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Abstract

We establish novel results on generalized fractal operators with condensation and ap-
ply them in the analysis of a macroeconomic-epidemiological model characterized by deep
uncertainty under the assumption that it is impossible to quantify with certainty the exact
number of current and future infectives. The setting is simple: the level of prevalence of
a communicable disease determines the size of the healthy labor force, affecting output
and consumption; health policy is publicly funded via income taxation but the availabil-
ity of resources is endogenously determined since depending on disease prevalence. Since
the high degree of uncertainty is reflected also in the policymakers’ choice of the policy
tools to limit the spread of the disease, we investigate how the peculiarities of different
policymakers (a short-sighted vs far-sighted approach) affect the asymptotic invariant dis-
tribution of macroeconomic activity. Specifically, we exploit the condensation term of the
fractal operator to characterize the consequence of short-sighted policies. Through numer-
ical simulations we find that, as we would expect, far-sighted policies lead to asymptotic
invariant probability distributions concentrating more mass on high levels of aggregate
consumption together with small numbers of infectives, while the invariant distribution
reached through short-sighted policies, besides concentrating more mass on low levels of
aggregate consumption together with large numbers of infectives, exhibits an additional
layer of (uniform) uncertainty generated by the condensation term.

1 Introduction

In this paper we enrich the theory on generalized fractal operators by establishing new results
that incorporate a condensation term into such operators for the case in which they transform
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probability distributions. The notion of condensation was introduced by Barnsley (1989) for
the classical notion of Iterated Function Systems (IFS) and then extended by Kunze and others
to the case of generalized fractal transforms (see, e.g., Kunze et al., 2012). Our results, by
establishing existence and uniqueness of a fixed point for fractal transforms acting on probabil-
ity densities and cumulative distributions when a condensation term is included, allow for the
application of deterministic operators that recursively generate dynamics for purely random
objects—densities or cumulative distributions—in macroeconomic models. Such an approach
seems to be especially suited in situations where the economic variables under study are charac-
terized by a diffuse uncertainty that prevents them to be treated as standard random variables,
so that tackling directly the probability distribution associated to them may turn out to be
more appropriate. Epidemics provide an intuitive example of such a situation.

The recent coronavirus epidemic has revealed the potential dramatic effects of infectious
diseases on macroeconomic outcomes. From the first case of COVID-19 reported in China in
late 2019, in a matter of few months the epidemic has reached a pandemic status in March
2020, and the entire world is still today (early 2021) understanding how to cope with its
devastating economic consequences which, because of its effects on workers and firms, range
from a large number of jobs losses to a substantial reduction in GDP (Dong et al., 2020; La
Torre et al., 2021a). This unexpected shock has severely hit all worldwide economies and no
single country has been spared by the disease outbreak, giving rise to a growing interest in
understanding the mutual relation between epidemics and macroeconomics. Borrowing from
previous works on economic epidemiology which mainly have a microeconomic focus (Anderson
et al, 2010; Gersovitz and Hammer, 2004; Goldman and Lightwood, 2002; Philipson, 2000),
and more specifically from those on macroeconomic epidemiology (Chakraborty et al., 2010;
Goenka and Liu, 2012; Goenka et al., 2014; La Torre et al., 2020), several studies analyze how
different types of public health policies, including preventive measures, prophylactic treatment,
social distancing, lockdowns, restrictions on individuals’ mobility, affect both the disease and
economic dynamics (Acemoglu et al., 2020; Alvarez et al., 2020; Eichenbaum et al., 2020;
La Torre et al., 2021a). These works obtain quite a wide range of conclusions regarding the
optimal intensity and duration of the different policy measures, highlighting that because of
the large degree of uncertainty characterizing the evolution of epidemics it is very difficult to
derive definitive conclusions. Indeed, epidemiological parameters including the recovery and the
infectivity rates, along with the number of individuals already exposed to the disease and of
those effectively infectives at different moments in time can only be roughly estimated and thus
it is not possible to perform an accurate model’s calibration (Acemoglu et al., 2020; La Torre
et al., 2021a). Starting from this result, that is, the high uncertainty in disease dynamics, our
paper aims to develop a simple macroeconomic-epidemiological framework in which health and
macroeconomic outcomes are strictly related and quantified not by numbers but by probability
densities.

The fact that uncertainty plays an essential role in driving macroeconomic dynamics and
thus needs to be taken into account in the determination of macroeconomic policy has been
known for long (Brock and Mirman, 1972; Rodrik, 1991; Olson and Roy, 2005; Baker et
al., 2016). However, in order to properly design public policy it is important to recognize
how different types of uncertainty affect macroeconomic outcomes, overcoming the simplistic
scenario-based analysis typically employed in macroeconomics. Indeed, a standard assumption
in macroeconomic theory is that the realization of a shock determines the specific value taken
by some variable with a specific probability. This kind of approach does not allow to account for
the high degree of uncertainty associated with parameter values and for how policymakers may
account for such a parameter uncertainty (Brainard, 1967; Brock and Durlauf, 2006; Hansen
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and Sargent, 2007; Born and Pfeifer, 2014). In particular, different policymakers may respond
to such an uncertainty by adopting a different combinations of policy tools or different levels of
policy instruments, bringing the effects of uncertainty to be reflected in the implemented policy
measures, giving rise to “deep uncertainty”. Deep uncertainty may involve the inability to iden-
tify the appropriate models or to quantify the relevant parameters to characterize a system’s
dynamics, the probability distributions to represent uncertainty about the model’s parameters,
and/or the desirability of alternative possible outcomes (Walker et al., 2013; Marchau et al.,
2019). Several studies have focused on a special case of deep uncertainty represented by ambi-
guity, which refers to the uncertainty about the model’s parameters, analyzing its implications
on macroeconomic policy in the context of short run economic fluctuations (Karantounias,
2013; Caprioli, 2015; Hollmayr and Matthes, 2015) and long run economic growth (Cozzi and
Giordani, 2011; La Torre et al., 2021b). Building on La Torre et al.’s (2021b) approach based
on iteration function systems on density functions, we develop a generalized fractal transforms
with condensation framework, in which in their response to an epidemic outbreak different
types of policymakers (short-sighted vs far-sighted) may implement different policy measures
which in turn yield uncertainty at aggregate level about the effective level of disease prevalence
and thus the effective level of economic activity. Unlike La Torre et al. (2021b), in this model
we shall focus on the condensation term, on which the original mathematical results of Sections
3 and 4 are based, as the parameter generating some degree of “deep uncertainty”. This setting
allows us to discuss the implications of deep uncertainty on the epidemiological-macroeconomic
steady state outcome.

Our work is closely linked to the literature on IFS generating stochastic dynamics converging
to invariant probabilities possibly supported on fractal sets in macroeconomic models, which,
in most cases, are one- or multi-sector growth models. The randomness characterizing such
models is most commonly, but not exclusively, assumed to be originated by exogenous shocks
on the productivity level (Montrucchio and Privileggi, 1999; Mitra et al., 2003; Mitra and
Privileggi, 2004, 2006, 2009; La Torre et al., 2011, 2015, 2018b); there exist also few works in
which shocks affect other variables, such as the pollution stock (Privileggi and Marsiglio, 2013;
La Torre et al., 2018a; Marsiglio and Privileggi, 2021). To the best of our knowledge, none of
these works has considered an epidemiological framework and how epidemic and macroeconomic
dynamics may mutually affect each other, while in most of them uncertainty is described by
a finite number of events, each occurring with a known probability, without considering the
implications of deep uncertainty on steady state outcomes. The only work in which uncertainty
is modeled as a form of ambiguity and thus it is taken into account in policymakers’ decisions
according to their degree of ambiguity aversion is La Torre et al.’s (2021b). Unlike them, who
assume that some specific parameter values are not precisely known, we consider a situation
in which the information about the value of a main variable (i.e., the number of infectives)
is not available and thus uncertainty at aggregate level affects the dynamic evolution of the
key macroeconomic variables. Moreover, we introduce a condensation term summarizing the
spread uncertainty related on any aspect of the epidemic in a scenario in which purposely—i.e.,
as a policy choice—no research activities are being carried out to gather such information.

