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Abstract 

 

In this study we examine the impact of the Covid-19 pandemic on stock market contagion. Empirical 

analysis is conducted on six major stock markets using a novel wavelet-copula-GARCH procedure to 

account for both the time and frequency domain of stock market correlation. We find evidence of 

contagion in the stock markets under consideration during the Covid-19 pandemic. 
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1. Introduction 
 

The escalation of the Covid-19 pandemic in 2020 represents a major challenge for financial markets. 

As the contagion spread from the city of Wuhan in China’s Hubei province to become a global 

pandemic, stock prices volatility reached levels unseen since the Great Financial Crisis in 2007-2008. 

In finance it is well known that such extreme values do not occur in isolation, but financial shocks 

experienced in one market are often transferred to another.  

In the literature a large body of empirical works distinguish between two forms of contagion (see 

for example, Wolf, 1999; Forbes and Rigobon, 2000; Pritsker, 2001; Dornbusch, 2000). The first form 

is referred to as “interdependence” between economic systems and emphasizes on spillovers that result 

from the interaction among markets. In this case, the transmission mechanism of shocks is caused by 

interdependence across countries in relation to their real and financial linkages. The second form of 

contagion relates to cross-market linkages generated by shocks on financial markets that are not linked 

to observed changes in macroeconomic fundamentals but are mainly the result of the investors’ 

behaviour. This form of contagion is sometime referred to as “shift” contagion or “pure” contagion. In 

the literature, theoretical models explaining this form of contagion are based on multiple equilibria, 

endogenous-liquidity shocks affecting portfolio allocation, investor psychology, and capital market 

liquidity. For example, Masson (1998) presents a multiple equilibria model where a crisis in one country 

can act as sun-spot for another. In this model the shift from a good to a bad equilibrium is not driven by 

real linkages among economic systems but by investor expectations. In the same vein, Hernández and 

Valdés (2001) propose a model where a crisis in one country causes a liquidity shock to market 

participants and induce investors to portfolio rebalances.  Realigning the weightings of portfolio assets 

causes a sell-off of certain asset classes, which in turn lower asset prices in countries not affected by 

the initial crisis. In behavioural finance theoretical models relate contagion to investors’ herding 

behaviour. In these models, investment decisions by market participants are influenced by the 

investment choices of others. For example, Bikhchandani and Sharma (2000) study the social learning 

effects of actions taken by agents who act sequentially. The authors argue that when decisions are 

sequential the earliest actions may have disproportionate effect on the choices of the following agents 

and herd behaviour may arise.  

In the literature, evidence of contagion due to financial or real economy shocks has been documented 

in several empirical works. Some of the most influential studies are those by Kaminsky and Reinhart 

(2000); Allen and Gale (2000); Bae et al., (2003); Bekaert et al., (2005). Consensus literature agrees, 

however, that pandemic-related developments rarely cause stock market contagion. For example, Baker 

et al. (2020) looking back to 1900 found no evidence of cross market linkages in relation to infectious-
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disease outbreak. Remarkably, the authors found that the Spanish Flu, which infected an estimated 500 

million people worldwide between 1918-1920 and claimed approximately 50 million victims, had only 

a limited impact on the financial markets. In striking contrast, the Covid-19 outbreak is having a massive 

impact on the real economy driving many countries into recession. Unlike other pandemic-related 

developments the Covid-19 outbreak has triggered a massive spike in uncertainty in the financial 

markets. For example, in the U.S. stock markets volatility levels in the first quarter of 2020 surpassed 

those last seen in October 1987 and December 2008 and, before that, in late 1929 and the early 1930s 

(see Baker et al., 2020).  

Partially motivated by these observations, the present study looks for fresh insights into the extent 

to which stock markets have been affected by the Covid-19 crisis, asking whether the apparent market 

transmission is actually the effect of contagion or interdependence. Following the seminal paper by 

Forbes and Rigobon (2002) we investigate if correlations between different equity markets increased 

significantly during the pick of the Covid-19 outbreak. The authors argue that to be classified as 

contagion correlation between stock markets should increase during the crisis episode. In absence of a 

surge in cross-market linkages, volatility spillover would better be classified as market interdependence.  

In this paper we propose a novel methodology that combines the benefits of wavelet series 

expansions with copula estimation. We name it “wavelet-copula-GARCH” procedure, in short “WC-

GARCH”. The procedure can easily be carried out in two steps. The first stage involves using wavelet 

analysis to decompose the series of stock market returns into components associated with different scale 

resolution. In the second step, the decomposed series of stock market returns are used as input variables 

to estimate the transmission mechanisms of shocks using copula functions. Since modelling dependence 

by copula is sensitive to marginal model assumptions to allow for heteroskedasticity, autocorrelation 

and volatility asymmetry we follow Jondeau and Rockinger (2006) and estimate the marginal 

distributions using a GARCH-type model. 

