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ABSTRACT 

Scholars and policy makers frame the debate on labour market polarisation by emphasising the 

role of key drivers such as international trade and of technological change. The present paper 

explores these themes from a different perspective, and inquires whether de-routinisation has 

harmed local innovation capacity. Our empirical study builds on the literature on learning-by-

doing and incremental innovation, and focuses on advanced manufacturing technologies 

(AMTs) in US Metropolitan Statistical Areas over the period 1990-2012. Results provide 

support to the hypothesis that de-routinisation is associated with a generalized decline of local 

innovation performance, especially in AMTs. 
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1. Introduction 

The advent of digital technologies has rejuvenated the debate on the economic and 

social effects of innovation. The so-called digital transformation is widely regarded as a 

discontinuity emanating from the Information and Communication Technology (ICT) 

revolution that gained momentum in the 1990s and that has triggered significant changes both 

in employment levels and in the structure of labour markets (OECD, 2016; World Bank, 2016; 

Van Roy et al., 2018). 

A growing strand of research on employment and innovation analyses the labour market 

outcomes associated with the computer revolution. Contributions from innovation studies 

argue that indirect income and price effects can offset the direct effect of job destruction due 

to the adoption of new machinery and equipment. Whether and to what extent these 

compensation mechanisms work, and whether price or income effects dominate, depends on 

institutional factors that circumscribe the validity of empirical findings (Freeman and Soete, 

1987; Pianta, 2005; Vivarelli, 1995, 2014; Piva and Vivarelli, 2018). Other studies in labour 

economics argue that technological change is skill-biased, and therefore that job creation and 

job destruction reflect a positive relation between workers’ skill levels – often proxied by years 

of schooling – and labour market returns (Autor et al., 1998; Chennels and van Reenen, 1999; 

Acemoglu, 2002). The predictions based on these approaches, however, do not match observed 

patterns of changes in labour demand. Rather, the evidence indicates that in the wake of the 

ICT revolution the bulk of job destruction occurred in the middle of the skill spectrum and not 

in the bottom part as the skill-biased technical change (SBTC) tenet predicts (Autor et al, 2003; 

Goos and Mannig, 2007; Goos, Manning and Salomons, 2014). Upon closer inspection, 

technology has had a dual effect on labour demand: it substituted for routine (cognitive and 

manual) tasks that are more intensive among mid-skill jobs – e.g. clerks and machine operators 

– while increasing the productivity of, and the demand for, occupations at the opposite ends of 

the employment spectrum, namely high- and low- jobs that entail primarily non-routine 

(cognitive and manual) activities. This process is known as de-routinisation, or job polarisation. 

Recent studies find that technology is not only job destroying and that expanded possibilities, 

in the form of new products and processes, can create demand for new occupations (Bessen, 

2018; Acemoglu and Restrepo, 2019; Gregory, Salomons and Ziehran, 2016; Klenert, 

Fernández-Macías and Antón, 2020). Overall, the evidence reveals a more complex picture 

than the dominant narrative ‘robots are coming for workers’ would suggest. 
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This intense debate revolves around the question of whether technological change 

affects employment, and how much. The starting point of the present paper is that such a 

relationship is not only controversial for what concerns the balance between compensation and 

substitution effects, but also in regards to the directionality. A large body of literature, for 

example, suggests that labour market dynamics shape innovative performance. On the one 

hand, empirical studies show that flexibility and deregulation can hinder innovation due to the 

crowding out of firms’ core capabilities (Kleinknecht et al., 2014; Michie and Sheehan, 2003; 

Wachsen and Blind, 2016; Zhou et al., 2011). On the other hand, for similar reasons, excess 

worker turnover is likely to have a negative impact on firms’ innovation dynamics (Grinza and 

Quatraro, 2019). 

We maintain that these considerations are also relevant for the current debate on job 

polarisation, albeit in a way that differs from what has become the standard framing. While the 

literature looks mainly at how digital technologies trigger de-routinisation, the question of 

whether and to what extent the loss, or of the diminished availability, of routine skills may have 

affected innovation capacity has been disregarded. What’s more, and central to the present 

paper, blue-collar work tasks and the attending skills are essential for productivity and 

innovation. Two streams of empirical literature provide support to this intuition. The first is 

based on Rosenberg’s (1974) classic critique to the debate on innovation, which focused 

excessively on the creative leaps that enable new technologies to stem out of basic research 

while it disregarded incremental ‘downstream’ improvements and the importance of other 

knowledge sources. A second domain of applied literature shows evidence that production, 

mid-skill workers are crucial to achieve incremental innovation (Waeyenbergh and Pintelon, 

2002; Alsyouf, 2007; Kukla, 1983; Sohal et al, 2001; Deivanayagam, 1992). 

Building on the above, the present paper empirically analyses whether and to what 

extent the decline of mid-skill routine employment has been detrimental to innovation capacity 

in Metropolitan Areas (MSAs) of the United States (US). Specifically, this question is 

addressed in relation to innovation patterns in manufacturing sectors over the period 1990-

2012. In line with recent trends, we look at patenting dynamics in advanced manufacturing 

technologies (AMT). This is a group of integrated hardware-based and software-based 

solutions used in the design, manufacture or handling of products (OECD, 2012). We 

hypothesize that routine workers are crucial to incremental experimentation and problem-

solving that stand at the core of incremental innovation. Because of the specific features of this 

process, we further submit that the prolonged decline of demand for routine jobs observed in 
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the United States has undermined the ability to innovate in organisational ecosystems that 

revolve around AMTs. 

The main finding is that a 1% loss in routine-intensive occupations is negatively 

associated with a reduction in the local patenting capacity by around 4%. This negative 

association is larger when we focus specifically on AMTs wherein the decline of patenting is 

around 7%. Interestingly, the decrease of cognitive- and manual-routine skills are negatively 

associated to local innovation capacity in general and to AMTs in particular. In fact, the latter 

reduce more when routine jobs decrease due to losses in manual-repetitive occupations. Our 

contribution to the literature is threefold. First, we add to the empirical work on the task-based 

approach by underlining that accounting for task heterogeneity allows capturing important 

variance in innovation dynamics. Second, we enrich the debate on the relationship between 

digital technologies and labour market dynamics by showing that it is important to invert the 

direction of the link. Third, we elaborate upon the importance of a specific set of technologies, 

i.e. AMTs, that are crucial not only because of their productivity-enhancing effect, but also due 

to their innovation-enabling role. 

The rest of the paper is organized as follows. After a review of the relevant literature in 

Section 2, we detail the main data sources and the procedures used for the construction of the 

main variables in Section 3. This is followed by the empirical analysis of Section 4. The last 

section concludes and summarizes. 

 

2. Theoretical Background 

2.1. On innovation and labour market dynamics 

Academic scholars and policy makers have recently become more alert to the nature 

and the extent of the structural changes that are transforming the labour market, and to their 

relationship with the current wave of technological change in the digital domain. 

The technological discontinuities that followed the ICT revolution has brought the 

relationship between innovation and employment back at the core of the policy and academic 

debates. In innovation studies, empirical analysis focuses on the existence and extent of 

substitution and compensation effects, the former consisting of job displacement the latter by 

the counterbalancing job creation due to productivity gains and new job creation (Vivarelli, 

2014; Piva and Vivarelli, 2018; Vivarelli and Pianta, 2000; Cirillo, 2017). The generality of 



 5 

the various findings is often controversial due to the influence of institutional factors such as 

e.g. regulation that affect the degree of market competition. 

While many investigate the impact of ICTs on overall employment growth, 

considerations about the specific kinds of jobs that these technologies would have displaced, 

as well as the types of jobs that they would have promoted have enriched the debate on the 

effects of the ICT revolution. If on the one hand ICTs would have accelerated the obsolescence 

of some occupations, on the other hand their diffusion would have required an increase in the 

demand of some other (complementary) occupations. According to the SBTC tenet, ICTs 

would affect the demand for workers depending on their skill level, thereby favouring high-

skilled occupations and hindering low-skill ones (Autor et al., 1998; Chennels and van Reenen, 

1999; Acemoglu, 2002). At the same time, recent literature on the impact of robots’ adoption 

on wages or employment points to mixed evidence due to a variety of reasons – i.e. differences 

across datasets, heterogenous time-spans (Klenert et al, 2020). 