Specifically, we analyze a very simple macroeconomic-epidemiological model in which the
level of prevalence of a communicable disease determines the size of the healthy labor force,
affecting output and consumption. We focus on a simple epidemic management program in
which health policy is entirely publicly funded via income taxation but the availability of re-
sources happens to be endogenously determined as they depend on disease prevalence. The
model is characterized by deep uncertainty as the number of infective individuals is not known
with precision and thus epidemiological and macroeconomic outcomes seem to be more appro-
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priately analyzed in terms of their density functions. Such a level of uncertainty is reflected
also in the policymakers’ choice of the policy tools to employ during the epidemic management
program. As different policymakers implement different policy measures, the effective level of
disease prevalence and thus the effective level of economic activity is highly uncertain, and thus
we can analyze how different types of policymaking (short-sighted vs. far-sighted) approaches
affect the asymptotic invariant distributions of macroeconomic activity, quantified both by con-
sumption and by the number of infectives. By means of a numerical simulation under a specific
parametrization we show that, if labor is sufficiently productive, far-sighted policies lead to
high consumption levels and low numbers of infectives in the long-run, while, short-sighted,
plainly redistributive policies asymptotically yield low consumption levels together with high
numbers of infectives. The novelty of our approach is that such outcomes are described in terms
of asymptotic invariant probability densities concentrating more mass on higher consumption
levels and on lower numbers of infectives in the former case, while in the latter case the opposite
occurs, with long-run invariant densities of consumption levels and infective numbers concen-
trating more mass on lower consumption levels and on higher numbers of infectives respectively.
Moreover, a constant condensation term associated to the latter scenario lets the asymptotic
densities in this case look flatter than in the former scenario; this is because a further layer of
deep uncertainty is being added by the condensation.

The paper is organized as follows. Section 2 discusses the mathematical tools that we will
employ in our analysis, presenting the theories of generalized fractal transforms, of Iterated
Function Systems on Maps (IFSM) and the notion of condensation. Sections 3 and 4 contain
our original mathematical results: they extend the theory of IFSM with condensation to the
case of density functions and cumulative distributions respectively. Section 5 discusses our
macroeconomic-epidemiological application and presents some numerical simulations. Section
6 as usual concludes and proposes directions for future research.

2 Mathematical Preliminaries

In this section we recall the main mathematical techniques that will be used in the sequel of
this paper and mainly focused on the notion of condensation. We first recall the definition of
Generalized Fractal Transform as this provides a general framework which includes all fractal
operators. We then present three different subsections dedicated to the notions of Iterated
Function Systems with Condensation, Iterated Function System with Probabilities and Con-
densation, and finally Iterated Function Systems on Mappings with Condensation. This section
introduces some classical mathematical preliminaries in fractal theory that will be used in the
following sections to introduce the original part of our paper.

2.1 Generalized Fractal Transforms

Let (X, d) be a metric space. A Generalized Fractal Transform (GFT) is an operator T : X → X

whose action on an element u ∈ X to get the element v ∈ X, v = Tu, is described by the
following procedure: starting from u, it first produces a set of N spatially-contracted copies
of u which are modified by means of a suitable range-mapping and then it recombines them
using an appropriate operator (Barnsley, 1989; Kunze et al., 2012). A crucial property within
the theory of GFT is the contractivity of T under appropriate conditions. Banach’s fixed point
theorem, in fact, the contractivity hypothesis guarantees the existence of a unique fixed point
ū = T ū that is a global attractor for X.
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Definition 1 (Contraction mapping; Banach, 1922). Let T : X → X be a mapping on a
complete metric space (X, d). Then T is said to be contractive if there exists a constant c ∈ [0, 1)
such that d (Tx, Ty) ≤ cd (x, y) for all x, y ∈ X. The smallest such c ∈ [0, 1) for which the
above inequality holds true is the contraction factor of T .

The following result, known as Banach’s Fixed Point Theorem, is perhaps the most famous
theorem regarding contraction maps on metric spaces and certainly central to fractal-based
methods.

Theorem 1 (Banach’s Fixed Point Theorem, 1922). Let T : X → X be a contraction mapping
on X with contraction factor c ∈ [0, 1) mapping on X. Then,

1. There exists a unique element x̄ ∈ X, the fixed point of T , for which T x̄ = x̄.

2. Given any x0 ∈ X, if we form the iteration sequence xn+1 = T (xn), then xn → x̄, i.e.,
d (xn, x̄) → 0 as n → ∞. In other words, the fixed point x̄ is globally attractive.

Theorem 1 states that, under the contractivity condition, there exists a unique fixed point
of T , to which any orbit in X converges.

2.2 Iterated Function Systems with Condensation

Given a compact metric space (X, d), we denote by H (X) the set of all nonempty compact
subsets of X. The distance between two sets A,B ∈ H (X) is defined by means of the classical
Hausdorff metric h defined as follows:

h (A,B) = max

{

max
x∈A

min
y∈B

d (x, y) ,max
x∈B

min
y∈A

d (x, y)

}

.

It can be proved (see, for instance, Barnsley, 1989) that (H (X) , h) is a complete metric space.
A set w of contraction mappings on X is defined to be an N -map Iterated Function System
(IFS) on X (see Barnsley, 1989; Hutchinson, 1981; Kunze et al., 2012). Each element of w is
a contraction map wi : X → X, i = 1, . . . , N , with contraction factors ci ∈ [0, 1). Associated
with an N -map IFS is the following set-valued mapping ŵ on the space H (X) of nonempty
compact subsets of X:

ŵ (A) :=
N
⋃

i=1

wi (A) , A ∈ H (X) .

Theorem 2 (Hutchinson, 1981). For A,B ∈ H (X),

h (ŵ (A) , ŵ (B)) ≤ ch (A,B) where c = max
1≤i≤N

ci < 1.

Corollary 1 (Hutchinson, 1981). There exists a unique set Â ∈ H (X), the attractor of the
IFS w, such that

Â = ŵ
(

Â
)

=
N
⋃

i=1

wi

(

Â
)

.

Moreover, for any B ∈ H (X), h
(

Â, ŵnB
)

→ 0 as n → ∞.
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The notion of condensation term was introduced by Barnsley and coworkers in Barnsley
(1989) for the classical notion of IFS and then extended by Kunze and others to the case of
generalized fractal transforms.1 In Kunze et al. (2012) several examples of generalized fractal
transforms with condensation term are presented as well as their applications to fractal image
processing and inverse problems. In particular it is shown that the condensation term arises
quite naturally when analyzing transformed fractal operators on the set of frequency-expanded
images via Fourier transforms.

Given a subset Γ ⊂ X, an IFS operator with condensation set Γ is defined as:

ŵΓ (A) :=

(

N
⋃

i=1

wi (A)

)

⋃

Γ, A ∈ H (X) .

The operator ŵΓ (A) satisfies the same properties of a classical IFS operator, as well summarized
in the following results.

Corollary 2 (Kunze et al.,2012). For A,B ∈ H (X),

h (ŵΓ (A) , ŵΓ (B)) ≤ ch (A,B) where c = max
1≤i≤N

ci < 1.

Corollary 3 (Kunze et al., 2012). There exists a unique set ÂΓ ∈ H (X), the attractor of the
IFS ŵΓ, such that

ÂΓ = ŵΓ

(

ÂΓ

)

=

(

N
⋃

i=1

wi

(

ÂΓ

)

)

⋃

Γ.

Moreover, for any B ∈ H (X), h
(

ÂΓ, ŵ
nB
)

→ 0 as n → ∞.

2.3 Iterated Function Systems with (Constant) Probabilities and
Condensation

An N -map Iterated Function System on (constant) Probabilities (IFSP) (w,p) is an N -map
IFS w with associated probabilities p = {p1, . . . , pN},

∑N

i=1 pi = 1. Let (X, d) be a compact
metric space and let M (X) denote the set of probability measures on (Borel subsets of) X.
The distance between two probability measures µ, ν in M (X) is determined by means of the
Monge-Kantorovich distance which is defined as follows:

dMK (µ, ν) = sup
f∈Lip1(X)

[
∫

f dµ−
∫

f d ν

]

.

where µ, ν ∈ M (X), and Lip1 (X) = {f : X → R | |f (x)− f (y)| ≤ d (x, y)}. It can be proved
(Hutchinson, 1981; Barnsley, 1989) that the metric space (M (X) , dMK) is complete.

