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Abstract

We analyze a two-sector stochastic economic growth model of green transition with
pollution externalities and foreign capital. The final good is produced by combining dirty
and clean inputs, with different implications on pollution accumulation. Pollution nega-
tively affects production capabilities and can be reduced by switching to the clean input.
The clean input is produced by using the dirty input and the foreign capital received (in the
form of dirty input). Random shocks make the effective economy’s ability to transition to
green activities highly uncertain, eventually undermining its economic development. Such
a setting gives rise to a dynamic system represented by a three dimensional affine iterated
function system. We show that the economy’s steady state is represented by an invariant
measure supported on a compact set, characterizing its fractal nature and showing that
its attractor may be a distorted Sierpiński tetrahedron.

Keywords: Development Aids, Economic Growth, Fractal Attractors, Green Transition,
Pollution
JEL Classification: C61, O41, Q56

1 Introduction

Since Boldrin and Montrucchio’s seminal work (1986), the analysis of complexity and chaos
in macroeconomic dynamics has received ever growing interest (Montrucchio, 1994; Nishimura
and Yano, 1995; Brock and Hommes, 1997). A large share of the literature has focused on
stochastic economic growth models showing that they may give rise to nontrivial dynamics
eventually converging to invariant measures supported on fractal sets, characterizing the prop-
erties of such invariant measures in terms of singularity and absolute continuity along with
those of the fractal features of the steady states (Montrucchio and Privileggi, 1999; Mitra et
al., 2003; Mitra and Privileggi, 2004, 2006, 2009). Most works focus on traditional one- or
two-sector growth models in which economic dynamics are entirely described by (physical and
human) capital accumulation and can be represented by a one or two-dimensional affine iter-
ated function systems (IFS) converging to singular measures supported on either the Cantor set
or the Sierpiński gasket (La Torre et al., 2011; Marsiglio, 2012; La Torre et al., 2015, 2018b).
Very few works extend the traditional growth framework to analyze also environmental and
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sustainability problems by accounting for pollution accumulation, showing that the support of
the invariant measure could even resemble the Barnsley’s fern (Privileggi and Marsiglio, 2013;
La Torre et al., 2018a). Due to the growing importance of environmental considerations for
the future prospects of economic development, in this paper we wish to contribute to this lat-
ter branch of the literature by analyzing a stochastic growth model of green transition in a
developing country to explore the fractal properties of the steady state of more sophisticated
economic growth models with environmental feedback effects.

Since polluting emissions in developing countries are expected to increase by more than 50%
in the next decades (Clarke et al., 2009; IEA, 2010), in order to ensure the sustainability of the
world economy it is essential that industrialized countries and international organizations pro-
mote and support a process of green transition in poor countries. For example, in recent climate
change negotiations industrialized countries have committed to mobilize a substantial amount
of resources to address the needs of developing countries and favor mitigation and adaptation
policies through the means of development aid and foreign direct investments. However, despite
the rhetoric, reality is much different. The development aid effectively in place in developing
countries are still to a large extent devoted to projects financing traditional economic activi-
ties, such as transportation, building infrastructure and mining, and only a very limited part is
employed in green activities, such as favoring access to clean water, biodiversity, CO2 reduction
and soil conservation (Hicks et al., 2008). The effects of foreign direct investment are even
more problematic: as extensively discussed in the pollution haven literature, regulation and
distorted incentives in industrialized countries may push local firms to relocate their activities
in poor economies exporting dirty technologies and increasing emissions in such countries (Mani
and Wheeler, 1998; Copeland and Taylor, 2004). Therefore, future development prospects in
developing countries are highly uncertain, and as a consequence so are those of the entire world
economy. In order to consider the effects of development aid and foreign direct investments
on the economic and environmental performance of developing countries we extend traditional
growth models to account for foreign capital.

Specifically, we focus on a developing country and its transition towards green activities, and
in particular on the effects of the foreign capital it receives, inclusive of development aid and
foreign direct investments, on such a transitional process. We consider a two-sector economy
in which one sector produces the final consumption good while the other a clean production
factor. The final good is produced by combining two perfectly substitutable inputs, a dirty
and a clean input, which differ only in their environmental implications: while the dirty input
generates polluting emissions deteriorating environmental quality, the clean input is completely
emissions-free. In particular, the use of the dirty input in the production process contributes to
accumulate pollution, which in turn negatively affects the economy’s ability to produce the final
good through a production externality. However, the dirty input can also be used to produce
the clean input which by being totally environmental friendly does not lead to undesirable side-
effects on production capabilities. Therefore, a share of the dirty input, along with a share of
the foreign capital received (in the form of dirty input), is allocated to produce the clean input
lowering thus environmental footprints. The amount of foreign capital received, its productivity
in the production of the clean input, and its environmental efficiency are subject to random
shocks due to political, technological and environmental issues. The existence of such shocks
make the effective economy’s ability to transition to green activities highly uncertain, eventually
undermining its entire economic development. Such a setting gives rise to a dynamic system
which can be described by the means of a three dimensional affine IFS, which by borrowing from
the mathematics literature (see, among others, Hutchinson, 1981; Barnsley and Demko, 1985;
Barnsley et al., 1986; Vrscay, 1991; Barnsley, 1993; Diaconis and Freedman, 1999; Mendivil
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and Vrscay, 2002a, 2002b; Ngai and Wang, 2005; La Torre et al., 2006; Kunze et al. 2007;
Niu and Xi, 2007; Barnsley et al., 2008; La Torre and Vrscay, 2009; La Torre et al., 2009;
Kunze et al., 2012), can be analyzed to characterize its steady state outcome along with its
fractal nature. We show that, under a suitable parameter configuration, the attractor of such a
three dimensional IFS is a distorted copy of the Sierpiński tetrahedron and we establish a novel
mathematical result that simplifies the process of establishing whether the associated invariant
measure is singular. To the best of our knowledge, no other paper has thus far explored the
possibility that the fractal attractor of economic growth models may have a three dimensional
representation.