The main innovation of the suggested procedure is the combination of wavelet analysis with copula 

models. Wavelet analysis is a filtering method closely related to time series and frequency domain 

methods that transforms the original data into different frequency components with a resolution 

matched to its scale. Unlike time series and spectral analysis, which only provide information on time-

domain and frequency domain respectively, wavelet decomposes the stock market return series with 

respect to both time and frequency domains simultaneously. This allows us to investigate if financial 

markets respond differently in dissimilar time scales. For example, two stock markets may be highly 

correlated in the long run, but not in the short run.  Analysing separately different frequency components 

of the series enables us to examine the stock markets over different time intervals (i.e., short, medium, 

and long term) and allows us to assess how the evolution of market connectedness has evolved over 

time, thus capturing the possible changes in the relationship. To analyse the strength of the 

comovements between stock markets over different time interval we estimate a copula-GARCH-type 
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model. Conditional copulas are extremely useful in financial applications because copula functions 

allow separation of the marginal distributions from the dependence structure that is entirely represented 

by the copula function. This separation enables researchers to construct multivariate distribution 

functions, starting from given marginal distributions that avoid the common assumption of normality 

for either marginal distributions or their joint distribution function (Bartram et al., 2007). Moreover, 

copulas are invariant to strictly increasing transformations of the random variables, while asymptotic 

tail dependence is an important property of them. 

Stock market contagion has important consequences for financial stability as well as portfolio 

management since they affect optimal asset allocation, risk measurement, and asset pricing. However, 

standard time-domain techniques can have problems in identifying contagion from other forms of shock 

transmission because of the inability of these methodologies of combining information from both the 

time-domain and the frequency-domain. The modelling issues related to the analysis of comovements 

between financial markets are well documented by the variety of econometric procedures used in 

empirical studies to investigate financial contagion. They include testing for changes in correlation 

coefficients (King and Wadhwani, 1990; Lee and Kim, 1993), ARCH and GARCH models (Billio and 

Caporin, 2010), estimating cointegration models (e.g. Chiang et al., 2007; Gallo and Otranto, 2008; 

Voronkova, 2004; Yang et al., 2003), limited dependent variable models (Eichengreen et al., 1996; 

Kaminsky and Reinhart, 2000), nonlinear models (Gallo and Otranto, 2008), and factor models (Corsetti 

et al., 2005). In this paper we argue that most of these models can only describe the average behaviour 

of the correlation patterns, since standard time series models do not allow for more than two time scales: 

the short run and the long run. According to theoretical models shocks transmission due contagion 

should be rapid and should die out fast due to arbitrage opportunities in different markets.  However, 

how fast is fast? This is a fundamental question in practical applications. In this respect, by applying a 

j-level multi-resolution decomposition of the stochastic processes the suggested procedure provides a 

complete reconstruction of the signal partitioned into a set of j frequency components. Each component 

corresponds to a particular range of frequencies. For example, the low-frequency part can be associated 

to what the literature has defined “interdependence”, and the high-frequency part can reflect “pure” 

contagion. Available literature confirms the effectiveness of adopting wavelet analysis to take into 

account the difference between short and long term investors (see, for example, Yazgan and Özkan, 

2015; Yogo, 2008; Gallegati, 2012, Ranta, 2013; Conlon, et al. 2018). 

The present study contributes to the literature in several ways. First, analysing daily returns for six 

large stock markets in the USA, Canada, UK, Honk Hong, China, and Japan evidence of significantly 

increasing dependence among stock markets was found since the start of the Covid-19 outbreak. Our 

results reveal evidence of contagion in line with the Forbes and Rigobon's (2002) definition: a 

significant increase in linkages among stock markets after a shock to one country as measured by the 

degree to which asset prices move together across markets relative to this comovement in tranquil times. 
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Second, evidence of contagion among stock markets constitutes an unprecedented event since, 

according to the literature (see Baker et al, 2020; Nippani and Washer, 2004 among others), no previous 

infectious disease outbreak has impacted the stock market as forcefully as the Covid-19 pandemic. Most 

empirical studies agree that previous pandemics greatly affected stock market volatility but had only 

mild impact in term of stock market contagion. The proposed methodological approach is the third 

contribution of the paper. In this work we present a novel wavelet-copula GARCH procedure that has 

not previously used in the literature. The combination of wavelet decomposition and GARCH-copula 

models allow us to analyse the evolution of the correlation in the time-frequency space. Consequently, 

the paper provides a fresh characterization of short term and long term dependencies between stock 

market returns.  

The remainder of this study is organized as follows. Section 2 describes market contagion from a 

theoretical perspective. Section 3 presents the WC-GARCH model, whereas in Section 4 the estimation 

results are reported. Finally, Section 5 contains some concluding remarks.  

 

2. Theoretical Considerations 

 

Financial contagion as a result of global event that originates from a country and spreads to other 

countries or regions has long been an object of interest to economists.  

Consensus literature agrees that there are two main channels for propagation of contagion: physical 

exposure and asymmetric information.  Contagion through physical exposure occurs when after a 

negative shock in one market investors rebalance their portfolios and sell assets in other markets. 

Therefore, a shock in one market causes instability in other markets, regardless the underlying 

fundamentals (see Kyle and Xiong, 2001). Contagion may also result from asymmetric information in 

financial markets. King and Wadhwani (1990) argue that traders in international financial markets face 

“signal extraction problems”. Traders from one country have only imperfect information about the 

situation in other countries. Therefore, agents extract further information from observable stock price 

movements, reflecting other traders’ behaviour. However, imperfect information cause confusion 

between price movement related to idiosyncratic shocks in a foreign country with price movements that 

also reveals changes in information about their home country.  As a result, asymmetric information can 

trigger excessive price spillovers across borders, including stock market crashes.  

In the literature contagion has been empirically identified through the propagation of extreme 

negative returns and the related increase in market correlation with respect to normal times.  A large 

body of research suggests that international financial market contagion has occurred in various 

economic and financial crises. For example, King and Wadhwani (1990) find evidence of an increase 

in stock returns’ correlation in 1987 crash (see also Bekaert et al., 2005). Similarly, Calvo and Reinhart 

(1996) report evidence of contagion during the Mexican Crisis, and Baig and Goldfajn (1999) reach 
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similar conclusions investigating the stock market correlation during the East Asian Crisis. Hon et al. 