The most recent chapter of the analysis of the employment effects associated to 

technological change emerged out of empirical analysis showing that in the US and many 

OECD economies labour demand had grown for both high- and low-skill jobs and that the 

decline mostly concerned mid-skill ones. Although there still is controversy over the timing 

and the degree of the so-called employment polarisation, broad consensus exists on the 

underlying mechanics. The decline of demand for mid-skill occupations is in effect capital-

labour substitution due to both falling prices of computing power and higher efficiency of 

automated processes in carrying out routine work tasks (Autor, Katz and Krueger, 1998; Autor, 

Levy and Murnane, 2003; Goos and Mannig, 2007; Goos, Manning and Salomons, 2014; 

Gregory, Salomons and Ziehran, 2016).1 A new approach stemming from the pioneering work 

of Autor, Levy and Murnane (2003) (ALM henceforth) focused directly on job skills and tasks, 

rather than inferring them through proxies such as a worker’s years of education. In this 

framework, occupational task content is understood as the ensemble of work activities that are 

necessary for a job to produce a unit of output. Compared to the traditional human capital 

theory, this approach affords a more nuanced view of how advances in technologies, changes 

in skill supplies, or the emergence of trade and off-shoring opportunities affect the division of 

                                                      
1 As Cortes, Jaimovich and Siu (2017) point out, the issue is far from being settled for what concerns, first, the 

workings of the process by which routine occupations have declined and, second, the magnitude of aggregate 

decline of routine employment that can be ascribed to progress in automation technology. For critical views on 

polarisation, see Mishel et al (2013) and Hunt and Nunn (2017). 
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labour between workers and machines, the relevance of particular job tasks and, ultimately, the 

demand for skills (Acemoglu and Autor, 2011).  

In the ALM framework occupations are defined by the main work tasks. Accordingly, 

routine tasks (i.e. executing codified instructions with minimal discretion) are characteristic of 

middle-skilled jobs that entail repetitive cognitive (i.e. clerks) or manual (i.e. blue-collar) 

duties. Because routine tasks exist in the forms of rules and instructions, and since the quality 

of computer and communication technologies has increased while their price has declined, 

routine tasks are prone to be reassigned to machines or, alternatively, to be performed by low-

wage workers in offshore locations. The second main category includes activities that require 

creativity, problem solving, intuition and social perceptiveness. These abstract tasks are 

characteristic of professional, managerial, technical and creative occupations that require high 

levels of formal education. Since analytic and interpersonal capabilities are so important, 

computers accrue productivity benefits to these workers by facilitating the transmission, 

organisation, and processing of information. This is why technology tends to complement, 

rather than substituting, these occupations. On the other side of the skill spectrum are manual 

tasks, which demand visual and language recognition, personal interaction and physical 

dexterity. Occupations that use intensively these tasks are typically concentrated in low-skill 

service jobs such as food preparation, catering, driving and cleaning. Given the significant 

challenges entailed in automating these activities, workers in these jobs are relatively unscathed 

by the computer revolution.  

The empirical literature in this strand focuses primarily on the contractionary impacts 

of international trade and of technology on employment, especially in manufacturing 

industries. These studies however disregard the effect of the loss, or of the diminished 

availability, of routine skills. 

2.2. The importance of routine jobs for innovation 

In spite of the profound transformations of manufacturing, blue-collar workers, and 

their skills, are still central to production activities (Piva et al, 2011). No doubt, the diffusion 

of information technology together with pressures from international competition have altered 

the organisation and, a fortiori, the demand for specific skills. In highly automated factories 

and production sites of the United States workers are expected to command know-how that is 

considerably more specialized than it would have been a few decades ago (Dietz and Orr, 

2006). At the same time, there is evidence on factories that opt for retraining the old workforce 
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after implementing continuous processing and control systems (Fernandez, 2001). This is, we 

argue, because at the core of routine tasks embedded in blue-collars is a type of technical labour 

that stands at the interface between engineering and manufacturing, and consists in tacit skills 

heavily reliant on experience of translating the requirements of each group for the other 

(Barley, 1996; Barley and Bechky, 1994). The responsibilities of factory floor blue-collar 

workers entail combined use of physical and conceptual dexterity and blending technical 

knowledge with practical experience (Drucker, 1999). While in the factory of the past these 

hands-on skills were primarily involved in the physical manipulation of specific equipment, in 

the modern-era factory floor employees operate ensembles of machines using routine manual 

skills such as assembling, maintaining and coordinating. According to the technical literature, 

the importance of these skills has increased together with the complexity of automated 

production whereby factory floor workers are now committed to high standards of performance 

over efficiency, quality, on-time delivery, safety, and plant cost effectiveness (Al-Najjar, 2000; 

Riis et al., 1997; Mckone and Elliott, 1998). 

Further and central to the argument of the present paper, blue-collar type of routine 

tasks, and the attending skills, are essential for productivity and innovation. Two streams of 

empirical literature support this claim. The first stems from the classic Rosenberg’s (1976) 

critique that the debate on innovation has focused excessively on the creative leaps that enable 

new technologies to stem out of basic research while it has neglected the role of other, less 

formal, knowledge sources and of incremental ‘downstream’ improvements. A few instances 

of the latter are the design of new products, testing and evaluating their performance through 

prototypes, implementing new production processes. Common to this wide range of activities 

is that they consist of minor modifications that better integrate design and production, establish 

new feedback channels between users and suppliers, and ultimately tune existing production 

methods. While taken individually each of these modifications may yield small improvements 

in performance, their cumulative effects have been observed to be massive in domains as 

different as agriculture, machine production and aeronautics (Rosenberg and Steinmueller, 

2013). According to this literature, blue-collars have the potential to develop useful knowledge, 

ideas and competences that contribute to a firm’s innovation capacity. As Bradley et al. (2017) 

point out, this class of workers can have an impact on innovation for different reasons. A first 

channel consists of knowledge inputs originating among production workers and flowing up to 

the management. Moreover, floor workers often serve as supporting staff for researchers and 

scientists. Indeed, according to Hayek (1945), the specific knowledge developed by floor 
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workers can be useful to firm’s innovation performance only if they are actively involved in 

these dynamics. 

A second stream of applied literature is also relevant in that it provides evidence on the 

extent to which incremental improvements can be ascribed to the tacit know-how of factory 

floor workers. These improvements include reducing downtime, limiting costs and increasing 

equipment productivity across a wide range of industries (Waeyenbergh and Pintelon, 2004; 

Alsyouf, 2007) as well as new product (Kukla, 1983; Sohal et al, 2001) and process 

development (Deivanayagam, 1992). Last but not least, there is evidence of growing 

importance of blue-collar workers for knowledge-bridging across functional departments, 

including those performing R&D, of the modern factory (Langowitz, 1988; Hoopes and 

Postrel, 1999).2 

Based on these arguments, our first hypothesis is: 

H1: De-routinisation is associated with decreasing innovation performance. 

2.3. Routine jobs and advanced manufacturing technologies 

 Our empirical analysis focuses on innovation in Advanced Manufacturing 

Technologies (AMTs), a group of integrated hardware-based and software-based solutions for 

the design, manufacture or handling of products (OECD, 2012). While traditional 

manufacturing technologies enhance process efficiency mostly through rigid and mechanized 

design, AMTs improve the overall effectiveness of a production system. Computer-integrated 

manufacturing, flexible manufacturing systems, computer-aided design and computer-aided 

manufacturing networks are classic instances of these technologies. Early adoption of AMTs 

dates back to the 1970s, spread widely in the 1980s and has since penetrated most 

manufacturing activities, with varying degrees of intensity and of complexity. These 

technologies enable higher flexibility in the design of new products, faster delivery and greater 

product variety at low cost (Nemetz and Fry, 1988; Parthasarthy and Sethi, 1992). Thereby 

AMTs are not only a means to improve performance in the existing remit but also a vehicle to 

explore new growth paths such as expanding the product range and contesting new markets 

(Lei and Goldhar, 1990). 

                                                      
2 The larger and larger implementation of specific work practices, like job rotation or cross-functions networking, 

highlights the importance of learning and knowledge diffusion dynamics embedded in firms’ human resources 
(Ortega, 2001; Askenazy and Caroli, 2010). 
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Flexible organisation designs that enable quick responses to emerging opportunities or 

to a changing competitive landscape are deemed as the most effective to reap the benefits of 

AMTs (Leonard-Barton, 1988). Lei et al. (1996) identifies key organisational features for the 

efficient implementation of AMTs: cultivation of new sources of tacit, organisation-embedded 

knowledge; cross-functional integration and coordination; flexibility in cooperating with other 

organisations within the value chain. Crucial to the effective implementation of AMTs, and 

common to all the above features, stands tacit knowledge, that is, the know-how possessed by 

individuals or teams that have long-standing experience of working with specific equipment 

over extended periods (Nonaka, 1991; Itami, 1987; Dougherty, 1992). Since tacit knowledge 

is highly specialized and sticky, the loss of workers who master this type of know-how 

represents a potential hazard for productivity and innovation (Badaracco, 1991; Nonaka, 1991). 