The paper proceeds as follows. Section 2 introduces our framework which consists of a
two-sector stochastic growth model of green transition with pollution externalities and foreign
capital, showing that the economy’s steady state is represented by an invariant measure sup-
ported on a compact set. Section 3 briefly reviews the theory on IFS which we need in our
analysis. Section 4 recalls the characteristics of the classical Sierpiński tetrahedron. Section 5
shows that, under some conditions on parameters, the fractal attractor of our dynamic system
may resemble a (possibly highly) distorted of copy of the classical Sierpiński tetrahedron. Sec-
tion 6 presents concluding remarks and proposes directions for future research. Technicalities
are postponed to the Appendix.

2 The Model

We analyze a two-sector model of economic growth with environmental feedback effects, and
for the sake of simplicity we consider a purely dynamic setting abstracting completely from
agents’ optimization. The unique final consumption good, yt, is produced through a linear
production function combining two perfectly substitutable inputs, a dirty input (i.e., capital
or fossil fuels), kt, and a clean input (i.e., renewable energy), gt. A certain share 0 < u < 1
of the dirty input is invested to produce the clean input, thus only the remaining share 1 − u

is devoted to the production of the consumable good. Therefore, the final output is produced
according to the following technology: yt = a (1− u) kt + bgt, where a > 0 and b > 0 measure
the productivity of the two factors. The use of the dirty input in production activities generates
emissions which increase pollution, pt, which in turn reduces production by a random factor
βt ≥ 0 via an additive productivity shock. Net (of pollution externality) output is thus given
by: ỹt = yt − βtpt. The clean input is produced according to a linear production technology
employing only a given share of the dirty input as follows: xt = dukt, where xt is the newly
produced quantity and d > 0 quantifies the productivity in the clean input sector. Foreign
capital, ft, inclusive of development aid and foreign direct investments, is received through a
transfer of the dirty input from industrialized countries. A share 0 < v < 1 of such foreign
(dirty) input is devoted to the accumulation of the dirty input and the remaining share 1 − v

to produce the clean input with random productivity et ≥ 0.
The dirty input accumulates due to saving and foreign capital while is reduced by depre-

ciation as follows: kt+1 = sỹt + vft + (1− δk) kt, where 0 < s < 1 is the saving rate, ỹt net
output, and δk > 0 the dirty input depreciation rate. Similarly, the clean input accumulates
due to the devoted investment and foreign capital while it is reduced by depreciation as follows:
gt+1 = xt+(1− v) etft+(1− δg) gt, where δg > 0 is the clean input depreciation rate. Pollution
increases with the emissions associated with the use of dirty input and foreign capital in the
production process, and decreases due to the ability of the natural ecosystem to absorb pollu-
tion as follows: pt+1 = γtkt + µtft + (1− η) pt, where γt ≥ 0 and µt ≥ 0 quantify the random
environmental inefficiency associated with the use of the dirty input and foreign capital respec-
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tively, and η > 0 is the natural decay rate of pollution. Therefore, given the initial conditions
k0, g0 and p0, our model economy can be described by the following system of three difference
equations:







kt+1 = s [a (1− u) kt + bgt − βtpt] + (1− δk) kt + vft
gt+1 = dukt + (1− δg) gt + (1− v) etft
pt+1 = γtkt + µtft + (1− η) pt

(1)

Some comments are needed in order to clarify our setting and assumptions. (i) The linearity
of the output production function in the dirty and clean inputs implies that the two production
factors are perfectly substitutable, and thus the economy is able to produce a positive amount of
the consumable good by employing only one of two inputs. We may think of this as a scenario in
which the production of the final good requires electricity, which may be alternatively generated
through fossil fuels or renewable sources. (ii) The possibility to produce the clean input by
employing only the dirty input builds on this type of interpretation allowing thus our model to
describe the transition from fossil fuels to renewable energy. For example, polluting machines
can be used to set up photovoltaic plans allowing to produce clean energy which can be used
to produce consumable goods reducing polluting emissions. (iii) The assumption that foreign
capital takes the form of the dirty input is consistent with empirical evidence regarding the
functioning of developing aid and foreign direct investments in the real world (Hicks et al.,
2008; Mani and Wheeler, 1998). (iv) The assumptions that pollution negatively affects only
the production of the final good and that the clean input is entirely emissions-free are mere
simplifying hypotheses. Relaxing them to allow for a detrimental effect of pollution also in
the clean sector and for the generation of emissions also with the use of the clean input in the
production process will not modify our main conclusions.

To emphasize the affine features of system (1) it is convenient to isolate all three variables,
kt, gt and pt, from their coefficients and from the additive constants and rewrite it as follows:







kt+1 = s [a (1− u) + 1− δk] kt + sbgt − sβtpt + vft
gt+1 = dukt + (1− δg) gt + (1− v) etft
pt+1 = γtkt + (1− η) pt + µtft.