The Markov operator associated with an N -map IFSP is a mapping M : M → M, is
defined as follows: For any µ ∈ M (X), ν = Mµ, and any measurable set S ⊂ X,

ν (S) = (Mµ) (S) =
N
∑

i=1

piµ
(

w−1
i (S)

)

.

Theorem 3 (Hutchinson, 1981). For µ, ν ∈ M (X),

dMK (Mµ,Mν) ≤ cdMK (µ, ν) .
1see Kunze et al. (2012) and the references therein.
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Theorem 4 (Hutchinson, 1981). There exists a unique measure µ̄ ∈ M, the invariant measure
of the IFSP (w,p), such that

µ̄ (S) = (Mµ̄) (S) =
N
∑

i=1

piµ̄
(

w−1
i (S)

)

for any measurable set S ⊂ X. Moreover, for any ν ∈ M (X), dMK (µ̄,Mnν) → 0 as n → ∞.

Theorem 5 (Hutchinson, 1981). The support of the invariant measure µ̄ of an N -map IFSP
(w,p) is the attractor A of the IFS w, i.e.,

supp µ̄ = A.

An approximation of the attractor of an IFSP could be determined by implementing the
following random dynamical system, known as Chaos Game: Starting from x0 ∈ X, let us
determine xt+1 = wσ (xt) where σ is chosen in the set {1, . . . , N} with probabilities p1, . . . , pN .
It can be proved2 that the orbit of this random dynamical system is dense in the attractor Â
of the IFS w.

Given a probability γ ∈ M and a trade-off parameter ξ ∈ [0, 1], let us define an N -map
IFSP with Condensation a mapping Mγ : M → M, defined as follows:

ν = Mγ,ξµ = ξ

N
∑

i=1

piµ ◦ w−1
i + (1− ξ) γ.

The following corollaries present the extension of the previous results to the case of IFSP with
condensation.

Corollary 4 (Kunze et al., 2012). For µ, ν ∈ M (X),

dMK (Mγ,ξµ,Mγ,ξν) ≤ cdMK (µ, ν) .

Corollary 5 (Hutchinson, 1981). There exists a unique measure µ̄γ,ξ ∈ M, the invariant
measure, such that

µ̄γ,ξ = Mµ̄γ,ξ = ξ

N
∑

i=1

piµ̄γ,ξ ◦ w−1
i + (1− ξ) γ

Moreover, for any ν ∈ M (X), dMK

(

µ̄γ,ξ,M
n
γ,ξν
)

→ 0 as n → ∞.

2.4 Iterated Function Systems on Mappings with Condensation

This section focuses on notion of IFSM (see Forte and Vrscay, 1995, for more details). The
definition of IFSM extend the one of IFS to the case of space of functions (Kunze et al., 2012)
and it can be used to generate integrable “fractal” functions.

Let us recall that Lp ([0, 1]), with p ≥ 1, is the space of p-integrable functions and that this
space is complete when it is equipped with the distance dp induced by the classical p-norm.
Ingredients of an N -map IFSM on Lp ([0, 1]) are:

1. a set of N contractive mappings w = {w1, w2, . . . , wN}, wi : [0, 1] → [0, 1], most often
affine in form:

wi (x) = six+ ai, 0 ≤ |si| < 1, i = 1, 2, . . . , N ; (1)
2See Kunze et al. (2012) for more details.
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2. a set of associated functions—the greyscale maps—φ = {φ1, φ2, . . . , φN}, φi : R → R.
Affine maps are usually employed:

φi (y) = αiy + βi. (2)

Associated with the N -map IFSM (w, φ) is the fractal transform operator T , the action of
which on a function u ∈ Lp ([0, 1]) is given by:

(Tu) (x) =
N
∑

i=1

′φi

(

u
(

w−1
i (x)

))

, (3)

where the prime means that the sum operates only on those terms for which w−1
i is defined.

The following result in Proposition 1 states that T is a Lipschitz map on Lp ([0, 1]).

Proposition 1. [Forte and Vrscay, 1995] For any p ≥ 1 we have that T : Lp ([0, 1]) → Lp ([0, 1])
and for any u, v ∈ Lp ([0, 1]) we have:

dp (Tu, Tv) ≤ Cdp (u, v)

where:

C =
N
∑

i=1

s
1

p

i |αi| .

Corollary 6. Suppose that C =
∑N

i=1 s
1

p

i |αi| < 1. Then T has a unique fixed point ū ∈
Lp ([0, 1]) and, for any u0 ∈ Lp ([0, 1]), the orbit generated un+1 = Tun converges to ū whenever
n → +∞.

The above corollary states that if
∑N

i=1 s
1

p

i |αi| < 1 then the IFSM operator is a contraction
on Lp ([0, 1]) and hence it has a unique fixed point ū that is attracting any orbit T nu0 generated
starting from any point u0 ∈ Lp ([0, 1]). Notice that if ū ∈ Lp ([0, 1]), p ≥ 1, then ū ∈ Lq ([0, 1])
for any 1 ≤ q ≤ p.

We now recall the definition of IFSM with condensation (Kunze et al., 2012). Given a fixed
function θ ∈ Lp ([0, 1]), let us construct the following IFSM operator with condensation θ:

(Tθu) (x) =
N
∑

i=1

′αiu
(

w−1
i (x)

)

+ θ (x) (4)

Let us notice that the operator Tθ collapses to the case of classical IFSM operator whenever
the condensation term θ is given by

θ (x) =
N
∑

i=1

βiIwi([0,1]) (x)

where Iwi([0,1]) (x) are the indicator functions of the sets wi ([0, 1]). The following result in
Proposition 2 states that Tθ is a Lipschitz map on Lp ([0, 1]).

Proposition 2 (Kunze et al., 2012). For any p ≥ 1 and fixed θ ∈ Lp ([0, 1]) we have that
Tθ : L

p ([0, 1]) → Lp ([0, 1]) and for any u, v ∈ Lp ([0, 1]) we have:

dp (Tθu, Tθv) ≤ Cdp (u, v)

where:

C =
N
∑

i=1

s
1

p

i |αi| .
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It is worth noting that we can give an explicit formula for the fixed point ū for the operator
T in (4). To see this, we note that T is an affine operator with T (u) = Au+ θ and so

ū = (I − A)−1
θ = θ + Aθ + A2θ + · · ·

(where the series converges since A is contractive). A nice way to think about this is that θ

provides the details of ū on the largest scale, then Aθ refines this on the next smaller scale,
then A2θ refines this by filling in even finer details, and so on.

3 IFSM with Condensation on Densities

We are now ready to show that, under certain hypotheses, an IFSM operator with condensation
is a contraction with respect to the usual norm introduced into the space of density functions.

Definition 2. For any p ≥ 1, the space of density functions Up is defined as follows:

Up =

{

u : [0, 1] → R, u ∈ Lp ([0, 1]) , u (x) ≥ 0 ∀x ∈ [0, 1] ,

∫

[0,1]

u (x) dx = 1

}

,

where dx denotes the Lebesgue measure on [0, 1].

Let us notice that Up ⊆ U q for any 1 ≤ q ≤ p. Now we show that under certain conditions
the IFSM operator with condensation Tθ earlier defined is a contraction mapping on Up. It is
trivial to prove that Up ⊂ Lp ([0, 1]) as defined earlier.

Proposition 3. The space Up is complete with respect to the usual dp metric.

Proof. The proof of this result follows from the following two facts: if fn is a converging
sequence of (a.e.) positive functions in Lp to f then there exists a subsequence that is a.e.
pointwise converging to f and this implies the positivity of f . Furthermore, if fn has integral
over [0, 1] equal to 1 then the Lp limit also possesses this property. �

Proposition 4. Suppose that the following conditions are satisfied:

i) αi ≥ 0 for all i = 1...N ,

ii) θ (x) ≥ 0 for a.e. x ∈ [0, 1],

iii)
∫ 1

0
θ (x) dx ∈ [0, 1),

iv)
∑N

i=1 siαi +
∫ 1

0
θ (x) dx = 1,

v)
∑N

i=1 s
1

p

i αi < 1.