To illustrate, workflows and routines that have been adapted to accommodate process or 

product modifications are likely to be firm specific, and to rely on cross-functional pathways 

that have consolidated over repeated iterations (Lawler et al, 1992). Technical tasks like 

materials handling, coding and calibrating largely depend on personal insight, emerging 

heuristics and direct experience with equipment. Further, the cross-functional integration of 

design and production activities is especially important in AMT-intensive environments that 

rely on continuous feedback loops between management, engineering and the factory floor (Lei 

et al, 1996). 

These peculiar characteristics of AMTs, and the challenges that their deployment entail 

for the skill base, resonate with the previous discussion on the nature of blue-collar routine 

tasks. Production environments characterized by a high degree of complexity require high 

levels of tacit know-how, experience and repeated interaction across different functional 

domains. Routine workers possess these skills and are therefore crucial to incremental 

experimentation and problem solving that stand at the core of innovation. By the same token, 

we conjecture that the prolonged decline of demand for routine jobs observed in the United 

States has undermined the ability to innovate in organisational ecosystems that revolve around 

AMTs. These issues have been largely ignored by the extant literature, and our empirical 

analysis will tackle them to fill the gap. 

Accordingly, our second hypothesis is: 

H2: De-routinisation is associated with decreasing innovation performance in the 

domain of Advanced Manufacturing Technology. 
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3. Data and Methods 

To investigate the relationship between the de-routinisation of employment and 

innovation capacity in Advanced Manufacturing Technologies, we collect data on occupational 

tasks, employment, industrial structure and patenting at the US Metropolitan Statistical Area 

(MSA) level. According to the US Office of Management and Budget (OMB, 2010), MSAs 

are statistical areas “associated with at least one urbanized area that has a population of at least 

50,000”.3 The OMB further specifies that MSAs comprises a central county (or counties) and 

adjacent counties with a high degree of economic and social integration (measured through 

commuting flows). The OMB reviews the standard for delineating the areas every ten years, 

and constantly revises the delineations to reflect estimates of US Census Bureau population 

and commuting flows. This implies that the composition and the identification codes of MSA 

may vary over time. Moreover, some areas may disappear, due i.e. to loss of population below 

the reference threshold, while new ones may emerge. To ensure comparability and consistency 

of territorial units over time and across different data sources, we create a crosswalk that allows 

the unique identification of MSAs over changing county composition. We exclude newly 

identified areas when the county composition is not identifiable in prior years unambiguously. 

MAs divided into two or more areas by the OMB revisions have been re-aggregated. This 

procedure allows us to identify 289 coherent MSAs over time that are the main unit of analysis. 

Data on employment, skills, patenting, economic and demographic factors come from 

different data sources. To construct the indicators of the occupational structure, we rely on the 

Occupational Employment Statistics (OES) program from the U.S. Bureau of Labor Statistics 

(BLS), which provides annual employment data by occupation profiles for each MSA. OES 

BLS does not provide data for the 1990s. Occupational task data are available only for the 1990 

from the decennial census program provided by IPUMS USA. Therefore, due to data 

availability limitation, we restrict the construction of our occupational structure indicators at 

the first available years, i.e.: 1990 and 2001. The most basic geographic unit identified in 

IPUMS USA census data is the Public Use Microdata Area (PUMA). In order to map PUMAs 

to MSAs, we exploit the PUMA detailed county composition to develop a crosswalk.4  We 

make use of the US Census Bureau County Business Pattern (CBP) to collect data on the 

                                                      
3 The OMB 2010 report is available at https://www.govinfo.gov/content/pkg/FR-2010-06-28/pdf/2010-

15605.pdf. 
4 Available at https://usa.ipums.org/usa/volii/puma.shtml. 

https://www.govinfo.gov/content/pkg/FR-2010-06-28/pdf/2010-15605.pdf
https://www.govinfo.gov/content/pkg/FR-2010-06-28/pdf/2010-15605.pdf
https://usa.ipums.org/usa/volii/puma.shtml
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number of establishments and the level of employment by sector of activities (SIC and NAICS 

codes). The source for county population data is the US Census Bureau, which also provides 

data on counties land through the Gazeteer Files.5 We then aggregate this data at the MSA level 

using the crosswalk mentioned above. Patent data are from the USPTO Patents View 

Database.6 Our analysis covers 289 MSAs over the period 1990, 2001-2012.7 

 

3.1. Variables 

Dependent variable: Our goal is to investigate the association between de-routinisation 

of local labour markets and local innovation capacity, with a focus on the AMTs domain. To 

this end, we collect information on patents issued in new digital technologies related to 

manufacturing processes. To do so, we exploit the Cooperative Patent Classification (CPC) 

scheme that provides, for each patent issued, a list of technological classes encompassing 

specific technological domains.8 To properly select domains related to AMTs, we rely on two 

main sources. The technical report by Aschhoff et al. (2010) provides a list of IPC classes 

referring to key enabling technologies and identifies the classes strictly related to AMTs.9 The 

report by Ménière et al. (2017) focuses instead on technologies associated to the so-called 4th 

Industrial Revolution. Among these, we select those strictly connected to manufacturing 

systems, together with their corresponding CPCs, and add them to the former list. To assign 

patents to MSAs we rely on information on inventors’ addresses,10 ending up with the number 

of patents in AMTs, yearly for each MSA. Our main dependent variable thus is given by the 

percentage change of local AMTs patents from 2002 to 2012.  

                                                      
5 Available at https://www.census.gov/geo/maps-data/data/gazetteer.html. 
6 Available at http://www.patentsview.org/download/. It is worth stressing that the distinction between 

incremental and radical innovation has no impact on the discussion on the reliability of patents as a proxy of 

innovation. Both incremental and radical innovations can be patented provided they satisfy patent offices’ criteria. 
An important stream of literature relies on the statistical analysis of information contained in patent documents to 

derive measures to distinguish between breakthrough and incremental innovations (Silverberg and Verspagen, 

2007; Castaldi and Los, 2012; Castaldi et al., 2015). 
7 Due to data availability at the MSA level, we collect information on employment, economic and demographic 

characteristics in 1990, and from 2001 to 2012. Patent data are collected for the period 1990-2012.  
8 The CPC has been established in 2010 to harmonize individual classification systems between the USPTO and 

the EPO. We exploit the PatentsView database table “cpc_current” to extract information on CPC classes for US 
patents. 
9 For each IPC contained in Aschhoff et al. (2010) we identify the corresponding CPCs using the concordance 

table by EPO and USPTO (https://www.cooperativepatentclassification.org/cpcConcordances.html). 
10 Patents filed by multiple inventors residing in different MSAs are locally assigned according to the fraction of 

inventors residing in each MSA. 

https://www.census.gov/geo/maps-data/data/gazetteer.html
http://www.patentsview.org/download/
https://www.cooperativepatentclassification.org/cpcConcordances.html
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De-routinisation index: Our main variable of interest is an index of de-routinisation of 

local employment, which we build following the occupational task-based framework (ALM, 

2003; Autor and Dorn, 2013). We focus on changes in the Metro-Area intensity of routine job 

employment. The reader will recall that the prototypical mid-skill routine job entails 

performing repetitive cognitive (i.e. clerks) or manual (i.e. blue-collar) work tasks. To 

illustrate, routine cognitive tasks are bookkeeping and data entry typical of “Office and 

Administrative support” occupations while routine manual occupations in “production”, 

“maintenance and repair” entail monitoring activities on the factory floor. The construction of 

a de-routinisation index requires several steps. First, we merge job task requirements to their 

corresponding occupation classification to assign task-intensity to individual job titles. 

Occupations are then identified as routine intensive based on their relative task-intensity as in 

Acemoglu and Autor (2011). Next, using the OES BLS occupational employment data and 

IPUMS census data, we calculate the routine employment share for each MSA as follows: 

RSHrt =  (∑ Ljrt  ⋅ 1[RTIj]Jj=1 )   (∑ LjrtJj=1 )−1
        (1) 

where RSHrt is the routine employment share in MSA 𝑟 at time t; Ljrt is the employment in 

occupation 𝑗 in MSA 𝑟 at time t and 1[RTIj] is an indicator function taking value 1 if the 

occupation 𝑗 is routine intense. Our index thus calculates the difference between the share of 

employment in routine-intensive jobs between two periods. In our preferred specification and 

due to data availability, we calculate this difference between 1990 and 2001 (i.e. the index 

increases the higher is the reduction in the MSA 𝑟 routine-job intensity during the 1990s). 