(2)

We assume that some of the parameters in (2) represent random exogenous shocks, so that
they can have different values according to different realizations of such shocks. Specifically,
we shall assume that the economy is affected by N exogenous shocks determining the values of
some of the parameters ft, et, µt, βt and γt. The stochastic process generating the sequence of
shocks will be assumed to be i.i.d. so that each realization will occur with a constant probability
pi satisfying 0 < pi < 1, for i = 1, . . . , N , and such that

∑N

i=1 pi = 1 (see La Torre et al., 2019,
for a generalization in which probabilities are state dependent). Hence, the parameter vector
(ft, et, µt, βt, γt) will take on N values (fi, ei, µi, βi, γi), for i = 1, . . . , N , independently on time
t. Under these assumptions the dynamics described by (2) represent what is often referred to
as an iterated function system with probabilities (IFSP) and turn out to be more conveniently
handled in matrix form according to:





kt+1

gt+1

pt+1



 =





akki a
kg
i a

kp
i

a
gk
i a

gg
i a

gp
i

a
pk
i a

pg
i a

pp
i









kt
gt
pt



+





zki
z
g
i

z
p
i



 for i = 1, . . . , N, (3)

where the matrix’s coefficients are akki ≡ akk = s [a (1− u) + 1− δk], a
kg
i ≡ akg = sb, akpi =

−sβi, a
gk
i ≡ agk = du, aggi ≡ agg = (1− δg), a

gp
i ≡ agp = 0, apki = γi, a

pg
i ≡ apg = 0 and

a
pp
i ≡ app = (1− η), while the additive constants are zki = vfi, z

g
i = (1− v) eifi and z

p
i = µifi.
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When the dynamics is stochastic and evolve according to a law of the type defined in (3) the
long-run equilibrium steady state ceases to be a fixed point in the common sense and becomes
an invariant measure supported on some compact set called attractor (Mitra et al., 2003; La
Torre et al., 2015).

3 Mathematical Preliminaries

We now briefly review some well known results in the IFSP literature, and specifically we discuss
the main definitions and results on IFSP, their attractor, the invariant measure supported on
it and its singularity vs. absolute continuity. A huge literature is available on such topics; the
reader is referred to, among others, Hutchinson (1981), Barnsley and Demko (1985), Barnsley
et al. (1986), Vrscay (1991), Barnsley (1993), Diaconis and Freedman (1999), Mendivil and
Vrscay (2002a, 2002b), Ngai and Wang (2005), La Torre et al. (2006), Kunze et al. (2007),
Niu and Xi (2007), Barnsley et al. (2008), La Torre and Vrscay (2009), La Torre et al. (2009).
For a recent comprehensive and detailed treatment see Kunze et al. (2012). We also present
an original extension of these basic results (Corollary 3) that will be useful for our subsequent
analysis.

3.1 Iterated Function Systems

Let (X, d) denote a compact metric space. An N -map Iterated Function System (IFS) on X,
w = {w1, . . . , wN}, consists of N contraction mappings on X, i.e., wi : X → X, i = 1, · · · , N ,
with contraction factors ci ∈ [0, 1) (see Barnsley, 1993; Hutchinson, 1981; Barnsley et al., 1986;
Kunze et al., 2012). Associated with an N -map IFS one can define a set-valued mapping ŵ on
the space H ([a, b]) of nonempty compact subsets of X as follows:

ŵ (S) :=
N
⋃

i=1

wi (S) , S ∈ H ([a, b]) . (4)

The following two results state a convergence property of an N -map IFS towards its at-
tractor. More properties and results can be found in Barnsley (1993), Hutchinson (1981), and
Kunze et al. (2012).

Theorem 1 (Hutchinson, 1981) For A,B ∈ H (X),

h (ŵ (A) , ŵ (B)) ≤ ch (A,B) where c = max
1≤i≤N

ci < 1

and h denotes the Hausdorff metric on H (X).

Corollary 1 (Hutchinson, 1981) There exists a unique set A ∈ H ([a, b]), the attractor of

the IFS w, such that

A = ŵ (A) =
N
⋃

i=1

wi (A) .

Moreover, for any B ∈ H ([a, b]), h (A, ŵt (B)) → 0 as t → ∞.
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3.2 Iterated Function Systems with Probabilities and their Invariant
Measure

An N -map Iterated Function System with Probabilities (IFSP) (w,p) is an N -map IFS w with
associated probabilities p = {p1, . . . , pN} satisfying 0 < pi < 1, for i = 1, . . . , N , and such that
∑N

i=1 pi = 1.
Let M (X) denote the set of probability measures on (Borel subsets of) X and dMK the

Monge-Kantorovich distance on this space: For µ, ν ∈ M (X), with Monge-Kantorovich metric,

dMK (µ, ν) = sup
f∈Lip1(X)

[∫

f dµ−

∫

f d ν

]

.

where Lip1 (X) = {f : X → R | |f (x)− f (y)| ≤ d (x, y)}. The metric space (M (X) , dMK) is
complete (Barnsley, 1993; Hutchinson, 1981; Kunze et al., 2012).

The Markov operator associated with an N -map IFSP is a mapping M : M → M, defined
as follows: For any µ ∈ M (X), and for any measurable set S ⊂ X, define a measure ν = Mµ

as:

ν (S) = (Mµ) (S) =
N
∑

i=1

piµ
[

w−1
i (S)

]

.

The following results show that the Markov operator has a unique invariant measure µ̄ and
it is globally attracting.

Theorem 2 (Hutchinson, 1981) For µ, ν ∈ M (X),

dMK (Mµ,Mν) ≤ cdMK (µ, ν) .

Corollary 2 (Hutchinson, 1981) There exists a unique measure µ̄ ∈ M (X), the invariant
measure of the IFSP (w,p), such that

µ̄ (S) = (Mµ̄) (S) =
N
∑

i=1

piµ̄
(

w−1
i (S)

)

.

Moreover, for any ν ∈ M (X), dMK (µ̄,M tν) → 0 as t → ∞.

Theorem 3 (Hutchinson, 1981) The support of the invariant measure µ̄ of an N -map IFSP

(w,p) is the attractor A of the IFS w, i.e.,

supp µ̄ = A.

3.3 Singular Invariant Measures

When a IFSP (w,p) describes the dynamics of an economy the invariant measure µ̄ associated
to (w,p) can be interpreted as the stochastic long-run equilibrium (steady state) of such an
economy. If X = R

n the invariant measure µ̄ can be either absolutely continuous or singu-

lar with respect to the n-dimensional Lebesgue measure, according to the following general
definitions.