(2004) find evidence of contagion between the Nasdaq and the other stock markets after the dotcom 

bubble collapse in the United States.  In the wake of the subprime market crisis that originated in the 

U.S. in 2005, several papers have assessed the existence of contagion in financial markets. For example, 

Park and Shin (2020) investigated the foreign banks' exposure during the crisis and found that emerging 

market economies were more exposed to banks in the crisis-affected countries, suffered more capital 

outflows during the global financial crisis. Evidence of contagion was also found in developed 

economies in Dungey and Gajurel (2015) (see also Zhang et al., 2020). Mohti et al. (2019) investigate 

the impact of the U.S. subprime on the Eurozone debt crisis (see also Bashir et al., 2016).  

Although recent research has greatly improved our understanding of contagion, little attention has 

been devoted to the impact of infectious disease outbreaks on stock markets. Most empirical works 

related to the impact of epidemics focus on disease-associated economic costs as a result of morbidity 

and mortality. For example, Siu and Wong (2004) provide evidence of the economic impact of the 

SARS epidemic in China, Hong Kong, and Taiwan. Coming to financial markets there is remarkably 

little literature on the subject. Notably, most of the available evidence finds negligible impact of 

infectious diseases such as the SARS, EBOLA, Swine Flu or ZIKA on stock markets.1  For example, 

Nippani and Washer (2004) examine the effect of SARS outbreak on financial markets and find no 

evidence of contagious of stock markets in Canada, Hong Kong, Indonesia, the Philippines, Singapore, 

and Thailand. Similarly, Koo and Fu (2003) argue that despite the serious emotional distress caused by 

the SARS outbreak, the disease had limited impact in the affected regions (see also Siu and Wong, 

2004; Chen et al., 2007, 2009; Baker et al., 2012; Wang et al., 2013; Del Giudice and Paltrinieri, 2017; 

Chen et al., 2018; Ichev and Marinč, 2018). Macciocchi et al. (2016) investigate the effect of Zika virus 

outbreak in several affected countries and conclude that the impact on the virus on stock markets was 

only marginal. 

Few studies have investigated the impact of the Covid-19 pandemic and financial market volatility. 

Attempts to understand the effect of Covid-19 on market volatility include a study by Baker et al. 

(2020), that identifies the current pandemic as having the greatest impact on stock market volatility in 

the history of pandemics. In a similar vein, Zaremba et al. (2020) examine the impact of government 

policy measures on stock market volatility (see also Goodell, 2020). The authors suggest that stock 

market volatility increased more in countries where governments took strict policy actions to curb the 

spread of disease such as information campaigns and cancellation of public events. Further, Zhang et 

 

 
1 In the recent history the World Health Organization (WHO) declared a global emergency due to the rapid spreading of 

infection diseases sixth times. Past examples include the outbreak of swine flu in 2009, Ebola that mainly spread Democratic 
Republic of Congo in 2014, the Zika virus in 2016 and SARS. By assessing the risk of spread and severity of Covid-19 outside 
China WHO declared this virus as a pandemic on March 11, 2020.      
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al.  (2020) find significant increases in volatility for US stock markets in response to reports of Covid-

19 cases and deaths in multiple countries.  

 

3. The WC-GARCH Procedure 

 

The proposed WC-GARCH can easily be carried out in two steps. In the first step a discrete wavelet 

transform (DWT) is applied to the stock market indexes in order decompose the series into high-

frequency and low-frequency components. In the second step, the obtained filtered series are used as 

input variables to analyse correlations among stock markets using copula-GARCH-GJR (1,1) model. 

The two-step procedure to estimate the correlation in the time-frequency domain is described below in 

more details. 

 

 Step 1: The Wavelet Series Expansion 

  

The first step for implementing the WC-GARCH procedure involves applying the wavelet series 

expansion to the stock market return series.   

 

 

Wavelet is a technique that decomposes a time series into different short waves that start at a given 

point in time and end at a given later point in time. In other words, the wavelet approach is a non-

parametric method that involves using small wave functions to approximate fluctuations time series to 

extract information from a sequence of numerical measurements (signals). Broadly speaking, the 

wavelet decomposition methodology involves applying recursively a succession of low-pass and high-

pass filters to the precious metal and stock market series. This process allows separating the high 

frequency components of the series from the low frequency components (for more details see, for 

example, Benhmad, 2013). Mathematically, the decomposition of the series in different components 

can be obtained using wavelet transform which is based on two filters. These are respectively called 

“mother wavelet” and “father wavelet”. The former is useful to capture the detailed (high frequency) 

parts of the signal whereas the latter gives information on the smooth (low-frequency) part of the signal.  

The “father wavelet” (or scaling function) integrates to 1 and is given by  

   

�𝜙𝜙(𝑡𝑡)𝑑𝑑𝑑𝑑 = 1, 

whereas the mother wavelet integrates to zero and is given by  

�𝜓𝜓(𝑡𝑡)𝑑𝑑𝑑𝑑 = 0. 
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Since the use of wavelets is a well-established methodology, in this section we only introduce the 

concepts and definitions useful for our purposes. For an excellent review of the theory and use of 

wavelets, see Percival and Walden (2000); Gençay et al. (2002). 