Formally, we define the index ∆RSHr,1990−2001 as follows: ∆RSHr,1990−2001 = 100 × (RSHr,1990 − RSHr,2001)                  (2) 

Our expectation is that MSAs that experienced a stronger decline in routine-intensive 

jobs during the 1990s did suffer in terms of innovative performance in digital manufacturing 

technologies in the 2000s. Moreover, we split routine jobs between routine cognitive and 

routine manual to test for possible differential associations between changes in these two 

categories and local innovation in AMTs. 

 

3.2. Empirical Strategy 
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To investigate the relationship between employment de-routinisation and innovative 

efforts in AMTs at the MSA level, we first estimate the following model: ∆AMTr,2012−2002 = β∆RSHr,1990−2001 + ΥXr′ + ϵr           (3) 

where ∆AMTr,2012−2002 is the percentage change in the number of AMT patents for region r 

between 2012 and 2002, defined as 100 × (AMTr,2012 − AMTr,2002)/(0.5AMTr,2012 +0.5AMTr,2002);11 ∆RSHr,1990−2001 is the change of employment share in routine jobs for region r between 1990 and 2001, defined as 100 × (RSH1990 − RSH2001);12 ϵr is the error term and Xr′  comprises controls for local factors, expressed in term of percentage change between 1990 

and 2001,  that may affect the capacity of an MSA to patent in AMTs. First, we control for the 

change in the employment share in high-skilled (abstract) occupations between 1990 and 2001. 

To calculate the share of employment in high-skill (abstract) jobs at the MSA level, we rely on 

the ALM task-based framework, then following the same procedure adopted for the share of 

routine occupations described in Section 3.1. We begin with the identification of abstract-

intensive occupations. Typical of professional, managerial, technical and creative occupations, 

abstract tasks require intuition, creativity and problem solving, and are performed by workers 

possessing high levels of education and analytical capabilities. Then, by applying formula (1) 

to abstract-intensive occupations and the employment levels in those occupations, we derive 

our high-skill employment share at the MSA level. By focusing on skills and tasks rather than 

just education attainments, the high-skill employment share offers a more precise indicator of 

human capital, better capturing the role of high-skilled workers for innovation. The percentage 

change in the share of high-skilled (abstract) jobs is calculated as the difference between the 

2001 and the 1990 shares.  Second, we include the percentage change in MSAs’ number of 

firms operating in the manufacturing sector between 1990 and 2001, to control for the potential 

effect of de-industrialization due to a contraction in industrial production – that may have 

occurred during the 1990s – on local innovation capabilities. We also control for the local 

existing innovation capabilities by including the percentage change in the MSAs patenting 

level, between 1990 and 2001. This last variable should control, at least partially, for possible 

decreasing returns to scale in innovation activities. Lastly, we include a control for the level of 

population density measured in 2001. Since MSAs show high variability in terms of population 

                                                      
11 ∆AMTr,2012−2002 ranges between -200 and 200. In the main analysis, we apply this transformation to include 

also MSAs that did not patent in AMTs in 2002. According to our data, 65 MSAs did not patent in AMTs in 2002. 

12 It is worth noticing that for each MSA 𝑟, the stronger the decline in the employment share of routine jobs during 

the period 1990-2001, the higher the de-routinisation index. In other words, our de-routinisation index is higher 

in the MSAs that experienced higher losses in routine-intensive occupations. 
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and, importantly, patenting capacity, we weight all regressions by the local per-capita level of 

patenting in 2001 to assign a relatively lower weight to observations with the highest patenting 

variance (i.e. smaller MSAs). Standard errors are clustered at the State level to account for 

possible spatial correlation across MSAs.13 

As anticipated in Section 3.1, we split our occupational routine measure into routine 

cognitive (RCSH) and routine manual (RMSH) and calculate two de-routinisation indexes 

accordingly (∆RCSHr,1990−2001 and ∆RMSHr,1990−2001, respectively). Therefore, we estimate 

the following model: ∆AMTr,2012−2002 = β1∆RCSHr,1990−2001 + β2∆RMSHr,1990−2001 + ΥXr′ + ϵr       (4) 

To complement the analysis, we also estimate models in equations 3 and 4 on, 

alternatively, the local percentage change in all patents (ALL) and information and 

communication (ICT) related patents. To retrieve information on ICT patents we rely on the 

classification proposed by OECD (2017).  

 

4. Empirical Analysis 

4.1. Descriptive statistics 

Table 1 offers a synthetic description of the main variables employed in the empirical 

analysis, while Table 2 contains the descriptive statistics.  Figure 1 provides a first glimpse of 

the association between the documented loss of routine-skill workers during the 1990s and 

AMTs innovative capability that we will explore in detail. The diagram plots the growth rate 

of AMT patents between 2002 and 2012 against our index of de-routinisation as per section 

3.1. Each dot represents an MSA, the size being proportional to the total number of patents in 

2001 in the Metro Area. Figure 1 shows that the raw correlation between the change in the 

endowment of routine workers and AMT patenting is negative. This suggests that areas 

characterized by higher losses in the shares of routine-skilled workers in 2001 with respect to 

1990 (i.e. a positive value in the de-routinisation index) also experienced a higher decline of 

                                                      
13 Ideally, a panel modelling strategy covering the period 1990-2012 would have been appropriate for it would 

allow to control for time-invariant local area characteristics and for temporal structural conditions that affect all 

the MSAs. Unfortunately, as mentioned in Section 3, yearly information on the local skills composition for the 

decade 1990-2000 are not available. As an alternative, we ran a series of panel fixed effect regressions that exploit 

the longitudinal dimension of our data starting from 2001. The findings are in line with our main results (see 

Section 4.2) and confirm the central role of routine workers for the local innovative capacity in AMTs. Appendix 

B reports the results. We wish to thank an anonymous referee for suggesting this further test. 
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AMT patenting during the 2000s, especially areas with lower patenting intensity. This is an 

initial hint that local labour markets where routine-intensive jobs prevailed were more exposed 

to labour-for-capital substitution and job polarisation after the uptake of automation in the mid-

1990s. In turn, the declining demand for routine jobs and the associated lower endowment of 

mid-skilled workers is negatively associated to MSAs’ patenting in AMTs. 

Figure 2 depicts the spatial distribution of changes in local AMTs patenting (our 

dependent variable) and the de-routinisation index (our main explanatory variable). Each MSA 

is coloured according to the weighted-quintile rank in the distribution of the relevant 

dimension. The colour scale in panel (a) indicates the MSAs with larger declines in the number 

of AMT patents between 2002 and 2012. The figure reveals significant geographical variations, 

with a higher concentration of declining areas around the rust belt. The geographical 

distribution of changes in the routine employment share is presented in Figure 2 panel (b). 

Darker colours indicate metropolitan areas that experienced higher losses in terms of routine 

jobs during the 2000s.  

 

<<<TABLE 1 ABOUT HERE>>> 

<<<TABLE 2 ABOUT HERE>>> 

<<<FIGURE 1 ABOUT HERE>>> 

<<<FIGURE 2 ABOUT HERE>>> 

 

 

4.2. Regression Analysis 

4.2.1. Baseline models 

This section contains the results of the econometric analysis of the long-term 

relationship between local changes in routine skills and local innovation capacity. Table 3 

reports estimates for the percentage change in patenting over the period 2002-2012. Columns 

I and II refer to changes in AMT patenting, while columns III and IV refer to changes in total 

patenting (ALL). The last two columns (V and VI) instead refer to the association between de-

routinisation and patenting in ICT. All the models include the full set of controls as described 
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in Section 3.2 and are weighted by the 2001 per-capita number of local patents. Standard errors 

are clustered at the State level. 

Focusing on the results reported in Table 3, we find a negative association between the 

decrease in routine-intensive occupations and local innovative capacity in AMTs. Precisely, a 

1% decrease in routine-intensive employment (∆RSH) during the 1990s is associated with a 

7.3% decrease in AMTs between 2002 and 2012 (column I). The negative magnitude of the 

coefficients largely decreases if we focus on total patenting (column III), reaching around -4%, 

and it does not reach statistical significance when considering patenting in ICT related 

technologies as dependent variable (column VI). As reported in column II, local inventive 

activity in AMTs seems to be correlated more to changes in the employment of repetitive 

manual work (i.e. blue-collar jobs) than to changes in routine cognitive jobs (i.e. clerks). 

Indeed, we find a negative and significant coefficient for the reduction in both RMSH (-7.9%) 

and RCSH (-6.5%). 

We also find a negative association between losses in both manual and cognitive routine 

jobs on the percentage change of local total patenting. As shown in column IV, the reduction 

in the share of blue-collar (RMSH) and clerical workers (RCSH) is indeed negatively 

associated with local innovation capacity. In this case, the magnitude of the RMSH coefficient 

is at -4.2%, slightly higher than the previous estimation, while the magnitude of RCHS is 

similar (around -3.8%). Turning to ICT patenting, changes in local innovative capability in this 

domain seems to be not responsive to drops in the share of routine-manual and routine-

cognitive workers. Indeed, looking at column VI, we do not find statistically significant 

coefficients for both RMSH and RCSH.  