Definition 1 Two positive measures µ and ν defined on a measurable space (Ω,Σ) are called

singular if there exist two disjoint sets A and B in Σ whose union is Ω such that µ is zero on

all measurable subsets of B while ν is zero on all measurable subsets of A. This is denoted by

µ ⊥ ν.
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Definition 2 If µ and ν are two measures defined on a measurable space (Ω,Σ), we say that

µ is absolutely continuous with respect to ν if µ (A) = 0 for any A ∈ Σ such that ν (A) = 0.
The absolute continuity of µ with respect to ν is denoted by µ ≪ ν.

This distinction is crucial as in the latter case, whenever Ω = X = R
n, Σ consists of the Borel

subsets of Rn and ν is the n-dimensional Lebesgue measure, µ̄ can be represented by a density
depending on some parameters, while in the former case there is no simple way to represent it—
one actually has to list all its values on every point in its support. The mathematical literature
so far has dealt with this issue by trying to characterize absolute continuity vs. singularity of µ̄
in terms of the parameters characterizing the IFS (w,p) (see, e.g., Mitra et al., 2003; La Torre
et al., 2015, 2018b).

We now focus our attention on the case of affine IFSP on X = R
n. La Torre et al. (2018b)

has proved the following theorem that will allow us to study possible singularity properties of
the invariant measure in the examples of the following section 5 built by means of IFSP in
X = R

3. In what follows let wi (x) = Aix + bi, where Ai are (n× n) matrices and bi ∈ R
n,

for i = 1, 2, . . . , N , in a fashion similar to the expression in (3), and pi be the associated
probabilities. The following result states a sufficient condition for the singularity of the invariant
measure of an affine IFSP.

Theorem 4 (La Torre et al., 2018b) Let (w,p) = {w1, w2, . . . , wN ; p1, p2, ..., pN} be an affine

IFSP on R
n having maps wi : R

n → R
n defined by wi (x) = Aix + bi, for i = 1, 2, . . . , N , and

let p = (p1, p2, . . . , pN) be the associated probability weights. If

|det (A1)|
p1 |det (A2)|

p2 · · · |det (AN)|
pN < p

p1
1 p

p2
2 · · · ppNN (5)

then the invariant measure µ̄ defined by (w,p) is singular.

The following corollary provides a lower bound for the RHS in (5) that will be useful in the
subsequent sections, where we will be dealing with three-dimensional attractors and invariant
measures supported on them.

Corollary 3 The IFSP (w,p) considered in Theorem 4 has a singular invariant measure µ̄

whenever

|det (A1)|
p1 |det (A2)|

p2 · · · |det (AN)|
pN ≤ e−

N

e ≃ (0.6922)N . (6)

Proof. See the Appendix.

The lower bound in the RHS of condition (6) is a rough estimate; however it will be enough
to establish singularity of all the invariant measures we will obtain in our simulations in the
next sections.

4 The Standard Sierpiński Tetrahedron

As our goal is to build three-dimensional attractors that resemble the well known Sierpiński
tetrahedron by means of the affine IFS (3), before tackling such a construction we first recall
how the tetrahedron can be obtained from an affine IFS. Abstracting from probabilities, the
IFS that generates the Sierpiński tetrahedron in R

3 consists of N = 4 affine maps wi : R
3 → R

3

that have the following matrix representation:




kt+1

gt+1

pt+1



 = wi









kt
gt
pt







 =





akki a
kg
i a

kp
i

a
gk
i a

gg
i a

gp
i

a
pk
i a

pg
i a

pp
i









kt
gt
pt



+





zki
z
g
i

z
p
i



 for i = 1, . . . , 4, (7)
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where we use the (kt, gt, pt) notation for the variables consistent with our economic model
defined by (3). The standard Sierpiński tetrahedron is characterized by six edges of size 1 and

has its base on the Sierpiński triangle of vertices (0, 0), (1, 0) and
(

1
2
,
√
3
2

)

, so that its vertices in

R
3 are (0, 0, 0), (1, 0, 0),

(

1
2
,
√
3
2
, 0
)

and
(

1
2
, 1√

12
,
√

2
3

)

. Table 1 reports the values for the matrix

coefficients and the vector of additive constants zki , z
g
i , z

p
i required by the IFS (7) to generate

it recursively. Specifically, the matrix is diagonal having all terms in its diagonal equal to 1
2

and 0 elsewhere, while the crucial parameters turn out to be the additive terms zki , z
g
i and z

p
i .

Clearly, under the parameterization of Table 1 the IFS (7) is a contraction.

i akki a
gg
i a

pp
i a

kg
i a

kp
i a

gk
i a

gp
i a

pk
i a

pg
i zki z

g
i z

p
i

1 1
2

1
2

1
2

0 0 0 0 0 0 0 0 0

2 1
2

1
2

1
2

0 0 0 0 0 0 1
2

0 0

3 1
2

1
2

1
2

0 0 0 0 0 0 1
4

√
3
4

0

4 1
2

1
2

1
2

0 0 0 0 0 0 1
4

1
4
√
3

1√
6

Table 1: parameters’ values for the N = 4 maps wi characterizing the IFS generating the standard
Sierpiński tetrahedron.