Let the 𝑓𝑓(𝑡𝑡) ∈ 𝐿𝐿2(ℝ) be a function (for 𝑡𝑡 = 1, … ,𝑇𝑇) the time dimensions can be expressed as a 

linear combination of a wavelet function 

 

𝑓𝑓(𝑡𝑡) =  ∑ 𝑠𝑠𝑗𝑗,𝑘𝑘𝜙𝜙𝑗𝑗,𝑘𝑘(𝑡𝑡) +  ∑ 𝑑𝑑𝑗𝑗,𝑘𝑘𝑘𝑘𝑘𝑘 𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡) +  ∑ 𝑑𝑑𝑖𝑖−1,𝑘𝑘𝑘𝑘 𝜓𝜓𝑗𝑗−1,𝑘𝑘(𝑡𝑡) + ⋯+ ∑ 𝑑𝑑1,𝑘𝑘𝜓𝜓𝑗𝑗−1,𝑘𝑘(𝑡𝑡),𝑘𝑘  (1) 

 

where the orthogonal basis functions  𝜙𝜙𝑗𝑗,𝑘𝑘  and 𝜓𝜓𝑗𝑗,𝑘𝑘  are defined as  

𝜙𝜙𝑗𝑗,𝑘𝑘 = 2−𝑗𝑗 2⁄ 𝜙𝜙 �𝑡𝑡−2
𝑗𝑗𝑘𝑘

2𝑗𝑗
�,       

𝜓𝜓𝑗𝑗,𝑘𝑘 = 2−𝑗𝑗 2⁄ 𝜓𝜓 �𝑡𝑡−2
𝑗𝑗𝑘𝑘

2𝑗𝑗
�.                    

  

In Eq. (1) the representation 𝑗𝑗 is the number of multi-resolution components or scales, and 𝑠𝑠𝑗𝑗,𝑘𝑘 are 

the smooth coefficients, and 𝑑𝑑𝑗𝑗,𝑘𝑘 are called the detailed coefficients. They are approximated by the 

following integrals 

 

                                                             𝑠𝑠𝑗𝑗,𝑘𝑘 = ∫𝑓𝑓(𝑡𝑡)𝜙𝜙𝑗𝑗,𝑘𝑘(𝑡𝑡)𝑑𝑑𝑑𝑑,                                                            (2) 

                                                         𝑑𝑑𝑗𝑗,𝑘𝑘 = ∫𝑓𝑓(𝑡𝑡)𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡)𝑑𝑑𝑑𝑑        for 𝑗𝑗 = 1,2, … 𝐽𝐽.                            (3) 

 

The wavelet functions 𝜙𝜙𝑗𝑗,𝑘𝑘(𝑡𝑡) and 𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡) are scaled and translated version of 𝜙𝜙 and 𝜓𝜓.  The smooth 

coefficient 2𝑗𝑗 control the amplitude of the wavelet window so the wavelet function is stretched or 

compressed to obtain frequency information. Since the scale factor is an exponential function when  𝑗𝑗  

gets larger so does   2𝑗𝑗  and the functions 𝜙𝜙𝑗𝑗,𝑘𝑘(𝑡𝑡) and 𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡) become more spread out and shorter. 

Therefore, a wider window gives information on the low frequency movements, whereas as narrower 

windows we get information on the high-frequency movements.      

As shown by shown by Bruce and Donoho (1996) if the wavelet coefficients can be approximated 

by the integral in Eq. (2) and Eq. (3) then a multi-resolution representation in Eq. (1) can be simplified  

 

𝐹𝐹(𝑡𝑡) = 𝑆𝑆𝐽𝐽 + 𝐷𝐷𝐽𝐽 + 𝐷𝐷𝐽𝐽−1 +⋯+ 𝐷𝐷𝑗𝑗 + ⋯+ 𝐷𝐷1 ,      𝑗𝑗 = 1, … , 𝐽𝐽       (4) 

where 𝐷𝐷𝑗𝑗 is the j-th level wavelet and 𝑆𝑆𝑗𝑗 represents the aggregated sum of variations at each detail of 

the scale. 

In Eq. (1) and Eq. (4) the father wavelet reconstructs the smooth and low-frequency parts of a signal, 

whereas the mother wavelet function describes the detailed and high-frequency parts of a signal. 

Therefore, the expression in Eq. (4) provides a complete reconstruction of the time series partitioned 
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into a set of 𝑗𝑗 frequency components so that each component corresponds to a particular range of 

frequencies.  

In Eq. (1) and Eq. (4) the father wavelet reconstructs the smooth and low-frequency parts of a signal, 

whereas the mother wavelet function describes the detailed and high-frequency parts of a signal. In 

empirical applications to financial data, the father wavelet can be interpreted as the trend (smooth 

component) which is longest time-scale component of the series, and mother wavelets can be interpreted 

as the cyclical components around the trend. Therefore, the expression in Eq. (4) provides a complete 

reconstruction of the signal partitioned into a set of j frequency components so that each component 

corresponds to a particular range of frequencies. The low-frequency part can detect what in the literature 

has been referred to as “interdependence”, whereas the high-frequency part may reflect “pure” 

contagion. A similar interpretation was suggested in Gallegati (2012), see also Huang et al.  (2015). 

In the literature several variations of wavelet transform in Eq. (4) have been proposed (see for 

example Cohen, 1992).  In this paper we consider the Maximal Overlap Discrete Wavelet Transform 

(MODWT). The MODWT has the advantage that the estimated wavelet and scaling coefficients are 

translation invariant to circularly shifting in the sense that they do not change if the series are shifted in 

a circular fashion and the smooth coefficients are associated with zero phase filters (for details see 

Percival and Walden, 2000; Gencay, 2002). 