Looking at the control variables, we find positive and significant coefficients for the 

change in the high-skilled employment share (though only on AMTs) and for the population 

density. Conversely, we find a negative coefficient for the change in the total level of patenting 

that likely reflects decreasing returns to scale in innovation. Lastly, the percentage change in 

the number of manufacturing firms is not statistically significant.  

 

<<< TABLE 3 ABOUT HERE >>> 

 

4.2.2. Incremental innovation 



 17 

In Section 4.2.1 we empirically show that the diminished availability of routine workers 

is associated with decreasing innovative performances, confirming our hypothesis that routine 

workers’ tasks and their attending skills can be essential for productivity and innovation. 

Indeed, as discussed in Section 2, the fundamental ‘downstream’ incremental improvements 

that stand at the core of innovation can be ascribed to the tacit know-how of routine workers 

and their increasing importance as ‘knowledge-bridges’ across modern factories functional 

departments. While our distinction between technology domains helps identifying the 

association between de-routinisation and AMT innovative efforts, the minor ‘downstream’ 

improvements of factory-floor workers, though their cumulative effects can be massive, are 

still incremental in nature, regardless of the technological domain to which they pertain. 

Accordingly, we complement the main analysis by looking at incremental innovations to better 

understanding the crucial role of routine workers on innovative capabilities.14 

To identify patents related to incremental innovations, several steps are required. Extant 

empirical literature exploiting patent data has primarily focused on radical and breakthrough 

innovation. Few studies dealt with the identification of incremental innovations using patent 

data (e.g. Dutta and Weiss, 1997; Katila, 2000). These works distinguish between radical and 

incremental invention based on patents score on a radicalness measure, by setting a given 

distribution threshold (Ahuja and Morris Lampert, 2001; Dahlin and Behrens, 2005). For 

example, Wu et al. (2009) use patents received citations as radicalness measure and classify as 

incremental inventions those patents having citations below the top 3% of patent citation 

frequency.  

To categorize incremental inventions for the purposes of the present study we exploit 

the radicalness measure by Squicciarini et al. (2013) (OECD radicalness henceforth) that relies 

on patent backward citations. The authors compute such a measure among from a set of patent 

quality indicators proposed by the OECD every year for both EPO and (only recently) USPTO 

patents (the “OECD Patent Quality Indicators database, January 2020”). Following the measure 

originally proposed by Shane (2001), according to Squicciarini et al. (2013): “…the radicalness 

of a patent is measured as a time invariant count of the number of IPC technology classes in 

which the patents cited by the given patent are, but in which the patent itself is not classified. 

[…] the more a patent cites previous patents in classes other than the ones it is in, the more the 

invention should be considered radical, as it builds upon paradigms that differ from the one to 

                                                      
14 We wish to thank an anonymous referee for suggesting us to more formally extend the analysis to incremental 

innovation by exploiting more in depth information contained in patent data. 
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which it is applied” [p. 53]. The radicalness index is, therefore, a continuous indicator, ranging 

from 0 to 1, that “underlines the dispersion of technology classes in the backward citations and 

the extent to which they differ from the focal patent” [p. 56]. Therefore, we identify patents 

belonging to the top 3% in the distribution of OECD radicalness index by patent cohort (patent 

filing year) and main technology field (Schmoch, 2008), and define them as radical patents. 

On the other hand, patents below this threshold (bottom 97% by field/cohort) are considered 

incremental patents.15 

Table 4 reports the results of the econometric analysis on the long-term association 

between de-routinisation and local incremental innovative capabilities. The table reports the 

estimates for the percentage change in incremental patenting over the period 2002-2012, where 

columns I and II refers to changes in AMT incremental patents, columns III and IV to total 

incremental patenting, while the last two columns (V and VI) refers to the relationship between 

de-routinisation and ICT incremental patents. All the models include the full set of controls as 

described in Section 3.2 and are weighted by the 2001 per-capita number of local patents. 

Standard errors are clustered at the State level. 

Looking at the results in Table 4, we find a negative association between the decrease 

in routine-intensive occupations and local incremental patenting in AMTs. In particular, a 1% 

decrease in routine-intensive employment (∆RSH) during the 1990s is associated with about 

7% decrease in incremental AMTs patents between 2002 and 2012 (column I). As in Table 3, 

the negative magnitude of the coefficients decreases when considering total incremental 

patenting (column III), estimating a coefficient of around -4%. While the association between 

de-routinisation and ICT patenting does not reach statistical significance (see column VI in 

Table 3) when considering only incremental patents in ICT related technologies as dependent 

variable we estimate a negative and significant coefficient (though only at 1% significance 

level), with a magnitude close to -3.8%. 

Similar to the findings of the previous subsection, also in this case local incremental 

inventive activity in AMTs seems to be more responsive to changes in the employment share 

of routine-manual workers than to changes in repetitive cognitive jobs (as reported in columns 

                                                      
15 In Section 4.3 we provide robustness checks to this analysis by considering different index thresholds used to 

split patents between incremental and radical, i.e.: 1%, 5% and 10%. We also employ an alternative radicalness 

measure, following Wu et al. (2019), and categorize incremental innovation in terms of patent forward citation 

frequency. 
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II). In particular, we find a negative and significant coefficient for the reduction in RMSH at 

-7.7%, while the coefficient for RCSH is at around -6%. 

The negative association between loss in both manual and cognitive routine jobs and 

local patenting is confirmed when looking at total incremental patents (column IV). Therein, 

the estimated coefficients are both negative and statistically significant, exhibiting magnitudes 

very close to those obtained in column IV, Table 3 (-4.3 and -3.7, respectively, for RMSH 

and RCSH). Interestingly, looking at column VI we notice that, while the association between 

de-routinisation and incremental ICT patenting is not statistically significant when considering 

only routine-manual employment, the coefficient for changes in the employment share of 

routine-cognitive workers is negative and significant. This indicates that the long-term loss of 

repetitive cognitive routine jobs may have hindered incremental innovative capabilities also in 

ICT related technologies.   

The estimated coefficients of the control variables are in line with those already 

discussed in Section 4.2.1. 

 

<<< TABLE 4 ABOUT HERE >>> 

 

4.3. Robustness checks 

This section presents several robustness checks. First, we consider the robustness of our 

empirical analysis to different specifications of the intervals over which the percentage change 

in our dependent variables are calculated. To this end, we compute the rate of patenting growth 

over three 3-year time-windows, 2002-2005, 2005-2008 and 2008-2011, to incorporate 

intermediate information on MSAs patenting behaviour during the decade 2002-2012. Here 

our main dependent variables are the average growth rate over the three periods of, 

respectively, AMT patents, total patents and ICT patents. Results are reported in Table A1 (see 

the Appendix) and qualitatively confirm our main findings.16 In particular, we find that a 1% 

decrease in the share of routine workers is associated with a decrease of about 3.4% of the 

                                                      
16 In an additional robustness check, we use the patenting average growth calculated over two 5-year time windows 

as dependent variable. Moreover, we also test whether results are robust to changing the starting year and the end 

year over which the percentage change in patenting is calculated, i.e.: from 2003 to 2011. Both checks yield results 

in line with our main findings and are available upon request.  
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average three-year growth in AMT patents (column I). The estimated coefficient reduces in 

magnitude reaching -0.96% when considering total patenting (column III) and -1.1% in the 

case of ICT (column V). The higher responsiveness of AMTs to changes in the employment of 

routine-manual workers (with respect to changes in routine-cognitive jobs) is also confirmed. 

Indeed, as reported in column II, we estimate a negative and statistically significant coefficient 

of -4.4% for ∆RMSH, while ∆RCSH, though still negative, is not statistically significant. The 

loss of routine manual and routine cognitive workers are both negatively associated to the 

average three-years growth rate in total patenting (column IV), while we find a negative and 

significant coefficient only for ∆RCSH in the case of ICT (column VI). 

As a second robustness test, we add two additional controls to our main specification. 

The first concerns the impact of labour flexibility on productivity and, in turn, on innovation. 