Then the operator Tθ defined as:

(Tθu) (x) =
N
∑

i=1

′αiu
(

w−1
i (x)

)

+ θ (x) , (5)

maps Up into itself. Tθ is also a contraction over Up. This implies that Tθ has a unique fixed
point ūθ that is also a global attractor for any sequence taking the form:

un+1 = Tθun

for any initial condition u0 ∈ Up.
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Proof. The only property that needs to be proved is that Tθ maps Up into itself. From the
hypotheses on αi and θ, it follows that Tθu is positive whenever u is positive. To show that the
integral is one, let us do some computations:

∫

[0,1]

(Tu) (x) dx =

∫

[0,1]

N
∑

i=1

′αiu
(

w−1
i (x)

)

dx+

∫

[0,1]

θ (x) dx

=
N
∑

i=1

∫

[0,1]

′αiu
(

w−1
i (x)

)

dx+

∫

[0,1]

θ (x) dx

=
N
∑

i=1

∫

wi([0,1])

αiu
(

w−1
i (x)

)

dx+

∫

[0,1]

θ (x) dx

=
N
∑

i=1

si

∫

[0,1]

αiu (x) dx+

∫

[0,1]

θ (x) dx

=
N
∑

i=1

siαi

∫

[0,1]

u (x) dx+

∫

[0,1]

θ (x) dx = 1

�

Proposition 4 states that the operator Tθ maps Up into itself and the fixed point equation
Tθuθ = uθ has a unique solution that is attracting any orbit T nu0 for any u0 ∈ Up. In the
sequel we will suppose, for simplicity, p = 2 and we denote U2 by U . All the results can be
easily extended to the case p 6= 2.

4 IFSM with Condensation on Cumulative Distributions

In this section we extend the previous analysis to the case of cumulative distribution func-
tions and we show that, under certain hypotheses, an IFSM operator with condensation is a
contraction on the space of cumulative distribution function endowed with the dsup metric.

Definition 3. The space of cumulative distribution functions D is defined as follows:

D = {F : [0, 1] → [0, 1] , F (0) ∈ [0, 1], F (1) = 1, F is non-decreasing, F is right continuous} .

Notice that we allow for the possibility of F (0) > 0 to have a point mass at x = 0.

Proposition 5. The space D is complete with respect to the d∞ metric.

Proof. The proof of this result follows from the notion of uniform convergence induced by the
dsup metric. �

In order for our IFSM operator T to map D into itself we need a few simple conditions.
Letting C =

∑

i αi, we require that

1. αi ≥ 0 for i = 1, 2, . . . , n and C ≤ 1;

2. 1
C
θ ∈ D;

3. each mapping wi : [0, 1] → [0, 1] be non-decreasing.

10



Notice that we don’t require that wi is contractive or even continuous.
For each wi : [0, 1] → [0, 1], define its extended inverse ω−1

i : [0, 1] → [0, 1] by

ω−1
i (y) =











0, if y < wi (0) ;

sup{x : wi (x) ≤ y}, if y ∈ [wi (0) , wi (1)] ;

1, if y > wi (1) .

It is straightforward to show that ω−1
i is non-decreasing since wi is and also that ω−1

i is right-
continuous. This means that F ◦ ω−1

i ∈ D whenever F ∈ D.
Now we show that the following IFSM operator with condensation Tθ is a contraction on

the space of cumulative distribution functions. Let us define for any F ∈ D the operator TF
as follows (recall we have the condition that (

∑

i αi)
−1

θ ∈ D):

TθF (x) =
N
∑

i=1

αiF
(

ω−1
i (x)

)

+ θ (x) , x ∈ [0, 1] (6)

Proposition 6. Suppose that
∑

i αi < 1, then the operator Tθ defined as:

TθF (x) =
N
∑

i=1

αiF
(

ω−1
i (x)

)

+ θ (x) , x ∈ [0, 1]

maps D into itself and it is also a contraction over D. This implies that Tθ has a unique fixed
point F̄θ that is also a global attractor for any sequence taking the form:

Fn+1 = TθFn

for any initial condition F0 ∈ D.

Proof. The only property that needs to be proved is that Tθ is a contraction on D. In fact,
from the hypotheses on αi and θ, it follows that Tθ maps D into itself. To prove contractivity,
let us compute:

dsup (TθF1, TθF2) = sup
x∈[0,1]

|TθF1 (x)− TθF2 (x)| = sup
x∈[0,1]

∣

∣

∣

∣

∣

N
∑

i=1

αN
i=1

(

F1

(

ω−1
i (x)

)

− F2

(

ω−1
i (x)

))

∣

∣

∣

∣

∣

≤
N
∑

i=1

αi sup
x∈[0,1]

∣

∣

(

F1

(

ω−1
i (x)

)

− F2

(

ω−1
i (x)

))∣

∣ ≤
(

N
∑

i=1

αi

)

dsup (F1, F2) .

�

Proposition 6 states that the operator Tθ maps D into itself and the fixed point equation
TθFθ = Fθ has a unique solution that is attracting any orbit T n

θ F0 for any F0 ∈ D.

5 A Macroeconomic-Epidemiological Application

We now consider a very simple epidemiological-macroeconomic model describing the dynam-
ics of an infectious disease which affects economic production and how alternative policies may
affect epidemiological and macroeconomic outcomes, entirely captured by the level of consump-
tion which, since proportional to income, depends on disease prevalence. Such an example is

11



certainly too stylized to provide a true insight on how an epidemic outbreak may be handled
by the public authorities in order to minimize its socio-economic impact, but its purpose is
to show how the mathematical approach described in the previous sections can be meaningful
in macroeconomic applications as its structure contains the main, if minimal, traits that char-
acterize deterministic operators that transform probability distributions rather than numbers.
Specifically, we study the dynamics that are defined by parameters which are purely determin-
istic but act directly on the probability distribution, assumed to be a density, of consumption
over time rather than on the consumption itself. The uncertainty that in our basic model lets
consumption be a random variable with some probability density associated to it, originates
from the intrinsic randomness related to the outbreak of any epidemic, which, at any time,
makes it impossible to predict with certainty how many people in the population are currently
infected and with even less certainty how many will be infected in the future periods.

5.1 A Simple Epidemic Dynamic

Independently of the specific epidemiological setup considered, during the early phase on an
epidemic we can describe the evolution of the infectives (i.e., individuals who have already
contracted a disease and can transmit it to others via social contacts) through a simple linear
equation (La Torre et al. 2021a). Specifically, the epidemic dynamics is fully characterized
by one parameter measuring the net infectives growth rate, quantifying the infectivity rate
adjusted for recovery and the effects of different policy measures. For the sake of simplicity and
without loss of generality we assume that the population size is normalized to 1, so that the
level and share of infectives perfectly coincide. We consider two alternative scenarios: an active
policy, which we will index with i = 1, in which the policymaker relies on a broad range of
economic and health measures to limit and control the spread of the epidemics (like lockdown,
social distancing, prophylactic intervention, vaccination, travel bans, etc.), and a laissez-faire
situation in which no policy is being taken at all, labelled with i = 2. To each scenario i = 1, 2
we associate an affine map defining the infectives dynamics according to

It+1 =

{

sIt if i = 1
(1− s) It + (1− s) if i = 2,

(7)

where 0 < s < 1 denotes the net infectives growth rate while 0 < (1− s) < 1 represents
the gross infectives growth rate. Therefore, an active policy reduces the disease incidence and
thus also disease prevalence over time. Apart from the infectives growth term, in the laissez-
faire scenario the disease dynamics is also increased by the additive constant3 a2 = (1− s)
representing a further spread of infections independent of public health policy (due to new
infections associated with social contacts with individuals outside the economy’s borders, as for
example to business travels or commuting). Under an active policy we assume that interactions
with other economies are limited to the extent that this term is null, and so such an additive
constant does not show up in the first map.