 

Step 2: WC-GARCH Model 

 

The second step of the suggested procedure involves using the filtered series obtained from the j-

level multi-resolution decomposition to estimate the copula functions in the time-frequency framework. 

This second stage requires: a) estimating the marginal distributions of the decomposed stock market 

series, b) specifying the copula function, and c) estimating the copula.      

 

a) Marginal Distributions 

 

The copula estimation procedure used in this paper heavily relies on the results of the Sklar theorem 

(see Sklar, 1959). According to Sklar's theorem, a two-dimensional joint distribution function G with 

continuous marginals FX  and FY has a unique copula representation so that 

𝐺𝐺(𝑥𝑥,𝑦𝑦) = 𝐶𝐶 �𝐹𝐹𝑥𝑥(𝑥𝑥),𝐹𝐹𝑦𝑦(𝑦𝑦)�, 

and for a joint distribution function, the marginal distributions and the dependence structure described 

by a copula can be separated. 

Let �𝐷𝐷𝑗𝑗,𝐴𝐴� and �𝐷𝐷𝑗𝑗,𝐵𝐵� be the stochastic processes denoting the j decomposed signal obtained from the 

wavelet transform in Eq. (4) for the stock market returns {𝑅𝑅𝐴𝐴} and {𝑅𝑅𝐵𝐵}, respectively. Note that to 

simplify the notation, wherever possible the t subscription is omitted at no detriment of the analysis.  
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Let their conditional cumulative distribution functions (CDFs) be 𝐹𝐹𝐷𝐷𝑗𝑗,𝐴𝐴(𝑅𝑅𝐴𝐴;𝜃𝜃𝐴𝐴) and 𝐹𝐹𝐷𝐷𝑗𝑗,𝐵𝐵(𝑅𝑅𝐵𝐵;𝜃𝜃𝐵𝐵). The 

conditional copula function is defined as 𝐶𝐶(𝑢𝑢𝑡𝑡,𝑣𝑣𝑡𝑡) where  frequency component   𝑢𝑢 = 𝐹𝐹𝐷𝐷𝑗𝑗,𝐴𝐴(𝑅𝑅𝐴𝐴;𝜃𝜃𝐴𝐴) 

and 𝑣𝑣 = 𝐹𝐹𝐷𝐷𝑗𝑗,𝐵𝐵(𝑅𝑅𝐵𝐵;𝜃𝜃𝐵𝐵) are continuous variables in (0,1).  

Using the Skar’s theorem, for a given  𝐷𝐷𝑗𝑗 in Eq. (4), the bivariate joint conditional CDF of {𝑅𝑅𝐴𝐴}  and 

{𝑅𝑅𝐵𝐵} can be written as 

 

𝐺𝐺(𝑅𝑅𝐴𝐴,𝑅𝑅𝐵𝐵) = 𝐶𝐶 �𝐹𝐹𝐷𝐷𝑗𝑗,𝐴𝐴(𝑅𝑅𝐴𝐴,𝜃𝜃𝐴𝐴),𝐹𝐹𝐷𝐷𝑗𝑗,𝐵𝐵(𝑅𝑅𝐵𝐵,𝜃𝜃𝐵𝐵);𝜋𝜋�                                (5) 

 

where 𝜋𝜋 is a parameter vector for the copula, 𝜃𝜃𝐴𝐴,𝜃𝜃𝐵𝐵 are parameter vectors for each marginal distribution, 

and 𝜃𝜃 − �𝜋𝜋′,𝜃𝜃𝐴𝐴′ ,𝜃𝜃𝑝𝑝′ � is a parameter vector for the joint distribution. The expression in Eq. (5) 

decomposes the joint distributions into marginal distributions, 𝐹𝐹𝐷𝐷𝑗𝑗,𝐴𝐴 ,  𝐹𝐹𝐷𝐷𝑗𝑗,𝐵𝐵 , and a copula, C, representing 

the dependence structure among the frequency component for the stock market indexes under 

consideration. Therefore, the expression in Eq. (5) allows us to model marginal distributions and 

dependence structure separately. However, to make the expression in Eq. (5) operational, the estimation 

of the marginal distributions is required. To obtain the marginal distributions of 𝐷𝐷𝑗𝑗  in Eq. (4) the 

GARCH-GJR (1,1) model suggested by Glosten et al. (1993) can be used. Specifically, the model for 

the margins can be expressed as 

 

       𝐷𝐷𝑗𝑗,𝑡𝑡 =  𝜇𝜇 + 𝜀𝜀𝑡𝑡 ,                                                 (6) 

              𝜀𝜀𝑡𝑡 = 𝑍𝑍𝑡𝑡�ℎ𝑡𝑡,                                                                         (7) 

ℎ𝑡𝑡2 = δ + 𝛼𝛼𝜀𝜀𝑡𝑡2 + 𝛾𝛾𝜀𝜀𝑡𝑡−12 𝑀𝑀𝑡𝑡−1 + 𝛽𝛽 ℎ𝑡𝑡−12                                       (8) 