According to prior studies (see i.e. Arvanitis 2005; Lucidi, and Kleinknecht 2009), intensive 

reliance on temporary contracts, a proxy of labour flexibility, can potentially hamper the 

accumulation of tacit and firm-specific knowledge thus reducing innovative competences 

(Kleinknecht, and Naastepad 2014). From an empirical point of view, Cetrulo et.al. (2019) 

focus on five major European economies between 1998 and 2012, finding a negative 

correlation between temporary contracts and product innovation. In order to account for the 

potential negative effect of temporary employment, we run several robustness checks adding 

to the set of control variables also the percentage change in the local share of temporary workers 

between 1990 and 2000. Unfortunately, an explicit measure of temporary workers is not 

available for the years covered by our analysis. Therefore, we exploit the IPUMS USA census 

data and collect data on the weeks worked by individuals in 1990 and 2000. Precisely, we proxy 

temporary workers by considering those individuals that worked a number of weeks that falls 

below the average number of weeks nationally worked. Then, we calculate the share of those 

workers at the MSA level and use the percentage change between 1990 and 2000 as a control 

variable for the role of temporary workers. The second variable we add concerns the share of 

highly educated workers. While the inclusion of the share of high-skilled (abstract) 

employment already accounts for the fundamental role of human capital, as mentioned in 

Section 3.2, we complement it with a more direct proxy for the level of education of the local 

workforce. Again, we collect data from the IPUMS USA census database and calculate the 

share of employed individuals possessing at least a bachelor degree for each MSA. In turn, our 

control is given by the percentage variation in the share of “bachelor” educated workers 

between 1990 and 2000. Table A2 in the Appendix reports the results when including the two 
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further control variables described above. Here the focus is only on changes in AMT 

patenting.17 Results of these robustness checks are fully consistent with the main results. As 

for the variations in the shares of both temporary and tertiary educated workers, the estimated 

coefficients are not significant. 

Lastly, we test the robustness of our measure of incremental patents. First, we calculated 

our dependent variables using an alternative measure of incremental patents. To this end, 

following Wu et al. (2009), we define ‘incremental’ the complement of the patents in the top 

3% in term of 5-year forward citations (since filing), by patent cohort and main technology 

field. We express then the dependent variables as the percentage variation in the number of 

incremental AMT, total and ICT patents between 2002 and 2012, respectively. Table A3 (see 

the Appendix) reports the results of the estimation using the alternative measure of incremental 

patents. The results are very similar to those presented in Table 4, thus confirming our main 

results. Second, we run additional estimates to check the robustness of our main incremental 

patent measure to the choice of the forward citations frequency threshold in defining the 

incremental patents. Precisely, we test whether results hold when excluding from the 

radicalness measure, alternatively, the top 1%, 5% and 10% most cited patents (by cohort / 

technological field). The results of these tests confirm the robustness of the main analysis and 

are available upon request. 

 

5. Concluding remarks and the way ahead 

The relationship between technological change and labour dynamics has received much 

attention in the last decades. Grounded on the seminal contributions by Smith, Marx and 

Ricardo, a new wave of theoretical and empirical literature has been stimulated by the well-

known ICT revolution that gained momentum in the late 1990s. On the one hand, these studies 

aimed at assessing the extent to which compensation effects could have offset substation ones, 

generating a net positive impact. On the other hand, it has become clear that the increasing 

diffusion of computers in production processes would have affected workers in different ways, 

depending on the kind of skills. The new recent wave of technological change in the digital 

domain has renewed the interest in the relationship between innovation and labour markets. 

The peculiarities of digital technologies and their larger scope of applications has stimulated 

                                                      
17 We perform the same tests also considering variations in overall patenting and patenting in ICT as dependent 

variables. Results are fully consistent with the main findings and are available upon request by the authors. 
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new theoretical efforts towards a framework that better accommodates their manifold nuances 

and pathways of impact. Starting from a dissatisfaction with the traditional model of human 

capital, the new framework shifts the emphasis to occupations and their skill content. This has 

proven effective in accounting for the intrinsic heterogeneity of both capital and labour, as well 

as the potential related to the expansion of the set of tasks produced by capital (Acemoglu and 

Restrepo, 2019). 

The debate on the socio-economic implications of digital innovation revolves mostly 

around the effect of automation and digitalisation on the demand for mid-skilled workers. The 

literature has widely documented increasing labour market polarisation, that is, growing labour 

demand at the two extremes of the skill distribution accompanied by declining demand for 

occupations in the middle. The debate that has ensued from the seminal findings of ALM 

(2003) for the US and of Goos and Manning (2007) for the UK has enlarged the geographical 

scope of the study of polarisation18 but has arguably neglected the impact that the loss of 

middle-skill routine human capital could have on innovation. 

This gap is noticeable especially in consideration of the vast literature about the 

importance of tacit knowledge, learning-by-doing and practical know-how skills that are 

crucial for incremental innovation (Rosenberg, 1976). The gap is also evident when one turns 

to the debate among practitioners. Due to the radical transformations that led to job 

polarisation, therein including technology and trade, manufacturing is changing driven by the 

integration of highly flexible, data-enabled, and cost-efficient processes that hold the promise 

of boosting competitiveness and opening new avenues for innovation. The modern factory 

powered by Advanced Manufacturing Technology relies on a large volume and frequency of 

information that can achieve higher precision, responsiveness and diversification. As usual, the 

higher complexity of the technology calls upon the adaptation of the skills base (Vona and 

Consoli, 2015). In the case at hand, reaping the full benefits of AMTs is contingent to the 

availability of programming, monitoring and troubleshooting skills to handle and respond to 

the growing intensity and variety of feedback loops. Put otherwise, in the current stage of the 

life cycle, the new technology requires a new generation of blue-collar workers – or ‘new-

                                                      
18 See i.e. Autor and Dorn (2013) on US commuting zones; Senftleben-König and Wielandt (2014) and Dauth 

(2014) on various territorial disaggregations in Germany; Malgouyres (2017) on French commuting units; Consoli 

and Sanchez-Barrioluengo (2019) on Spanish provinces. 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Malgouyres%2C+Cl%C3%A9ment


 23 

collar’ as per the industry jargon19 – that can program, operate and maintain an ensemble of 

computer- and network-driven devices. This equipment has proliferated in manufacturing just 

as many traditional routine factory jobs have been outsourced or supplanted by the early wave 

of automation. The message stemming from industry experts is clear: finding, creating and 

retaining this kind of workers has become a critical bottleneck (Accenture and Manufacturing 

Institute 2014; Muro et al, 2015; Deloitte and Manufacturing Institute, 2018). 

These shortcomings motivated our study on whether and to what extent the loss of 

routine workers, which is the trademark indicator of job polarisation, is related to the local 

capacity to innovate. This is clearly a complex issue that will require various iterations of 

empirical work before any evidence can be considered conclusive. The present paper opens 

this avenue by framing the analysis at the level of Metropolitan Statistical Area (MSA) in the 

US during the period 2002-2012. Importantly, our main empirical analysis focuses on the 

relationship between the prolonged local de-routinisation and innovation in AMTs. The 

empirical analysis indicates that, on average, the loss of routine-intensive jobs is a negative 

predictor of local innovative capacity. Precisely, we estimate that a 1% decrease in routine 

intensive occupations during the 1990s is associated to some 4% reduction in local total 

patenting during the 2002-2012 period. The coefficient is larger on AMTs, as much as around 

-7.3%. Further, we observe negative associations between innovation and both kinds of routine 

macro-tasks, i.e. repetitive cognitive and repetitive manual, with the latter showing more 

pronounced magnitudes for AMTs. 

Our analysis contributes the current debate on the relationship between technological 

change in the digital domain and economic performance. No doubt, compensation and 

substitution effects are important to grasp how technologies shape labour market dynamics. It 

goes without saying that organisational adaptations are a key, if understudied, ingredient in the 

mix. At the same time, our results shed light on a different, hitherto ignored aspect, namely that 

in the long-run job polarisation may jeopardise the inventive process, especially those 

incremental innovations based on learning-by-doing and the accumulation of on-the-job know-

how. While radical innovation is important for opening up new paradigms, incremental 

innovation is essential to consolidate technological trajectories by ensuring continuous 

improvements within a paradigm. From an evolutionary viewpoint, an implication of our 

                                                      
19 See i.e. National Association of Manufacturers (NAM) 2018 State of Manufacturing Address: 

https://www.nam.org/Newsroom/Press-Releases/2018/02/Excerpts--NAM-2018-State-of-Manufacturing-

Address  

https://www.nam.org/Newsroom/Press-Releases/2018/02/Excerpts--NAM-2018-State-of-Manufacturing-Address
https://www.nam.org/Newsroom/Press-Releases/2018/02/Excerpts--NAM-2018-State-of-Manufacturing-Address
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results is that routinisation may undermine technological variety that, coming full circle, 

narrows future prospects for economic development based on innovation. 