The standard Sierpiński tetrahedron, however, does not provide an appropriate reference
point for our economic dynamics described by (3) because for values of the variables (kt, gt, pt) in
a neighborhood of the vertex (0, 0, 0)—i.e., the origin—a value sufficiently large for parameters
s and βi might push the capital into negative territory. Therefore, we shall consider the same
tetrahedron defined by the parameterization in Table 1 but shifted inside the positive orthant
by the constant 1

2
with respect to all three variables kt, gt and pt: specifically, we will focus

on the tetrahedron with vertices
(

1
2
, 1
2
, 1
2

)

,
(

3
2
, 1
2
, 1
2

)

,
(

1,
√
3+1
2

, 1
2

)

and
(

1,
√
3+1
2
√
3
,
√
3+2

√
2

2
√
3

)

having

parameter values listed in Table 2, where the slopes—the contraction factors—of the maps wi

are the same as in Table 1 and only the additive constants zki , z
g
i and z

p
i change their values.

i akki a
gg
i a

pp
i a

kg
i a

kp
i a

gk
i a

gp
i a

pk
i a

pg
i zki z

g
i z

p
i

1 1
2

1
2

1
2

0 0 0 0 0 0 1
4

1
4

1
4

2 1
2

1
2

1
2

0 0 0 0 0 0 3
4

1
4

1
4

3 1
2

1
2

1
2

0 0 0 0 0 0 1
2

√
3+1
4

1
4

4 1
2

1
2

1
2

0 0 0 0 0 0 1
2

√
3+1
4
√
3

√
3+2

√
2

4
√
3

Table 2: parameters’ values for the N = 4 maps wi characterizing the IFS generating a Sierpiński
tetrahedron shifted inside the positive orthant.

It is well known that the standard Sierpiński tetrahedron has Hausdorff dimension given
by ln 4

ln 2
= 2; that is, it is a three-dimensional object having the same consistency of a surface.

In fact, if all points are projected onto a plane that is parallel to two of the outer edges,
they exactly fill a square of side length 1√

2
without overlap. Moreover, without making any

assumption on the probability vector (p1, p2, ..., p4) to be associated to the maps wi defined in
(7) for the parameters’ values provided in both Tables 1 and 2 so to get a full IFSP, we can
directly apply Corollary 3 to establish that the invariant measure µ̄ generated by any IFSP
as in (7) is always singular, for any choice on the probabilities p1, p2, ..., p4. To see this, note
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that the determinant of the matrices Ai in (7) are the same for all i = 1, ..., 4 and equal to

det (Ai) ≡ det (A) =
(

1
2

)3
= 1

8
so that condition (6) boils down to

|det (A1)|
p1 |det (A2)|

p2 · · · |det (A4)|
p4 =

(

1

8

)p1+p2+···+p4

=
1

8
= 0.125 < e−

4

e ≃ 0.2296 (8)

and the singularity property is established for any probability vector (p1, p2, ..., p4).
By exploiting the “transform” routine in Maple, which is capable of transforming three-

dimensional graphic objects in R
3, we built a simple procedure to approximate the standard

Sierpiński tetrahedron by iterating the set-valued map defined in (4). Our procedure produces
4 modified copies of any geometric object in R

3 recognizable by Maple by applying the trans-
formation through the N = 4 maps defined in (7) according to operator (4). Figure 1 plots the
first 6 iterations of operator (4) according to such a procedure starting from the full tetrahedron

with vertices
(

1
2
, 1
2
, 1
2

)

,
(

3
2
, 1
2
, 1
2

)

,
(

1,
√
3+1
2

, 1
2

)

and
(

1,
√
3+1
2
√
3
,
√
3+2

√
2

2
√
3

)

.
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Figure 1: first 6 iterations of our algorithm to approximate the Sierpiński tetrahedron starting

from the full tetrahedron with vertices
(

1
2 ,

1
2 ,

1
2

)

,
(

3
2 ,

1
2 ,

1
2

)

,
(

1,
√
3+1
2 , 12

)

and
(

1,
√
3+1
2
√
3
,
√
3+2

√
2

2
√
3

)

.

5 Sierpiński-Tetrahedron-Like Attractors

We now exploit the construction behind the standard Sierpiński tetrahedron presented in the
previous section to build an IFS that embeds the assumptions of the economic model described
in Section 2 and turns out to be a version of the IFS (7)—with parameter values slightly
different from those in Table 2—capable of generating a distorted version of the Sierpiński
tetrahedron as the asymptotic attractor of our model economy. The striking difference between
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the IFS (2)—or (3)—and the IFS (7) with parameters defined in Table 2 is the presence of some
mixed nonzero multiplicative coefficients in the matrix in place of the zeros featured by Table
2. We will keep such nonzero values small in order to build affine IFS that generate dynamics
somewhat resembling those required to obtain the Sierpiński tetrahedron as an attractor.

We pursue such a goal through two examples characterized by opposite approaches. In the
first one, after setting parameters βi, γi, s, a, u, δg, η, δk and v arbitrarily, we will compute
the random additive constants zki , z

g
i and z

p
i in order to obtain exactly the vertices of the

(shifted) standard Sierpiński tetrahedron as the four fixed points of the four maps wi in the IFS
(7), and, finally, we will determine the unique values of the remaining parameters (fi, ei, µi)
compatible with these zki , z

g
i and z

p
i values. In the second example, on the contrary, we first set

all parameters βi, γi, s, a, u, δg, η, δk, v, fi, ei and µi arbitrarily, and next use such values to
evaluate the four (deterministic) fixed points associated to each map wi in (7), for i = 1, . . . , 4;
the latter will then be used as the vertices of the non-standard full tetrahedron to be employed
as initial geometric object for the iterations of operator (4) according to our Maple procedure.

5.1 Using the Standard Sierpiński Tetrahedron as Reference Point

In our first exercise we assume that the shocks on the final good production and on the envi-
ronmental inefficiency associated with the use of the dirty input are deterministic and constant
over time, i.e., we set

βi ≡ β =
1

5
and γi ≡ γ =

1

10
.

Moreover, we assume

s = a = u = δg = η =
1

2
and b = d =

1

5
,

which imply that the diagonal coefficients a
gg
i ≡ (1− δg) and a

pp
i ≡ (1− η) are both 1

2
, as

desired, while akki ≡ s [a (1− u) + 1− δk] =
1
2
as well whenever

δk =
5

8
.

Note that under such parameterization the mixed coefficients are kept small in absolute value,
as akgi ≡ sb = 1

10
, akpi ≡ −sβ = − 1

10
, agki ≡ du = 1

10
and a

pk
i ≡ γ = 1

10
, while still agpi = a

pg
i = 0.