Therefore, the first map in (7), describing the active policy scenario, can be interpreted as
an affine map in which the additive constant a1 = 0 represents the effect of economic policies
aimed at limiting social contacts outside the economy’s borders; it reduces the overall number
of infected people by transforming any number It ∈ [0, 1] into a number It+1 in the sub-interval
[0, s] ⊂ [0, 1]. The second map in (7), describing the laissez-faire scenario, increases the overall

3For simplicity we assume this additive constant to be equal to the gross infectives growth rate in order to
keep the population normalized to 1 at all moments in time.
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number of infected people by transforming any value It ∈ [0, 1] into a value It+1 in the sub-
interval [1− s, 1] ⊂ [0, 1]. We can think of the latter map as the one describing the onset of an
epidemics in t = 0, in which no active policies take place because the epidemic has not burst
yet. The key assumption here is that the (unique) parameter s is well known to policymakers,
or, equivalently, that they are aware of an emergency plan envisaging exactly how a potential
epidemic can spread and what options are available to contain it.

5.2 The Macroeconomic Setting

By maintaining a balanced budget at any moment in time, policymakers finance active contain-
ment policies through income taxation, leading thus to a diversion of resources away from other
alternative uses (i.e., consumption). Similar to (La Torre et al. 2020), output is produced ac-
cording to a linear production function employing only (healthy) labor as input, Yt = A (1− It),
where A > 0 denotes the labor productivity, while agents consume entirely their disposable in-
come: Ct = (1− τ)Yt = (1− τ)A (1− It), where 0 < τ < 1 denotes the tax rate. At time t the
total tax revenue, τYt, can be either employed in the active policy in which the policymaker
puts in place actions to limit and control the spread of the epidemics or it can be directly
transferred to the whole population as a lump-sum transfer to sustain income (for simplicity,
covering both healthy workers employed in production and the sick and unemployed, a “heli-
copter money” type of intervention). Hence, assuming that a fraction γ, with 0 < γ < 1, of the
tax revenue τYt is devoted to the active policy i = 1 while a fraction 1− γ of the tax revenue
τYt is devoted to the direct income assistance, consumption turns out to be given by:

Ct = (1− τ)Yt + (1− γ) τYt = [1− τ + (1− γ) τ ]Yt = (1− γτ)A (1− It) . (8)

We emphasize that all the economic parameters introduced so far, the labor productivity A,
the tax rate τ , and the coefficient γ that distributes the tax revenues between the two policies
available, are well known and controlled by policymakers.

To further simplify the model, with regard to the choice on parameter γ we consider only the
two alternative extreme policies, corresponding to the two scenarios i = 1, 2 for the spread of
the epidemics envisaged by (7), in which either all tax revenues are employed in active policies
to contain disease prevalence or all of them are employed to sustain income through lump-sum
transfers to the population, without any active policy aimed at disease containment. That is,
we assume that γ = 1 for the i = 1 active policy, while γ = 0 for the i = 2 laissez-faire scenario.
Hence, at each time t consumption is given by:

Ct =

{

(1− τ)Yt if i = 1
(1− τ)Yt + τYt = Yt if i = 2,

or equivalently:

Ct =

{

(1− τ)A (1− It) if i = 1
A (1− It) if i = 2,

(9)

while, as Ct = (1− τ)A− (1− τ)AIt when i = 1 and Ct = A− AIt when i = 2, we have

It =

{

1− 1
(1−τ)A

Ct if i = 1

1− 1
A
Ct if i = 2,

(10)

which, by using (7) and (10), leads to the following consumption dynamics:

Ct+1 = (1− τ)A (1− It+1) = (1− τ)A (1− sIt) = (1− τ)A

[

1− s+
s

(1− τ)A
Ct

]

= sCt + (1− τ) (1− s)A if i = 1,
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Ct+1 = A (1− It+1) = A [1− (1− s) It − (1− s)] = A

[

s− (1− s)

(

1− 1

A
Ct

)]

= A

(

2s− 1 +
1− s

A
Ct

)

= (1− s)Ct + (2s− 1)A if i = 2,

that is,

Ct+1 =

{

w1 (Ct) = sCt + (1− τ) (1− s)A if i = 1
w2 (Ct) = (1− s)Ct + (2s− 1)A if i = 2.

(11)

Note that this construction holds under the simplifying assumption that the active policy
leading to the infectives dynamics It+1 = sIt in the scenario i = 1 requires funds equal to the
whole tax revenue τYt, regardless on how much it is. In other words, we assume that, whenever
the whole amount τYt is employed in containment policies, they always manage to reach the
target a1 = 0 associated to the first map in (7); this may be possible because in order to limit
the spread of infections independent of health policy, border closure is an economic costless
intervention independent of τYt.

According to (9), besides depending on the tax rate τ , consumption Ct depends directly on
the number of infected workers, It. As the recent coronavirus epidemic has shown, there is a
large degree of uncertainty associated with the actual number of infectives, both in the current
and in the future periods. Therefore, it seems sensible to treat the number of infectives at
time t, It, as a random variable affected by the uncertainty characterizing the epidemic trend
or the future (desired or undesired) effects of containment policies. Thus, in the sequel we
assume that It is a random variable with an associated density function vt, to which, according
to the one-to-one correspondence between Ct and It defined by (9) and (10), implies that also
consumption Ct is a random variable with associated some density ut.

5.3 From Numeric Variables to Densities

In general, if xt is a random variable depending on the underlying probability space X = [0, 1]
with density ut, and evolving over time according to xt+1 = wi (xt) = sixt + ai then, denoting
by wi ([0, 1]) the image set of wi, for any δ1 ≤ δ2 such that [δ1, δ2] ⊆ wi ([0, 1]),

∫ δ2

δ1

ut+1 (y) dy = Pr (δ1 ≤ xt+1 ≤ δ2) = Pr (δ1 ≤ sixt + ai ≤ δ2)

= Pr (δ1 − ai ≤ sixt ≤ δ2 − ai) = Pr

(

δ1 − ai

si
≤ xt ≤

δ2 − ai

si

)

=

∫

δ2−ai
si

δ1−ai
si

ut (y) dy . (12)

By setting

y = w−1
i (z) =

z − ai

si
⇐⇒ z = w (y) = siy + ai,

the integral in (12) boils down to:

∫ δ2

δ1

ut+1 (y) dy =

∫

δ2−ai
si

δ1−ai
si

ut (y) dy =

∫ w−1(δ2)

w−1(δ1)

ut (y) dy =

∫ δ2

δ1

ut

[

w−1 (z)
] (

w−1
)′
(z) dz

=
1

si

∫ δ2

δ1

ut

[

w−1 (z)
]

dz .
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As this is true for any pair δ1, δ2 such that δ1 ≤ δ2 and [δ1, δ2] ⊆ wi ([0, 1]), we can summarize
the temporal evolution of the density ut of xt by means of the following operator T ∗ : U2 → U2

defined as:

ut+1 = T ∗ut =
1

si
ut ◦ w−1. (13)

Whenever N maps of the form xt+1 = wi (xt) = sixt + ai, for i = 1, . . . , N , are considered,
such a construction can be generalized either to the operator T : L2 ([0, 1]) → L2 ([0, 1]) defined
in (3) according to

ut+1 = Tut =
N
∑

i=1

′ 1

si
ut ◦ w−1

i ,

where the prime means that the sum operates only on those terms for which w−1
i belong to

[0, 1], or to the operator T ∗
θ : L2 ([0, 1]) → L2 ([0, 1]) defined in (4) as

ut+1 = T ∗
θ ut =

N
∑

i=1

′ 1

si
ut ◦ w−1

i + θ. (14)

whenever a condensation term θ ∈ L2 ([0, 1]) is being included. Clearly, as, according to (13),

each single term 1
si
ut◦w−1

i in (14) defines a density over [0, 1] such that
∫ 1

0
1
si
ut

(

w−1
i (x)

)

dx = 1,

necessarily
∫ 1

0

[

∑N

i=1
′ 1
si
ut

(

w−1
i (x)

)

+ θ (x)
]

dx > 1 and thus the whole term T ∗
θ ut cannot be a

density itself. In order to build an operator that maps densities into densities, Tθ : U2 → U2,
we must introduce constants ωi and consider a condensation term θ so that the weights defined
as αi =

ωi

si
, for i = 1...N , together with θ satisfy conditions (i)–(v) of Proposition 4. Under

these assumptions Proposition 4 guarantees that the operator defined as

Tθu =
N
∑

i=1

′ωi

si
u ◦ w−1

i + θ (15)

maps U2 into itself and converges to a unique fixed point ūθ ∈ U2.