𝑍𝑍𝑡𝑡~𝐺𝐺𝐺𝐺𝐺𝐺(𝜆𝜆,𝜒𝜒) 

where Zt is a generalized hyperbolic distribution with shape parameters 𝜆𝜆 and 𝜒𝜒. Eq. (6) decomposes 

the returns into a constant, μ, and an innovation process, εt. The expression in Eq. (7) defines this residual 

as a product of conditional volatility and innovation. Eq. (8) describes the dynamics of conditional 

volatility which is explained by the coefficients  𝛼𝛼,  𝛽𝛽 and 𝛾𝛾. The parameters measure the size effect 

and persistence of the shocks on volatility, respectively. The impact of the shocks on the conditional 

volatility is determined the sign of the parameter  𝛾𝛾 of the dummy variable, M, such that 𝑀𝑀𝑡𝑡 = 1 if 𝜀𝜀𝑡𝑡 <

0 (bad news) and 𝑀𝑀𝑡𝑡 = 1 otherwise. Note that the WC-GARCH procedure is a general method which 

can be readily extended to any GARCH-type model. Therefore, we suggest the investigator of 

experimenting with several types of GARCH specifications and selecting the model that better describes 

the data at hand.     



11 
 
 

 

b) Copula Function  

 

The marginal GARCH-GJR(1,1)-GHD parameter estimates in Eq. (6) provides estimated values of 

the conditional cumulate distribution function for each frequency component 𝐷𝐷𝑗𝑗. Therefore, the 

bivariate copula function with dependence parameter 𝜃𝜃 is expressed by the following function 

𝑐𝑐(𝑢𝑢𝑡𝑡 ,𝑣𝑣𝑡𝑡) = �𝑚𝑚𝑚𝑚𝑚𝑚�𝑢𝑢𝑡𝑡𝜃𝜃 + 𝑣𝑣𝑡𝑡𝜃𝜃 − 1,0��
1
𝜃𝜃,                                                          (8)                                     

 

where 𝜃𝜃 ≥ 1. Note that if 𝜃𝜃 → 0, then {RA} and {𝑅𝑅𝐵𝐵} are independent in 𝐷𝐷𝑗𝑗, whereas they are perfectly 

dependent in 𝜃𝜃 → ∞. Expression in Eq. (8) is the Clayton copula, among different pair-copula families, 

Clayton’s is preferred for financial data since it allows for more asymmetric tail dependence in the 

negative tail than in the positive (for more details see, among others, Nikoloulopoulos et al., 2012). 

 

c) Estimation Method 

 

Under the assumption that all condition CDFs are differentiable, from the Sklar’s theorem the joint 

density function of 𝐷𝐷𝑗𝑗,𝐴𝐴 and 𝐷𝐷𝑗𝑗,𝐵𝐵 can be expressed as 

 

𝐺𝐺�𝐷𝐷𝑗𝑗,𝐴𝐴,𝐷𝐷𝑗𝑗,𝐵𝐵� = 𝜕𝜕𝜕𝜕�𝐷𝐷𝑗𝑗,𝐴𝐴,𝐷𝐷𝑗𝑗,𝐵𝐵�
𝜕𝜕𝐷𝐷𝑗𝑗,𝐴𝐴𝜕𝜕𝐷𝐷𝑗𝑗,𝐴𝐴

= 𝐶𝐶 �𝐹𝐹𝐷𝐷𝑗𝑗,𝐴𝐴(𝑅𝑅𝐴𝐴,𝜃𝜃𝐴𝐴),𝐹𝐹𝐷𝐷𝑗𝑗,𝐵𝐵(𝑅𝑅𝐵𝐵,𝜃𝜃𝐵𝐵)� × 𝑓𝑓𝐷𝐷𝑗𝑗,𝐴𝐴(𝑅𝑅𝐴𝐴,𝜃𝜃𝐴𝐴) × 𝑓𝑓𝐷𝐷𝑗𝑗,𝐵𝐵(𝑅𝑅𝐵𝐵,𝜃𝜃𝐵𝐵),        (9) 

 

where 𝑐𝑐(𝑢𝑢𝑡𝑡 ,𝑣𝑣𝑡𝑡) is the conditional copula density function in Eq. (8). Thus, for each time scale 𝐷𝐷𝑗𝑗 in Eq. 

(4), the bivariate conditional density function of {𝑅𝑅𝐴𝐴} and {𝑅𝑅𝐵𝐵} is represented by the product of the 

copula density and the two conditional marginal densities  𝑓𝑓𝐷𝐷𝑗𝑗,𝐴𝐴(𝑅𝑅𝐴𝐴,𝜃𝜃𝐴𝐴) and 𝑓𝑓𝐷𝐷𝑗𝑗,𝐵𝐵(𝑅𝑅𝐵𝐵,𝜃𝜃𝐵𝐵). From Eq. 

(9) the log-likelihood function, 𝑙𝑙𝑙𝑙𝑙𝑙(𝜃𝜃), can be obtained as 

 

log �𝐺𝐺�𝐷𝐷𝑗𝑗,𝐴𝐴,𝐷𝐷𝑗𝑗,𝐵𝐵�� = 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑐𝑐(𝑢𝑢𝑡𝑡 ,𝑣𝑣𝑡𝑡)�+ 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑓𝑓𝐷𝐷𝑗𝑗,𝐴𝐴(𝑅𝑅𝐴𝐴,𝜃𝜃𝐴𝐴)� + 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑓𝑓𝐷𝐷𝑗𝑗,𝐵𝐵(𝑅𝑅𝐵𝐵,𝜃𝜃𝐵𝐵)�. (10) 

 

To estimate Eq. (10) we use the inference for the margin method suggested in Joe (1997) that involves 

estimating the parameters of each univariate model via maximum likelihood first, and next the marginal 

CDF are applied to the standardized residuals.  

