the 

U.K.) with correlation coefficients around 0.63 and 0.57, respectively. Moderately correlated markets 

(Japan and Hong Kong) with correlation coefficients 0.36 and 0.41, respectively and mildly correlated 

markets for those markets whose correlation was less than 0.20, as in China for example.  

From time scales D5 and D6, the differences in stock market interdependencies begin to show and 

are relatively high in D6. The U.K. and Canada have the highest correlation with the U.S., since the 

correlation is higher than 0.75 in these markets for the longest time brackets. Looking now at the 

remaining stock markets, also in this case the correlation increases with the time scale. For example, 

the correlation between the U.S. and Japan’s was approximately 0.50 in D5 and increases to 

approximately 0.80 in D6, whereas Hong Kong’s correlation between 0.411 and 0.584. China’s 

correlation varied substantially and was eventually slightly lower than Japan’s, at approximately 0.40 

in D6. 

Like the heatmaps in the WLMC map shown previously, these pictures changed during the COVID-

19 pandemic. In detail, nearly all the assets reached a new level of asymmetric tail dependency up to 

scale 2 during this health crisis. The developed markets (UK and Canada) were the most closely 

correlated, with the values being close to 0.90. Similarly, markets in Hong Kong and China were 

approximately 0.40. Japan’s correlation varied substantially and was eventually slightly lower than that 

of Chinese stock market.  

Taken together, these results provide some support for the potential benefits of portfolio 

diversification. In this case, most of the markets (except for Canadian stock market) offered the best 

diversification benefits to a level of 4-8 days for U.S. short-term investors, since these markets generally 

have low correlations with the U.S. The benefits, however, disappear as the timescale begins to increase. 

As is evident from the table, the developed markets (the UK and Canada) follow the long-term trends 

of the U.S. more closely than the markets in other countries do. Nonetheless, China’s correlation with 

the U.S. stays rather low for all of the tested timescales. 
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4. Conclusion  

In this study we investigate the contagion effects between US stock market and five other major 

markets in the world focusing in particular on the COVID-19 pandemic outbreak between December 

1919 and April 2020. Analysing the wavelet spectrum, we find evidence of long-run interdependence 

(at low frequency) for most of the stock market indexes under consideration before the start of the 

COVID-19 pandemic in December 2019. Moreover, our findings highlight that, before December 2019, 

the correlations were largely dynamic as the timescale increased. Subsequently, strong evidence of 

contagion was detected in nearly all the stock markets as the pandemic crisis drove them to new levels 

of asymmetric tail dependency. 

Our findings highlight the advantage of using the time- and frequency-varying approaches as a tool 

for portfolio diversification during turmoil and calm periods. In our case, the diversification benefits 

for the developed stock markets vanished, but emerging markets, such as China’s, still provide fertile 

ground for international diversification.  
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