5.4 An IFSM Operator with Condensation on Densities

For the specific model we are discussing here we set N = 2 and consider the IFS (11) defined by
the two maps w1 and w2 transforming Ct into Ct+1 under the two alternative policy scenarios
i = 1 (active policy) and i = 2 (laissez-faire). Rather than applying such a dynamic to the
numeric variable consumption, Ct, under the assumption that consumption is highly uncertain
due to its dependence on the number of infected workers It according to (9), we consider the
probability density ut associated to Ct at time t and study its time evolution by defining the
following operator Tθ : U

2 → U2:

ut+1 = Tθut =
ω1

s1
ut ◦ w−1

1 +
ω2

s2

(

ut ◦ w−1
2 + θ

)

, (16)

in which the second term, associated to the map w2 describing the evolution of consumption
under laissez-faire, includes the exogenous condensation term θ (C) having the purpose of mod-
eling the uncertainty specifically related to the laissez-faire scenario, in which neither policies
nor research to gather information on how the epidemics spreads are undertaken; it has the
effect of diffusing the probability distribution over the space of all possible consumption levels
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by adding a (possibly uniform) positive probability to all such values, thus adding a dispersed
uncertainty component to this specific scenario. Hence, operator Tθ in (16) can be written as

Tθut =
ω1

s1
ut ◦ w−1

1 +
ω2

s2
ut ◦ w−1

2 +
ω2

s2
θ,

resembling the formulation in (15) in which the condensation function ω2

s2
θ (C) appears to be

exogenous with respect to both scenarios i = 1, 2 considered. In what follows we shall assume
that both weights α1 =

ω1

s1
and α2 =

ω2

s2
together with the condensation term α2θ (C) = ω2

s2
θ (C)

satisfy conditions (i)–(v) of Proposition 4, so that the sequence of densities ut associated to
consumption at each time t generated by successive iterations of operator Tθ in (16) converges
to a unique time-invariant density ūθ.

Before discussing the interpretation of the constants ω1 and ω2 in (16), we further restrict
the assumptions on the model’s parameters by assuming that labor productivity satisfies A > 1
and by setting

s = (1− s) =
1

2
and τ = 1− 1

A
. (17)

Under conditions (17) the dynamics defined by (11) become

Ct+1 =

{

w1 (Ct) =
1
2
Ct +

1
2

if i = 1

w2 (Ct) =
1
2
Ct if i = 2,

(18)

having the properties that the invariant (trapping) region for consumption is the interval [0, 1],
i.e., w1 ([0, 1])∪w2 ([0, 1]) = [0, 1], and that the images of the maps w1 and w2 intersect on the
unique middle point 1

2
, i.e., w1 ([0, 1]) ∩ w2 ([0, 1]) =

{

1
2

}

, thus satisfying the so called almost
no-overlap property. Moreover, if A > 1 condition 0 < τ < 1 certainly holds. Note that for the
parameterization in (17) the dynamics of consumption defined by (18) becomes the same as
those of the infectives in (7), only with the maps switched between the two scenarios because
more infections correspond to less consumption and viceversa. This relationship holds because
we, crucially, assume that A > 1; in other words, the technology available in production lets
labor to be sufficiently productive so to generate a substantial output increase which is worth
the tax revenues τYt employed in the active policy scenario aimed at increasing the number
of healthy workers. Such an assumption determines the property that in (18) the map w1

lies all above the map w2, thus associating larger consumption to a population of less infected
workers.4

In this specific model, provided that conditions (i)–(v) of Proposition 4 are satisfied (namely,

ωi ≥ 0 for i = 1, 2, θ (C) ≥ 0 for a.e. C ∈ [0, 1],
∫ 1

0
θ (C) dC ∈ [0, 1), ω1+ω2+2ω2

∫ 1

0
θ (C) dC =

1 and
√
2 (ω1 + ω2) < 1), the constants ω1 and ω2 to be associated to each policy scenario, i = 1

4We investigated different values for parameters s,A and τ for the dynamics defined by (11) and realized
that, in order to have non negative consumption and a tax rate satisfying 0 < τ < 1, the range of values for
the net infectives growth rate parameter s happens to be quite narrow: 1

2
≤ s < 3

5
. Whenever 1

2
< s < 3

5
two

different possibilities occur: a situation similar to the case discussed in the text in which w1 > w2 whenever
0 < τ < 2−3s

1−s
, so that active policies financed by taxation have a positive effect on output and consumption,

and a situation in which w1 < w2 whenever 2−3s

1−s
< τ < 1, when active policies financed by taxation turn out to

depress output and consumption while lassaize-faire together with lump-sum transfers to the population yields
higher aggregate consumption. In both situations the invariant consumption set is a proper subinterval of [0, 1]
and the maps w1, w2 have overlapping images. While such variants of the model may provide interesting insights
from the economic perspective, they are beyond the scope of the example discussed in this section, which has the
only purpose of illustrating the approach described in the previous sections based on the deterministic operator
Tθ defined in (5).
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(active policy) and i = 2 (laissez-faire) respectively, in operator (16) have the role of considering
how different policymakers (governments) may attribute relatively different importance to the
two alternative policies i = 1, 2. Whenever a government is elected, it has a strong pressure
from its electors to adopt the latter policy, which envisages direct monetary transfers to the
population, which are actually unproductive and can only sustain income, rather than an
indirect (and more efficient) welfare effect that occurs through the technology in the productive
sector (A > 1), but the latter policy requires a reduction in consumption in the short term due to
taxation (not compensated by the direct lump-sum transfers), so that myopic electors prefer the
laissez-faire policy i = 2 which, besides increasing disease prevalence, also reduces consumption
in the long-run through a missing opportunity due to under-capacity in the productive sector.
In short, as in this simple model the issuance of public debt is not allowed, the i = 1 active
policy, besides reducing the number of infectives, may be seen as a long-run investment policy
to be confronted with a myopic i = 2 policy based exclusively on short-run income assistance.
From this perspective, different relative values for the pairs ω1 and ω2 in operator (16) may
denote different types of governments: ω1 < ω2 characterizes a “short-sighted” government,
while ω1 > ω2 characterizes a “far-sighted” government. Such a construction allows for a wide
range of choices for the ω1, ω2 parameters’ values and for the condensation term θ (C) to study
how different types of government lead to different asymptotic invariant distributions (densities)
for consumption.

Note that this model is based on the construction of a truly deterministic operator—Tθ

in (16), which depends on the parameters s, A, τ, ω1, ω2 that, together with the condensation
term θ (C), under our assumptions are all determined with certainty—that transforms density
functions into density functions. Specifically, we have explicitly chosen not to assume a convex
linear combination of tax revenues being devoted to both policies (transfers together with
disease containment policy), that is, we have ruled out any value 0 < γ < 1 in the definition of
disposable income according to (8) and considered only the extreme alternative policies (γ = 1
when i = 1 and γ = 0 when i = 2) in the deterministic model, only to mix them up by means
of the weights α1 = ω1

s
= 2ω1 and α2 = ω2

s
= 2ω2 through the (deterministic) operator Tθ in

(16).

5.5 Numerical Simulations

In the sequel we shall assume that the condensation term describes a uniform noise exoge-
nously added to the consumption density only in the laissez-faire scenario, i.e., θ (C) ≡ θ.
The interpretation of such a type of condensation term is that, because in the laissez-faire sce-
nario no research effort to gather information on how the epidemics spreads—and thus on how
consumption is being affected by the number of infected workers—is being undertaken, the in-
trinsic uncertainty on the distribution of infectives is increased by a further uniform component
resembling some “veil of ignorance”.

Hence, taking into account all assumptions introduced so far, the operator Tθ with conden-
sation defined in (16) becomes:

Tθut = 2ω1ut ◦ w−1
1 + 2ω2ut ◦ w−1

2 + 2ω2θ, (19)

with coefficients ω1, ω2 and θ that must satisfy conditions (i)–(v) of Proposition 4; specifically:

ω1, ω2, θ ≥ 0, ω1 + ω2 + 2ω2θ = 1, ω1 + ω2 <
1√
2
. (20)

From the second condition we get

ω2 =
1− ω1

1 + 2θ
, (21)
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which, when replaced into the third condition, easily yields

ω1 <
1 + 2θ −

√
2√

2
.