 

 

4. Data and Estimation Results 
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The data considered in this study are daily closing equity market price indices for six markets. In 

particular, we consider the S&P500 Composite Index (S&P 500) for the United States, the S&P TSX 

Composite Index, (S&P/TSX) for Canada, the FTSE 100 Price Index (FTSE100) for the UK, the  Nikkei 

225 Stock Average Index (N225) for Japan, the Hang Seng index (HIS) for Hong Kong and the 

Shanghai Share Index (SSE) for China. The HIS index enables us to investigate stock market contagion 

between Mainland China’s markets and Honk Kong. Similarly, the S&P/TSX Composite Index is 

considered to investigate spill over effects in the North American region  

The sample covers the period from January 1st, 2014 to August 8th, 2020. Stock returns are calculated 

as the difference between the logarithm of the price index. Further, the missing data arising from 

holidays and special events are bypassed by assuming them to equal the average of the recorded 

previous price and the next one. Note that that in this application the U.S. stock market is used as a 

numeraire for the correlations. Therefore, below we consider the level of comovements between the 

S&P500 and the other stock markets listed above.  

 

4.1. Multiscale Analysis of Correlation 

 

In this section we present the results of estimating the WC-GARCH model. However, as a 

preliminary investigation, we take advantage of the time-scale decomposition property of the wavelet 

to calculate the multiscale correlation between the S&P500 and other stock markets. To investigate this 

issue we follow Fernandez-Macho (2018) and use the time-localized multiple regression model to 

estimate time varying correlation between precious metals and stock markets. The method allows to 

calculate the set of multiscale correlations along time and across different scales by estimating a series 

of windowed wavelet coefficients. Therefore, the wavelet correlation coefficient 𝜌𝜌𝐴𝐴,𝐵𝐵(𝜆𝜆𝐽𝐽) provides a 

standardized measure of the relationship between the two processes on a scale-by-scale basis and, as 

with the usual correlation coefficient between two random variables, we assume that |𝜌𝜌𝐴𝐴,𝐵𝐵(𝜆𝜆𝐽𝐽)| ≤ 1.  

In Figure 1-5, the correlation patterns between the S&P500 and the other stock market indexes are 

presented in a time-frequency domain on a scale by scale basis. For ease of interpretation, the left-hand 

horizontal axis is transformed to show the number of days in which the scale moves 

from low to high wavelengths. The heat maps indicate the increasing strength of the correlation among 

the stock markets indexes as they move from blue (lowest correlation) to red (highest correlation).  

Since related empirical works have shown that a moderate-length filter of length eight is adequate 

to deal with the characteristic features of financial data (see Gençay et al., 2001), we use the Daubechies 

compactly supported least asymmetric (LA) wavelet filter (Daubechies, 1992). Then, using the wavelet 

coefficients we estimate the wavelet-unbiased pairwise correlation coefficients. For the choice of 𝜙𝜙 and 

𝜓𝜓 in Eq. (1) the doublet wavelet function with length 8 is used for this study.  
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For the multi-resolution level j, this study sets j = 6, thus the highest frequency component D1 

represents short-term variations due to shocks occurring at up a time scale of 22 = 4 days,  and the next 

highest component D2 accounts for variations at a time scale of 23 = 8 days, near the working days of a 

week. Similarly, D3 and D4 components represent the mid-term variations at time scale of 24 = 16 and 

25 = 32 days, respectively. Finally, D5 and D6 components represent the long-term variations at time 

scale of 26 = 64 and 27 = 128 days. S6 is the residual of original signal after subtracting D1, D2, D3, D4, 

D5 and D6.  

Before giving an interpretation on the results of the correlation analysis, one issue that still has to be 

resolved is the following: For how many days should the increase in correlation between two stock 

markets last in order to be classified “pure” contagion? This gives us a definition of “interdependence” 

in turn. Theoretical literature offers only limited help on this matter. According to the market efficiency 

hypothesis (EMH) stock market prices should reflect all the information made available to market 

participants at any given time (see Fama, 1970). The EMH therefore implies that the transmission of 

shocks due to contagion in international financial markets should not exist in the long run. Based on 

these considerations several papers suggest that the transmission of shocks due to contagion in 

international financial markets should be very fast and should die out quickly. For example, Gallegati 

(2012) suggests that to be classified as “pure” contagion the increase of correlation should generally 

not exceed one week (see also Dewandaru et al., 2016). However, in this paper we argue that the Covid-

19 pandemic caused a spike in uncertainty unseen in previous crises (see Baker, 2020). In the light of 

these arguments, we suggest that the definition of “pure” contagion adopted in the related empirical 

studies should be taken more liberally.  For this reason, we assume that the first five wavelet scales 

provide a realistic measure of contagion, as these scales are associated to changes of up 64 days in 

correlation shifts. Accordingly, in this paper “pure” contagion is measured by wavelet coefficients 

D1,…, D5, whereas “interdependence” is measured by the D6 scale and the trend, S6. 

From Figures 1-5, there is clear evidence of long-run interdependence between the U.S. stock market 

and the other markets before the start of the Covid-19 pandemic in December 2019. To be specific, 

starting with the correlation between the U.S. stock market and the U.K. market, Figure 1 indicates no 

sign of comovements for the first 8-16 days, but correlation increases in the time scale D6 between 

January 2014 and June 2017.  Similarly, in Figure 2, it appears that the U.S. and Japan stock markets 

have stronger long-term comovements since, once again, we see the red colour in the D6 time scale. As 

for the correlation between the U.S. and China, weak correlation can be seen for the time scale D3 and 

below, as highlighted in Figure 3.  