These considerations call for further reflections concerning the coordination between 

innovation, industrial and labour policies. Currently, in many countries these three realms 

converge towards the creation of an environment favourable to the massive diffusion of digital 

technologies in production processes. However, especially labour policies should help preserve 

routine jobs because of their key contribution to the incremental innovation process, which is 

fundamental in ‘normal science’ periods. We hope that our initial exploration will lay the 

ground for future empirical research.  
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FIGURES AND TABLES 

 

 

 

Figure 1. The relationship between the change in routine employment share between 1990 and 

2001 (de-routinisation index) and the percentage growth rate in AMT patenting between 2002 

and 2012, by MSA. 

Note: Observations (MSAs) weighted by the total number of patents in 2001 in the corresponding MSA. 
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(a) Percentage change in AMTs patenting from 2002 to 2012 (quintiles) 

 

 

 

 

(b) Percentage change in the share of routine jobs from 1990 to 2001 (quintiles) 

 

Figure 2. Geographic distribution of the percentage change in AMTs patenting from 2002 to 2012 

(panel a), and the de-routinisation index from 1990 to 2001 (panel b). 

Note: Quintiles in panel (a) weighted by the MSA total number of patents in 2001. Quintiles in panel (b) weighted 

by MSA total employment in 1990. 
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Table 1. Variables description 

 

Variable Description 
Reference 

Period 
   

∆AMT 
Percentage change in the number of patents in Advanced 

Manufacturing Technologies between 2012 and 2002 
2012-2002 ∆TOT 

Percentage change in the number of total patents between 

2012 and 2002 
2012-2002 ∆ICT 

Percentage change in the number of patents in ICT between 

2012 and 2002 
2012-2002 ∆RSH 

Percentage change in routine employment share between 

2001 and 1990 
1990-2001 ∆RMSH 

Percentage change in routine-manual (i.e. blue collar 

workers) employment share between 2001 and 1990 
1990-2001 ∆RCSH 

Percentage change in routine-cognitive (i.e. clerical workers) 

employment share between 2001 and 1990 
1990-2001 ∆High-Skill 

Percentage change in high-skilled employment share between 

1990 and 2001 
2001-1990 ∆N. of man. firms 

Percentage change in the number of firms operating in the 

manufacturing sector between 1990 and 2001 
2001-1990 ∆Tot patents 

Percentage change in the number of patents (log) between 

1990 and 2001 
2001-1990 

Pop dens Total population divided by MSA land area in 2001 2001 
 

 

 

Table 2. Summary Statistics 

Variable (N = 289) Mean St. dev Min Max ∆AMT 24.2166 98.2488 -200 200 ∆TOT 5.41439 45.3930 -113.0435 158.6592 ∆ICT 36.4596 82.3932 -200 200 ∆RSH 0.3070 3.6984 -16.5635 11.4643 ∆RMSH 0.6004 2.2830 -12.8595 10.6377 ∆RCSH -0.2933 2.8375 -13.4245 8.1072 ∆High-Skill -1.2078 2.5666 -21.5360 5.2599 ∆N. of man. firms (log) 0.6651 14.2951 -36.9747 55.0230 ∆Tot patents (log) 0.5673 0.5531 -1.7917 2.5630 

Pop dens (log) 2.2784 0.7367 0.1917 4.6122 

 



 33 

Table 3. De-routinisation and AMT innovation, total innovation and ICT innovation between 

2002 and 2012 

 (AMT) (AMT) (TOT) (TOT) (ICT) (ICT) 

∆RSH -7.258**  -3.997***  -2.576  

 (2.799)  (1.315)  (1.918)  

∆RMSH  -7.950**  -4.171**  -2.073 

  (3.149)  (1.599)  (2.244) 

∆RCSH  -6.461*  -3.796**  -3.156 

  (3.535)  (1.550)  (2.692) 

∆High-Skill 5.631** 5.325* -0.303 -0.381 -1.323 -1.099 

 (2.591) (2.726) (1.264) (1.308) (1.716) (1.929) 

∆N. of man. firms -0.159 -0.145 -0.384 -0.381 -0.194 -0.204 

 (0.403) (0.405) (0.332) (0.332) (0.419) (0.431) 

∆Tot patents -31.120*** -31.148*** -13.991* -13.998* -32.467*** -32.446*** 

 (10.574) (10.583) (7.499) (7.508) (8.859) (8.899) 

Pop dens 14.007* 13.864* 11.473** 11.437** 14.782** 14.886** 

 (8.227) (8.217) (4.560) (4.546) (5.932) (5.914) 

Adj. R2 0.171 0.172 0.290 0.290 0.214 0.214 

Obs. 289 289 289 289 289 289 
Dependent variables: Relative change in AMT patents (Columns I and II), total patents (Columns III and IV) and ICT patents 

(Columns V and VI). The relative change in patents is defined as the difference in patents over the period 2002-2012, divided 

by the average number of patents across the two periods 2002 and 2012. ∆RSH, ∆RMSH and ∆RCSH are measured as the 
difference in the share of employment between 2001 and 1990. Control variables are in delta, measured as the difference 

between 1990 and 2001. Pop dens is in 2001 levels. Regressions are weighted by the 2001 per-capita number of local total 

patents. Robust standard errors, in parentheses, are clustered at the State level. * p < .1, ** p < .05, *** p < .01 

 

 

Table 4. De-routinisation and incremental AMT innovation, incremental total innovation and 

incremental ICT innovation between 2002 and 2012 

 (AMT) (AMT) (TOT) (TOT) (ICT) (ICT) 

∆RSH -6.976**  -4.030***  -3.812*  

 (2.786)  (1.334)  (1.916)  

∆RMSH  -7.753**  -4.268**  -2.402 

  (3.104)  (1.602)  (2.305) 

∆RCSH  -6.081*  -3.755**  –5.435** 

  (3.608)  (1.579)  (2.213) 

∆High-Skill 4.600* 4.255 -0.451 -0.557 -0.307 0.318 

 (2.606) (2.774) (1.276) (1.324) (1.641) (1.678) 

∆N. of man. firms -0.149 -0.133 -0.388 -0.383 -0.434 -0.462 

 (0.404) (0.406) (0.334) (0.334) (0.413) (0.417) 

∆Tot patents -30.558*** -30.590*** -14.620* -14.629* -27.843*** -27.786*** 

 (10.621) (10.628) (7.546) (7.555) (9.039) (9.109) 

Pop dens 12.323 12.162 11.593** 11.544** 11.230* 11.522** 

 (7.942) (7.914) (4.573) (4.555) (5.636) (5.696) 

Adj. R2 0.163 0.164 0.297 0.297 0.234 0.239 

Obs. 289 289 289 289 289 289 
Dependent variables: Relative change in incremental AMT patents (Columns I and II), incremental total patents (Columns III 

and IV) and incremental ICT patents (Columns V and VI). Incremental patents are defined as the complement of the top 3% 

radical patents in terms of OECD radicalness measure, by main technology field and cohort. The relative change in patents is 

defined as the difference in patents over the period 2002-2012, divided by the average number of patents across the two periods 

2002 and 2012. ∆RSH, ∆RMSH and ∆RCSH are measured as the difference in the share of employment between 2001 and 
1990. Control variables are in delta, measured as the difference between 1990 and 2001. Pop dens is in 2001 levels. Regressions 

are weighted by the 2001 per-capita number of local total patents. Robust standard errors, in parentheses, are clustered at the 

State level. * p < .1, ** p < .05, *** p < .01 
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APPENDIX A 

 

Table A1. Robustness: De-routinisation and AMT innovation, total innovation and ICT 

innovation (average growth rates over three 3-year windows) 

 (AMT) (AMT) (TOT) (TOT) (ICT) (ICT) 

∆RSH -3.341**  -0.964**  -1.105*  

 (1.291)  (0.383)  (0.594)  

∆RMSH  -4.431***  -0.943**  -0.754 

  (1.172)  (0.461)  (0.702) 

∆RCSH  -2.086  -0.989*  -1.509** 

  (1.350)  (0.494)  (0.686) 

∆High-Skill 2.214 1.731 0.106 0.116 0.336 0.492 

 (1.459) (1.412) (0.357) (0.387) (0.430) (0.468) 

∆N. of man. firms -0.425* -0.403* -0.131 -0.132 -0.121 -0.128 

 (0.238) (0.225) (0.099) (0.099) (0.140) (0.139) 

∆Tot patents -7.076 -7.121 -6.014*** -6.013*** -11.970*** -11.956*** 

 (4.400) (4.401) (2.223) (2.227) (2.539) (2.542) 

Pop dens -1.235 -1.461 3.240** 3.244** 3.852* 3.925* 

 (4.241) (4.125) (1.601) (1.608) (2.064) (2.096) 

Adj. R2 0.091 0.099 0.240 0.240 0.148 0.149 

Obs. 289 289 289 289 289 289 
Dependent variables: Relative change in AMT patents (Columns I and II), total patents (Columns III and IV) and ICT patents 

(Columns V and VI). The relative change in patents is defined as the average growth rate in patents over the 3-year time 

windows 2002-2005, 2005-2008 and 2008-2011. ∆RSH, ∆RMSH and ∆RCSH are measured as the difference in the share of 
employment between 2001 and 1990. Control variables are in delta, measured as the difference between 1990 and 2001. Pop 

dens is in 2001 levels. Regressions are weighted by the 2001 per-capita number of local total patents. Robust standard errors, 

in parentheses, are clustered at the State level. * p < .1, ** p < .05, *** p < .01 

 

 

 
Table A2. Robustness: De-routinisation and AMT innovation between 2002 and 2012, 

controlling for temporary workers and tertiary educated workers. 