The last inequality, together with the first condition in (20), requires that 1 + 2θ −
√
2 > 0,

that is,

θ >
1√
2
− 1

2
≃ 0.21.

We set θ = 1
4
= 0.25 and consider two pairs of values for ω1 and ω2 that satisfy (21):

ω1 = 5
6
, ω2 = 1

9
compatible with a “far-sighted” government, and ω1 = 1

10
, ω2 = 3

5
compatible

with a “short-sighted” government. As far as the initial density of consumption before the
epidemic outbreak is concerned, we assume that u0 (C) = 3C2, which is increasing and thus
representing a probability distribution that concentrates most of the mass on higher values of
consumption. Conversely, we conjecture that the probability distribution of infectives before
the epidemic outbreak is decreasing, thus concentrating most of the mass on lower values
of disease prevalence; specifically, for the infectives at time t = 0, I0, we assume a density
v0 (I) = 3 (I − 1)2, which is symmetric with respect to u0.

To study the evolution over time of the density vt associated to the number of infectives we
consider the same operator Tθ as defined in (19) in which the two maps w1 and w2 in (18) are
exchanged, that is, it is defined according to

It+1 =

{

w1 (It) =
1
2
It if i = 1

w2 (It) =
1
2
It +

1
2

if i = 2,
(22)

while the condensation term corresponding to the laissez-faire scenario i = 2 remains the same
as that considered for consumption: θ (I) = 2ω2θ.

A modified version of the algorithm5 used in La Torre et al. (2021b) allows for plotting the
density functions ut of consumption (as well as the densities vt of infections) obtained through
successive iterations of operator Tθ defined in (19) starting from the initial density u0 (C) = 3C2

[or using the same operator Tθ on the dynamics of infection given by (22) starting from the initial
density v0 (I) = 3 (I − 1)2]. For the coefficients ω1 = 5

6
and ω2 = 1

9
describing the behavior

of a “far-sighted” government, Figure 1 plots the first 7 iterations of operator Tθ applied to
the density on consumption according to (18) starting from the initial density u0 (C) = 3C2,
while Figure 2 plots the evolution of the corresponding cumulative distribution functions Ft

associated to the densities ut reported in Figure 1. The latter plots can be interpreted as the
evolution of cumulative distributions generated by the operator TθF defined in (6) of Section 4
for the special case in which the initial probability distribution is defined by means of a density.

5The detailed code is available upon request.
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Figure 1: First 7 iterations of operator Tθ defined in (19) applied to the density of consumption for
ω1 =

5
6 and ω2 =

1
9 starting from u0 (C) = 3C2.
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Figure 2: Cumulative distribution functions associated to the densities ut in Figure 1.
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Figure 3: First 7 iterations of operator Tθ defined in (19) applied to the density of infected people
for ω1 =

5
6 and ω2 =

1
9 starting from v0 (I) = 3 (I − 1)2.
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Figure 4: Cumulative distribution functions associated to the densities vt in Figure 3.

Figure 3 plots the first 7 iterations of operator Tθ applied to the density on the number of
infectives starting from the initial density v0 (I) = 3 (I − 1)2 for the same values ω1 = 5

6
and

ω2 =
1
9
, while Figure 4 plots the evolution of the corresponding cumulative distribution functions

Ft associated to the densities vt reported in Figure 3. Clearly, as the number of infectives
evolves according to the dynamics (22) described by the same maps w1 and w2 as in (18) only
exchanged in their order, both densities and cumulative distributions in Figures 3–4 appear to
be perfectly symmetric with respect to those in Figures 1–2, so that higher probability values
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on larger consumption correspond to lower probability values on larger numbers of infectives
and viceversa. Note that, as Proposition 4 establishes uniqueness of the asymptotic invariant
density, the densities vt pictured in Figure 3 (as well as the cumulative distributions reported
in Figure 4) would converge to the same fixed point accumulating most of the mass on healthy
(non-infective) workers as time elapses also if the initial density v0 were increasing, e.g., of
the form v0 (I) = 3I2, that is, also if the implementation of active policies in scenario i = 1,
corresponding to a coefficient ω1 > ω2, would start in a depressed economy characterized by
a large number of infectives. The shape of such an invariant density (cumulative distribution)
turns out to be very close to its approximation provided by Figure 3(h) (Figure 4(h)).

Figures 5–8 report the same plots as in Figures 1–4 but for the coefficients’ values ω1 =
1
10

and ω2 = 3
5
describing the behavior of a “short-sighted” government in which the laissez-faire

scenario dominates. As we would expect, the densities evolution turns out to be all reversed
with respect to the former active policy scenario, as the density on consumption accumulates
more on lower consumption levels while the density on the number of infectives concentrates
on higher levels of prevalence as time elapses. There is, however, an important difference with
respect to the former case: both Figures 5(h) and 7(h) report densities that manifestly exhibit
a larger noise uniformly spread on all consumption amounts and infectives with respect to
their counterparts in Figures 1(h) and 3(h). Such a higher degree of uncertainty is due to
the larger weight put on the condensation term, 2ω2θ, representing a more diffuse uncertainty
characterizing the laissez-faire scenario in which less information on the epidemic are available.
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Figure 5: First 7 iterations of operator Tθ defined in (19) applied to the density of consumption for
ω1 =

1
10 and ω2 =

3
5 starting from u0 (C) = 3C2.
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Figure 6: Cumulative distribution functions associated to the densities ut in Figure 5.
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Figure 7: First 7 iterations of operator Tθ defined in (19) applied to the density of infected people
for ω1 =

1
10 and ω2 =

3
5 starting from v0 (I) = 3 (I − 1)2.
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Figure 8: Cumulative distribution functions associated to the densities vt in Figure 7.

To summarize, our numerical simulations show that, under the assumption that production
is sufficiently productive in labor (A > 1), far-sighted active policies generate a virtuous circle
capable of obtaining both higher consumption levels and lower numbers of infectives in the
long-run. The peculiarity of our analysis implies that such goals are described in terms of in-
variant densities concentrating more mass on higher consumption levels and on lower numbers
of infectives, as reported in Figures 1(h) and 3(h) respectively. The price to pay for such an ap-
proach is lower consumption levels in the short-run due to higher taxes charged on consumers’
income, which may trigger high pressure on the government to rather pursue an unproductive
short-sighted redistribution policy based exclusively on income transfers. If such a pressure
turns out to be successful and only redistributive policies with no investment in broad active
treatment of the epidemic are implemented, the resulting long-run densities of consumption
levels and infective numbers would exhibit shapes that are symmetrical with respect to those
in Figures 1(h) and 3(h), concentrating more mass on lower consumption levels and on higher
numbers of infectives, as shown in Figures 5(h) and 7(h) respectively. Additionally, the inclu-
sion in the analysis of a constant condensation term associated to the latter scenario lets the
asymptotic densities in this case be flatter than in the former scenario, as this term adds a
further layer of (deep) uncertainty to the stochastic steady state of the economy.

It is easy to imagine how different parametrizations may lead to completely different out-
comes, starting form different values for parameters s, A and τ as mentioned in Footnote 4, and
continuing with parameters ω1 and ω2 together with the condensation term θ, which further
reinforces the deep uncertainty already characterizing the model. In other words, this method
of analysis paves the way for the study of a broad range of models.

6 Conclusion

From the recent coronavirus epidemic experience, it has grown a wide consensus on the fact
that infectious diseases may have dramatic implications for macroeconomic outcomes and so
more research is needed to understand the possible mutual epidemic-macroeconomic links and
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how public policy may be used to limit the spread of such diseases. Several papers discuss the
large degree of uncertainty which surrounds the information about the effective level of disease
prevalence and thus how difficult obtaining accurate policy prescriptions might be. In order to
take this into account we develop a simple macroeconomic-epidemiological framework in which
health and macroeconomic outcomes are strictly related and characterized by deep uncertainty
as the number of infectives is not known with precision and thus health and economic outcomes
need to be analyzed in terms of density functions. Specifically, in our setting the level of preva-
lence determines the size of the healthy labor force, affecting output and consumption, and so
the availability of resources to finance public policy, which is funded via income taxation. The
high degree of uncertainty is reflected also in the policymakers’ choice of the policy tools to
employ in order to mitigate the socio-economic effects of the disease. As different policymak-
ers implement different policy measures, the effective level of disease prevalence and thus the
effective level of economic activity is highly uncertain, and thus we can analyze how different
types of policymaking (short-sighted vs. far-sighted) approaches affect the asymptotic invariant
distributions of macroeconomic activity, quantified by consumption, together with the spread
of infectives. Through numerical simulations we show that short-sighted policies (far-sighted
policies) lead to asymptotic invariant probability distributions concentrating more mass on low
(high) levels of consumption together with large (small) numbers of infectives, and exhibit an
additional layer of (uniform) uncertainty generated by the condensation term.