In order to choose the values for the random additive constants zki , z
g
i and z

p
i in this first

example we set the steady state values (k∗
i , g

∗
i , p

∗
i ) of the N = 4 maps wi in the IFS to be the

vertices
(

1
2
, 1
2
, 1
2

)

,
(

3
2
, 1
2
, 1
2

)

,
(

1,
√
3+1
2

, 1
2

)

and
(

1,
√
3+1
2
√
3
,
√
3+2

√
2

2
√
3

)

of the full tetrahedron used as

initial set in the approximation of the fractal provided by Figure 1(g), which is generated by
the IFS defined by the parameters’ values in Table 2. In other words, we solve







k∗
i = akki k∗

i + a
kg
i g∗i + a

kp
i p∗i + zki

g∗i = a
gk
i k∗

i + a
gg
i g∗i + z

g
i

p∗i = a
pk
i k∗

i + a
pp
i p∗i + z

p
i

⇐⇒







zki = 1
2
k∗
i −

1
10
g∗i +

1
10
p∗i

z
g
i = − 1

10
k∗
i +

1
2
g∗i

z
p
i = − 1

10
k∗
i +

1
2
p∗i

with respect to zki , z
g
i and z

p
i for all steady state (the 4 tetrahedron vertices) values (k∗

i , g
∗
i , p

∗
i )

for i = 1, . . . , 4. The whole set of parameter values is reported in Table 3.
To conclude, we can choose any (constant) value for the deterministic parameter 0 < v < 1,

the share of foreign (dirty) input devoted to the accumulation of the dirty input, kt, and solve
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i akki a
gg
i a

pp
i a

kg
i a

kp
i a

gk
i a

gp
i a

pk
i a

pg
i zki z

g
i z

p
i

1 1
2

1
2

1
2

1
10

− 1
10

1
10

0 1
10

0 1
4

1
5

1
5

2 1
2

1
2

1
2

1
10

− 1
10

1
10

0 1
10

0 3
4

1
10

1
10

3 1
2

1
2

1
2

1
10

− 1
10

1
10

0 1
10

0 10−
√
3

20
3+5

√
3

20
3
20

4 1
2

1
2

1
2

1
10

− 1
10

1
10

0 1
10

0 0.5528 0.2943 0.5582

Table 3: parameters’ values for the N = 4 maps wi characterizing the IFS generating a distorted
Sierpiński tetrahedron starting from the standard tetrahedron shifted inside the positive orthant.

the system






vfi = zki
(1− v) etft = z

g
i

µtft = z
p
i

(9)

with respect to foreign capital, fi, its random productivity to produce the clean input, ei, and
the random environmental inefficiency associated with the use of foreign capital, µi, in each
random realization i = 1, . . . , 4 by using the

(

zki , z
g
i , z

p
i

)

values in the last three columns of Table
3. Following this approach we find 4 triples (fi, ei, µi), each corresponding to a realization of
the random shocks, for i = 1, . . . , 4. For example, by setting vi ≡ v = 1

3
, Table 4 lists the

corresponding (fi, ei, µi) values solving system (9) in each random realization i = 1, . . . , 4.

i fi ei µi

1 0.75 0.4 0.2667
2 2.25 0.0667 0.0444
3 1.242 0.7051 0.1209
4 1.6583 0.2662 0.3366

Table 4: values of the foreign capital, fi, its random productivity for the clean input, ei, and the
random environmental inefficiency associated with the use of foreign capital, µi, for v = 1

3 and
corresponding to each random shock realization i = 1, . . . , 4.

In this example the matrix of the affine maps wi in the IFS (7) is still constant through all
shocks configurations, although it is not diagonal anymore; specifically, according to the values
in Table 3:

Ai ≡ A =







1
2

1
10

− 1
10

1
10

1
2

0
1
10

0 1
2






.

Therefore, again without making any assumption on the probability vector (p1, p2, ..., p4) to be
associated with the maps wi to get a full IFSP, we can directly apply Corollary 3 to establish
that the invariant measure µ̄ generated by any IFSP (7) is always singular, for any choice on
the probabilities p1, p2, ..., p4. In fact, the determinant of A above turns out to be the same as
that of the diagonal matrix that generates the standard Sierpiński tetrahedron, det (A) = 1

8
, so

that condition (6) still holds and coincides with (8).
Figure 2 plots the first 6 iterations of operator (4) according to our Maple procedure starting

from the full tetrahedron with vertices
(

1
2
, 1
2
, 1
2

)

,
(

3
2
, 1
2
, 1
2

)

,
(

1,
√
3+1
2

, 1
2

)

and
(

1,
√
3+1
2
√
3
,
√
3+2

√
2

2
√
3

)

.

The distorting effect of the nonzero mixed coefficients akgi , akpi , agki and a
pk
i is immediately seen

in Figure 2(b) already after the first iteration: the first four smaller tetrahedra generated by
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the transformation appear to wander around the vertices of the initial tetrahedron and are
being rotated counterclockwise. Moreover, by taking a perspective of the same prefractals
from a different angle, Figure 3 shows that the smaller tetrahedra arising after each iteration of
operator (4) become more flattened along the direction crossing the positive orthant of variables
(k, g) from north-west to south-east and stretched along the direction entering the same orthant
from the origin.
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Figure 2: first 6 iterations of our algorithm to approximate the distorted Sierpiński tetrahedron
generated by the IFS (7) with the coefficients’ values provided by Table 3 starting from the full

tetrahedron with vertices
(

1
2 ,

1
2 ,

1
2

)

,
(

3
2 ,

1
2 ,

1
2

)

,
(

1,
√
3+1
2 , 12

)

and
(

1,
√
3+1
2
√
3
,
√
3+2

√
2

2
√
3

)

.