 (AMT) (AMT) (AMT) (AMT) (AMT) (AMT) 

∆RSH -7.037**  -7.203**  -6.908**  

 (2.864)  (2.737)  (2.830)  

∆RMSH  -7.861**  -7.906**  -7.763** 

  (3.183)  (3.065)  (3.121) 

∆RCSH  -6.080*  -6.384*  -5.898 

  (3.540)  (3.535)  (3.538) 

∆High-Skill 5.744** 5.379** 5.573** 5.254* 5.623** 5.233* 

 (2.506) (2.654) (2.570) (2.728) (2.508) (2.664) 

∆N. of man. firms 0.002 0.021 -0.160 -0.146 0.007 0.028 

 (0.399) (0.395) (0.405) (0.406) (0.403) (0.397) 

∆Tot patents -31.994*** -32.043*** -31.646*** -31.720*** -33.178*** -33.301*** 

 (10.204) (10.189) (10.506) (10.551) (10.043) (10.053) 

Pop dens 10.354 10.116 13.416 13.219 8.898 8.562 

 (7.748) (7.649) (8.711) (8.832) (8.097) (8.169) 

∆Temporary 4.218 4.294   4.417 4.509 

 (3.175) (3.150)   (3.246) (3.224) 

∆Tertiary   0.482 0.523 1.046 1.109 

   (1.626) (1.681) (1.500) (1.570) 

Adj. R2 0.180 0.181 0.171 0.172 0.180 0.181 
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Obs. 289 289 289 289 289 289 
Dependent variables: Relative change in AMT patents. The relative change in patents is defined as the difference in patents 

over the period 2002-2012, divided by the average number of patents across the two periods 2002 and 2012. ∆RSH, ∆RMSH 
and ∆RCSH are measured as the difference in the share of employment between 2001 and 1990. Control variables are in delta, 

measured as the difference between 1990 and 2001. Temporary workers and tertiary educated are measured as the variation in 

the shares between 1990 and 2000. Pop dens is in 2001 levels. Regressions are weighted by the 2001 per-capita number of 

local total patents. Robust standard errors, in parentheses, are clustered at the State level. * p < .1, ** p < .05, *** p < .01 

 

 

Table A3. Robustness: De-routinisation and incremental AMT innovation, incremental total 

innovation and incremental ICT innovation (alternative measures of incremental patents)  

 (AMT) (AMT) (TOT) (TOT) (ICT) (ICT) 

∆RSH -7.258**  -3.923***  -4.111**  

 (2.711)  (1.368)  (1.913)  

∆RMSH  -7.970**  -4.078**  -2.586 

  (3.072)  (1.684)  (2.369) 

∆RCSH  -6.438*  -3.746**  -5.868*** 

  (3.472)  (1.570)  (2.168) 

∆High-Skill 4.958* 4.643* -0.258 -0.327 0.082 0.759 

 (2.522) (2.668) (1.297) (1.332) (1.647) (1.661) 

∆N. of man. firms -0.184 -0.170 -0.435 -0.432 -0.481 -0.512 

 (0.388) (0.389) (0.341) (0.341) (0.415) (0.418) 

∆Tot patents -32.826*** -32.855*** -13.985* -13.992* -27.534*** -27.472*** 

 (10.433) (10.445) (7.520) (7.528) (9.080) (9.158) 

Pop dens 12.838 12.691 11.169** 11.137** 10.516* 10.831* 

 (7.831) (7.816) (4.649) (4.644) (5.716) (5.788) 

Adj. R2 0.181 0.182 0.277 0.277 0.232 0.237 

Obs. 289 289 289 289 289 289 
Dependent variables: Relative change in incremental AMT patents (Columns I and II), incremental total patents (Columns III 

and IV) and incremental ICT patents (Columns V and VI). Incremental patents are defined as the complement of the top 3% 

radical patents in terms of 5-year forward citations, by main technology field and cohort. The relative change in patents is 

defined as the difference in patents over the period 2002-2012, divided by the average number of patents across the two periods 

2002 and 2012. ∆RSH, ∆RMSH and ∆RCSH are measured as the difference in the share of employment between 2001 and 
1990. Control variables are in delta, measured as the difference between 1990 and 2001. Pop dens is in 2001 levels. Regressions 

are weighted by the 2001 per-capita number of local total patents. Robust standard errors, in parentheses, are clustered at the 

State level. * p < .1, ** p < .05, *** p < .01 
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APPENDIX B 

 

Table B5. Panel data regressions of AMT innovation on routine workers share from 2001 to 

2012 (1-year lag) 

Model (Neg._Bin.) (Poisson) (LPM) 

RSH 1.483*** 2.026*** 1.085** 

 (0.063) (0.045) (0.506) 

High-Skill empl share 2.471*** 2.625*** 1.546*** 

 (0.059) (0.042) (0.480) 

N. of manufacturing firms (log) -0.167*** -0.217*** -0.162** 

 (0.005) (0.004) (0.063) 

Pop dens 0.033*** -0.007*** 0.074* 

 (0.003) (0.002) (0.038) 

Tot patents (log) 0.858*** 0.849*** 0.602*** 

 (0.004) (0.003) (0.030) 

Year FE Yes Yes Yes 

MSA FE Yes Yes Yes 

Adj. R2   0.163 

Obs. 3408 3408 3480 
Dependent variables: Number of AMT patents in model I (Neg. Bin.) and in model II (Poisson); log transformed number of 

AMT patents in model III (LPM). Given the nature of the dependent variable, models I and II estimate count data models. 

Column I present the results of a Negative Binomial panel regression in order to account for potential over dispersion in the 

number of AMT patents. A Poisson panel model is estimated in model II, while column III presents the results of linear 

probability panel regression after the logarithmic transformation of the number of AMT patents. All independent variables 

have been lagged by 1 year. RSH and High-Skill empl share are measured, respectively, as the yearly share of routine 

employment and high-skill employment by MSA. N. of manufacturing firms and Tot patents are expressed in log, Pop dens is 

in levels. All regression control for year and MSA fixed effects and cover the period from 2001 to 2012. Robust standard errors 

are in parentheses. * p < .1, ** p < .05, *** p < .01 

 
Table B2. Panel data regressions of AMT innovation on routine workers share from 2001 to 

2012 (2-years lag) 

Model (Neg._Bin.) (Poisson) (LPM) 

RSH 0.848*** 1.978*** 1.195** 

 (0.068) (0.046) (0.531) 

High-Skill empl share 1.192*** 2.110*** 0.373 

 (0.065) (0.043) (0.504) 

N. of manufacturing firms (log) -0.103*** -0.316*** -0.189*** 

 (0.005) (0.004) (0.067) 

Pop dens 0.039*** -0.031*** 0.009 

 (0.003) (0.002) (0.040) 

Tot patents (log) 0.697*** 0.618*** 0.473*** 

 (0.004) (0.003) (0.032) 

Year FE Yes Yes Yes 

MSA FE Yes Yes Yes 

Adj. R2   0.114 

Obs. 3102 3102 3190 
Dependent variables: Number of AMT patents in model I (Neg. Bin.) and in model II (Poisson); log transformed number of 

AMT patents in model III (LPM). Given the nature of the dependent variable, models I and II estimate count data models. 

Column I present the results of a Negative Binomial panel regression in order to account for potential over dispersion in the 

number of AMT patents. A Poisson panel model is estimated in model II, while column III presents the results of linear 

probability panel regression after the logarithmic transformation of the number of AMT patents. All independent variables 

have been lagged by 2 years. RSH and High-Skill empl share are measured, respectively, as the yearly share of routine 

employment and high-skill employment by MSA. N. of manufacturing firms and Tot patents are expressed in log, Pop dens is 

in levels. All regression control for year and MSA fixed effects and cover the period from 2001 to 2012. Robust standard errors 

are in parentheses. * p < .1, ** p < .05, *** p < .01 