Our model is based on some simplistic assumptions which limit our ability to provide in-
sightful policy recommendations. In particular, the epidemiological framework describes the
early epidemic stage and thus cannot be applied to later stages of an epidemic dynamics; the
macroeconomic setting is very simple as it abstracts from capital accumulation and thus does
not allow us to analyze how health policy may impact saving decisions and long run growth;
the model is very aggregative in nature and thus it does not permit to analyze how social
interactions at individual level may impact the disease dynamics. Moreover, besides abstract-
ing from possibly optimal behavior by individuals, our analysis here lacks a whole synthesis
on welfare considerations, as, although consumption levels and the number of infectives both
contribute to total welfare, they are studied separately. It seems sensible to add welfare targets
to be pursued by policymakers, which are clearly affected both by macroeconomic and health
outcomes. Extending our baseline analysis in order to account for the above mentioned issues
will help us to develop a comprehensive analysis of the macroeconomic-epidemiological links
and to better understand the working mechanisms of alternative policy tools. This is left for
future research.
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[12] S. Chakraborty, C. Papageorgiou and F. Pérez Sebastián, Diseases, infection dynamics
and development, Journal of Monetary Economics 57 (2010), 859–872.

[13] G. Cozzi and P. E. Giordani, Ambiguity attitude, R&D investments and economic growth,
Journal of Evolutionary Economics 21 (2011), 303–319.

[14] E. Dong, H. Du and L. Gardner, An interactive web-based dashboard to track COVID-19
in real time, Lancet Infectious Diseases 20 (2020), 533–534.

[15] M. Eichenbaum, S. Rebelo and M. Trabandt, The macroeconomics of epidemics, NBER
Working Paper 26882 (2020).

[16] B. Forte and E. R. Vrscay, Solving the inverse problem for function and image approxi-
mation using iterated function systems, Dynamics of Continuous, Discrete and Impulsive
Systems 1 (1995), 177–232.

[17] M. Gersovitz and J. S. Hammer, The economical control of infectious diseases, Economic
Journal 114 (2004), 1–27.

[18] A. Goenka and L. Liu, Infectious diseases and endogenous fluctuations, Economic Theory
50 (2012), 125—149.

[19] A. Goenka, L. Liu and M. H. Nguyen, Infectious diseases and economic growth, Journal of
Mathematical Economics 50 (2014), 34–53.

[20] S. M. Goldman and J. Lightwood, Cost optimization in the SIS model of infectious disease
with treatment, Topics in Economic Analysis and Policy 2 (2002), Article 4.

[21] L. P. Hansen and T. J. Sargent, Robustness, Princeton University Press, Princeton, 2007.

[22] J. Hollmayr, and C. Matthes, Learning about fiscal policy and the effects of policy uncer-
tainty, Journal of Economic Dynamics & Control 59 (2015), 142—162.

25



[23] J. Hutchinson, Fractals and self-similarity, Indiana University Mathematics Journal 30
(1981), 713–747.

[24] A. G. Karantounias, Managing pessimistic expectations and fiscal policy, Theoretical Eco-
nomics 8 (2013), 193–231.

[25] H. Kunze, D. La Torre, F. Mendivil and E. R. Vrscay, Fractal-based methods in analysis,
Springer, New York, 2012.

[26] D. La Torre, T. Malik and S. Marsiglio, Optimal control of prevention and treatment in
a basic macroeconomic-epidemiological model, Mathematical Social Sciences 108 (2020),
100–108.

[27] D. La Torre, D. Liuzzi and S. Marsiglio, Epidemics and macroeconomic outcomes: social
distancing intensity and duration, Journal of Mathematical Economics (2021a), forthcom-
ing.

[28] D. La Torre, S. Marsiglio and F. Privileggi, Fractals and Self-Similarity in Economics: the
Case of a Stochastic Two-Sector Growth Model, Image Analysys and Stereology 30 (2011),
143–151.

[29] D. La Torre, S. Marsiglio and F. Privileggi, Fractal attractors in economic growth models
with random pollution externalities, Chaos 28 (2018b), 055916.

[30] D. La Torre, S. Marsiglio, F. Mendivil and F. Privileggi, Self-similar measures in multi-
sector endogenous growth models, Chaos, Solitons and Fractals 79 (2015), 40–56.

[31] D. La Torre, S. Marsiglio, F. Mendivil and F. Privileggi, Fractal attractors and singular in-
variant measures in two-sector growth models with random factor shares, Communications
in Nonlinear Science and Numerical Simulation 58 (2018a), 185–201.

[32] D. La Torre, S. Marsiglio, F. Mendivil and F. Privileggi, Public Debt Dynamics under
Ambiguity by Means of Iterated Function Systems on Density Functions, Discrete and
Continuous Dynamical Systems-B (2021b), forthcoming.

[33] V. A. W. J. Marchau, W. E. Walker, P. J. T. M. Bloemen and S. W. Popper, Decision
making under deep uncertainty, Springer, New York, 2019.

[34] S. Marsiglio and F. Privileggi, Three dimensional fractal attractors in a green transition
economic growth model, Communications in Nonlinear Science and Numerical Simulation
93 (2021), 105509. https://doi.org/10.1016/j.cnsns.2020.105509

[35] T. Mitra, L. Montrucchio and F. Privileggi, The nature of the steady state in models of
optimal growth under uncertainty, Economic Theory 23 (2003), 39–71.

[36] T. Mitra and F. Privileggi, Cantor Type Invariant Distributions in the Theory of Optimal
Growth under Uncertainty, Journal of Difference Equations and Applications 10 (2004),
489–500.

[37] T. Mitra and F. Privileggi, Cantor type attractors in stochastic growth models, Chaos,
Solitons and Fractals 29 (2006), 626–637.

[38] T. Mitra and F. Privileggi, On Lipschitz continuity of the iterated function system in a
stochastic optimal growth model, Journal of Mathematical Economics 45 (2009), 185–198.

26



[39] L. Montrucchio and F. Privileggi, Fractal steady states in stochastic optimal control models,
Annals of Operations Research 88 (1999), 183–197.

[40] L. J. Olson and S. Roy, Theory of stochastic optimal economic growth, in R. A. Dana, C.
Le Van, T. Mitra and K. Nishimura (Eds.), Handbook on optimal growth 1: discrete time,
Springer, New York (2005), 297–336.

[41] T. Philipson, Economic epidemiology and infectious disease, in A. J. Cuyler and J. P.
Newhouse (Eds.) Handbook of Health Economics, vol. 1B, Amsterdam, North Holland
(2000), 1761–1799.

[42] F. Privileggi and S. Marsiglio, Environmental shocks and sustainability in a basic economy-
environment model, International Journal of Applied Nonlinear Science 1 (2013), 67–75.

[43] D. Rodrik, Policy uncertainty and private investment, Journal of Development Economics
36 (1991), 229–242.

[44] W. E. Walker, R. J. Lempert and J. H. Kwakkel, Deep uncertainty, in S. I. Gass and
M. C. Fu (Eds.) Encyclopedia of Operations Research and Management Science, Springer,
Boston, MA, 2013.

27


	Introduction
	Mathematical Preliminaries
	Generalized Fractal Transforms
	Iterated Function Systems with Condensation
	Iterated Function Systems with (Constant) Probabilities and Condensation
	Iterated Function Systems on Mappings with Condensation

	IFSM with Condensation on Densities
	IFSM with Condensation on Cumulative Distributions
	A Macroeconomic-Epidemiological Application
	A Simple Epidemic Dynamic
	The Macroeconomic Setting
	From Numeric Variables to Densities
	An IFSM Operator with Condensation on Densities
	Numerical Simulations

	Conclusion