5.2 A More General Example

In the second example we assume that parameters βi and γi are random, while parameter
fi, the amount of foreign capital, will be kept constant. Moreover, now we follow a different
approach as we first choose the values of the four random exogenous shocks configurations, that
is, the values of parameters (ei, µi, βi, γi), and next evaluate the four (deterministic) fixed points
associated with each map wi in (7), for i = 1, . . . , 4; the latter will be the vertices of the non-
standard full tetrahedron that will be employed as initial geometric object for the iterations of
operator (4) according to our Maple procedure. Specifically, we keep the same constant values
s = a = u = δg = η = 1

2
, b = d = 1

5
, δk = 5

8
, and vi ≡ v = 1

3
as in the first example, while

we now assume that fi is constant (deterministic) as well by setting fi ≡ f = 1. For the
random parameters representing the exogenous shocks realizations (ei, µi, βi, γi) we consider
four possible scenarios:
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Figure 3: same construction as in Figure 2 but with a view of the same prefractals from a different
perspective.

1. a ‘best possible world’ type scenario characterized by high productivity of foreign capital,
ei, and no damage both on production, βi, and on the environment, γi and µi, represented
by the parameter values reported in the first row of Table 5;

2. an intermediate scenario characterized by average productivity of foreign capital, ei, high
damage on production, βi, and average damage on the environment, γi and µi, represented
by the parameter values reported in the second row of Table 5;

3. another intermediate scenario characterized by average productivity of foreign capital,
ei, low damage on production, βi, and high damage on the environment, γi and µi,
represented by the parameter values reported in the third row of Table 5;

4. a catastrophic scenario characterized by low productivity of foreign capital, ei, together
with disruptive damage both on production, βi, and on the environment, γi and µi,
represented by the parameter values reported in the fourth row of Table 5.

i ei βi γi µi

1 1 0 0 0

2 1
2

1
5

1
10

1
10

3 1
2

1
10

1
5

1
5

4 1
4

1
2

1
2

1
2

Table 5: values of the foreign capital’s productivity, ei, damage on production due to pollution, βi,
impact of pollution on production, γi, and the environmental inefficiency associated with the use of

foreign capital, µi, corresponding to each random shock realization i = 1, . . . , 4.
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The parameters’ values listed in Table 5 lead to the values of the matrix coefficients and
additive constants for the IFS (7) reported in Table 6.

i akki a
gg
i a

pp
i a

kg
i a

kp
i a

gk
i a

gp
i a

pk
i a

pg
i zki z

g
i z

p
i

1 1
2

1
2

1
2

1
10

0 1
10

0 0 0 1
3

2
3

0

2 1
2

1
2

1
2

1
10

− 1
10

1
10

0 1
10

0 1
3

1
3

1
10

3 1
2

1
2

1
2

1
10

− 1
20

1
10

0 1
5

0 1
3

1
3

1
5

4 1
2

1
2

1
2

1
10

−1
4

1
10

0 1
2

0 1
3

1
6

1
2

Table 6: parameters’ values for the four maps wi characterizing the IFS (7) associated to the
random shocks’ values reported in Table 5.

In this example the matrix of the affine maps wi in the IFS (7) is not constant but it depends
on each shock realization; that is, according to the values in Table 6, there are four different
matrices:

A1 =







1
2

1
10

0
1
10

1
2

0

0 0 1
2






, A2 =







1
2

1
10

− 1
10

1
10

1
2

0
1
10

0 1
2






, A3 =







1
2

1
10

− 1
20

1
10

1
2

0
1
5

0 1
2






, A4 =







1
2

1
10

−1
4

1
10

1
2

0
1
2

0 1
2






.

However, Corollary 3 can still be applied to establish that, again without making any assump-
tion on the probability vector (p1, p2, ..., p4) to be associated with the maps wi to get a full
IFSP, the invariant measure µ̄ generated by the IFSP (7) having parameter values as in Ta-
ble 6 is singular, for any choice on the probabilities p1, p2, ..., p4. In fact, det (A1) = 0.12,
det (A2) = det (A3) = 0.125 and det (A4) = 0.1825, so that

|det (A1)|
p1 |det (A2)|

p2 |det (A3)|
p3 |det (A4)|

p4 = (0.12)p1 (0.125)p2 (0.125)p3 (0.1825)p4

< (0.1825)p1+p2+···+p4 = 0.1825 < e−
4

e ≃ 0.2296

and condition (6) holds also in this example.
Unlike the construction of the first example in which we have taken the vertices of the

standard Sierpiński tetrahedron shifted inside the positive orthant as the fixed points of the
four maps wi for the IFS and then calculated the maps’ parameter values which are consistent
with them, in this case we follow the opposite route and evaluate the fixed points of the four
maps wi defined by the parameter values already set in Table 6. Specifically, for i = 1, . . . , 4
we solve the four systems







(

akki − 1
)

k + a
kg
i g + a

kp
i p+ zki = 0

a
gk
i k + (aggi − 1) g + a

gp
i p+ z

g
i = 0

a
pk
i k + a

pg
i g + (appi − 1) p+ z

p
i = 0

with respect to k, g and p for the parameter values in Table 6 to find the four fixed points
(k∗

1, g
∗
1, p

∗
1) = (0.9722, 1.5278, 0), (k∗

2, g
∗
2, p

∗
2) = (0.76, 0.8187, 0.352),

(k∗
3, g

∗
3, p

∗
3) = (0.76, 0.8187, 0.704) and (k∗

4, g
∗
4, p

∗
4) = (0.1598, 0.3653, 1.1598).

Such four vector values are used to define the tetrahedron that will be taken as initial condi-
tion in the same Maple recursive procedure already used in previous attractor approximations.
The resulting first 6 iterations of operator (4) generated by our Maple procedure in this case
are shown in Figures 4 and 5, which report the same prefractals, only observed from different
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perspectives. Clearly, as the nonzero mixed matrix coefficients akgi , akpi , agki and a
pk
i now have

different values in different shock realizations, and in some scenarios are larger in magnitude
than in the previous example, the dynamics generated by this IFS produce a more complex
evolution pattern than that reported in Figures 2 and 3, as, after the tth iteration, the initial
tetrahedron, already exhibiting a sharp and streamlined shape itself, happens to be recursively
sliced into 4t smaller and thinner copies resembling ever sharper blades, some of which are also
being rotated along different directions.

0

1
p

1

1.5
g

0.2
0.4

0.6
0.8k

(a)

0

1
p

1

1.5
g

0.2
0.4

0.6
0.8k

(b)

0

1
p

1

1.5
g

0.2
0.4

0.6
0.8k

(c)

0

1
p

1

1.5
g

0.2
0.4

0.6
0.8k

(d)

0

1
p

1

1.5

g

0.2
0.4

0.6
0.8

k

(e)

0

1
p

1

1.5

g

0.2
0.4

0.6
0.8

k

(f)

0

1
p

1

1.5

g

0.2
0.4

0.6
0.8

k

(g)

Figure 4: first 6 iterations of our algorithm to approximate the attractor of the IFS (7) with the
coefficients’ values provided by Table 6 starting from the full tetrahedron with vertices
(0.9722, 1.5278, 0), (0.76, 0.8187, 0.352), (0.76, 0.8187, 0.704) and (0.1598, 0.3653, 1.1598).

Note that, unlike the IFS generating the standard Sierpiński tetrahedron in Figure 1, whose
prefractals are all contained in the full initial tetrahedron having as its vertices the four fixed
points of the maps wi, in Figures 2 – 5 the prefractals’ components wander all around the
vertices of the initial tetrahedron because of the rotations induced by the mixed coefficients
a
kg
i , a

kp
i , a

gk
i and a

pk
i (either deterministic or stochastic). As a result, after each iteration

all prefractal’s components are being scattered around inside a set which is larger the initial
tetrahedron; such a feature is clearly more evident in Figures 4 and 5.

6 Conclusion

Since polluting emissions in developing countries are expected to increase substantially in the
future, in order to ensure a sustainable process of economic development at world level it is
essential that industrialized economies support the green transition in developing countries. In
order to shed some light on this issue, we analyze the implications of foreign capital on the
economic development of a developing economy transiting from dirty to clean activities in a two-
sector stochastic economic growth model with pollution externalities. Output is produced by
combining dirty and clean inputs with the latter being completely emissions-free, while the clean
input is produced by using the dirty input. Foreign capital (in the form of dirty input), inclusive
of development aid and foreign direct investments, is partly allocated to the production of the
clean input. Such a setting gives rise to a dynamic system represented by a three dimensional
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Figure 5: same construction as in Figure 4 but with a view of the same prefractals from a different
perspective.

affine IFS. We show that the economy’s steady state is represented by an invariant measure
supported on a compact set, characterizing its fractal nature and showing that (under a specific
parametrization) its attractor may look like a distorted Sierpiński tetrahedron.

To the best of our knowledge, our paper is the first work investigating the possibility that
the fractal attractor of stochastic economic growth models may be have a three dimensional
representation. In order to do so we have kept the model as simple as possible but it would
be interesting to extend it along different directions to capture some other aspects of the
problem under investigation. The Sierpiński tetrahedron is the natural candidate to start the
analysis of three dimensional fractal attractors but it may also be worthwhile to explore whether
economic growth models may give rise to other more complicated, but well known, attractors,
like the Sierpiński pyramid or the Menger sponge. The analysis has been carried out in a
purely dynamic setting abstracting completely from agents’ optimization while it may also be
interesting to assess whether and how optimal saving and investment decisions may change our
conclusions. These further issues are left for future research.

Technical Appendix

Proof of Corollary 3. We just need to show that e−
N

e is a lower bound for the term
p
p1
1 p

p2
2 · · · ppNN for any choice of probabilities p1, ..., pN satisfying 0 < pi < 1, for i = 1, . . . , N ,

and such that
∑N

i=1 pi = 1. To this purpose we consider the generalized open cube

Φ = {(p2, ..., pN ) : 0 < pi < 1, i = 1, . . . , N}
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and solve min(p1,...,pN )∈Φ ln (pp11 p
p2
2 · · · ppNN ), which is equivalent to min(p1,...,pN )∈Φ (pp11 p

p2
2 · · · ppNN ).

Note that ln (pp11 p
p2
2 · · · ppNN ) = p1 ln p1+p2 ln p2+· · ·+pN ln pN is strictly convex as sum of strictly

convex functions of each variable pi; therefore (p
∗
1, . . . , p

∗
N) = argmin(p1,...,pN )∈Φ ln (pp11 p

p2
2 · · · ppNN )

is unique provided it exists. FOC on p1 ln p1 + p2 ln p2 + · · · + pN ln pN yields (p∗1, . . . , p
∗
N) =

(e−1, . . . , e−1), which is the unique (interior) solution of min(p1,...,pN )∈Φ ln (pp11 p
p2
2 · · · ppNN ) =

min(p1,...,pN )∈Φ (pp11 p
p2
2 · · · ppNN ), to which corresponds the minimum value

(e−1)
e−1

(e−1)
e−1

· · · (e−1)
e−1

= e−
N

e . As
∑N

i=1 e
−1 = N

e
6= 1 for any N ∈ N, the open sim-

plex

Ψ =

{

(p2, ..., pN ) : 0 < pi < 1, i = 1, . . . , N,

N
∑

i=1

pi = 1

}

is a proper subset of the open cube Φ which does not contain the point (p∗1, . . . , p
∗
N) =

(e−1, . . . , e−1). Therefore, necessarily p
p1
1 p

p2
2 · · · ppNN > e−

N

e for any (p2, ..., pN ) ∈ Ψ and the
proof is complete.
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