Signs of fundamental-based contagion between the U.S. and Hong Kong stock markets can also be 

observed in Figure 4, where shock events in the S&P 500 directly diffused to HIS. The correlation 

between the stock markets in U.S. and Canada, shown in Figure 5, indicates persistent comovements 
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between these financial markets since Canada has close commercial and financial ties to the US 

economy.  

Overall, results in Figure 1-5 suggest that before the Covid-19 pandemic started, the transmission 

mechanism of shocks was related to normal dependence between markets, due to trade links and 

geographical position. Therefore, the type of transmission mechanism of shocks that characterised the 

period before the health crisis began seems better be described as “interdependence” (see Forbes and 

Rigobon, 2002). 

 

 

 

Figure 1: Wavelet multiple correlation between S&P500 and FT100 stock markets returns. 

 
Figure 2: Wavelet multiple correlation between S&P500 and N225 stock markets returns. 

 
Figure 3: Wavelet multiple correlation between S&P500 and HIS stock markets returns. 
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Figure 4: Wavelet multiple correlation between S&P500 and SSE stock markets returns. 

 
Figure 5: Wavelet multiple correlation between S&P500 and S&P/TSX stock markets returns. 

 

Once the impact of Covid-19 pandemic was felt worldwide, financial assets were immediately 

repriced. Panic spilled over all the major financial markets as indicated by the wavelet power of pairwise 

analysis analysed at lower scale brackets. Put differently, the comovements (either positive or negative) 

seem to have been stronger during the Covid-19 pandemic in most of the series under consideration. 

Specifically, with the notable exception of Japan, the financial markets under consideration showed 

significant dominant signs of comovement at periods of high frequency up to 64 days in length. In the 

case of the correlation UK and Canada, the market contagion appears to be even stronger, as indicated 

by the red colour in Figures 1 and 5.   

The results of the wavelet analysis Figure 1-5 section show a degree of comovement between the 

U.S. and other financial markets. This suggests that a parametric analysis may reveal more insights on 

the contagion effects during the Covid-19 outbreak.  

 

4.2. WC-GARCH Procedure Estimation Results 

 

Once the filtered series were extracted in the second step of our analysis, appropriate univariate 

GARCH models were estimated for the six stochastic processes under consideration. Comparing a 

number of GARCH-type models, we concluded that the specification that best fitted the data under 

consideration was a GJR-GARCH model with a GHD distribution for the innovation terms. In order to 

investigate the effect of the Covid-19 pandemic the sample under consideration was split in two 
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subperiods: the first with 𝑇𝑇 = 1465 including data from January 2nd, 2014 to November 29th, 2019, and 

the second subperiod including a sample of 𝑇𝑇 = 172 including observations from December, 2nd 2019 

to August 8th, 2020.   

The WC-GARCH procedure suggested in Section 3 involves estimating a total of �6 × 𝐷𝐷𝑗𝑗� = 36  

GARCH-GJR (1,1) models for each subperiod. This gives the staggering total of 72 models to be 

estimated. To save space, the estimation results are not reported here, but they are available upon 

request. However, to give an idea of the magnitude of the estimated coefficients for the conditional 

variance equations, the estimation results for the marginal distributions for the six stock market under 

consideration in the two subperiods are reported in Table 1A-B. 

Table 1A and Table 1B present the parameter estimates GARCH-GJR (1,1) for models estimated 

for the period before and during the Covid-19 outbreak, respectively. From Table 1A-B it appears that 

stock market indexes are highly persistent since the magnitude of the estimated parameters 𝛽𝛽  is 

relatively high for all the estimated series. In Table 1A-B it also appears that bad news impact stock 

market volatility, since all the estimated 𝛾𝛾 are significantly different from zero.  Furthermore, the 

diagnostic tests included at the bottom of Table 1A-B reject the null hypothesis of autocorrelation up to 

the 10th lag order. 

Finally, from Table 1B it appears that the all the estimated  𝛽𝛽 coefficients are greater in magnitude 

than those in Table 1A, indicating that the Covid-19 outbreak increased persistence in the stock markets. 

On the other side, the estimated coefficients for 𝛼𝛼 and 𝛾𝛾 in Table 1B, in average, do not vary much with 

respect to those in Table 1A.      

 

 

  
Table 1A. Estimation single equation models for the stick market indexes under consider before the Covid-19 
outbreak.   
 GSPTSE GSPC FTSE100 HIS SSE N225 

𝛼𝛼 0.145** 0.343** 0.324* 0.107* 0.077* 0.201* 

 (0.044) (0.167) (0.002) (0.049) (0.003) (0.011) 

𝛽𝛽 0.839* 0.652* 0.674** 0.881* 0.907* 0.791** 

 (0.016) (0.109) (0.241) (0.203) (0.310) (0.360) 

𝛾𝛾 -0.708* -.325** -0.258** -0.526* 0.301** -0.685* 

  (0.154) (0.112) (0.159) (0.017) (0.171) (0.291) 

ARCH Lag (10) 2.624 5.161 4.599 3.233 3.923 3.452 
 [0.417] [0.195] [0.257] [0.396] [0.403] [0.368] 

  

Note: The table reports the estimation results of the GARCH-GJR(1,1) for the stock market under consideration. 
Squared brackets indicate the p-values, standard errors are reported below the estimated coefficients. Note that *), 
**) and ***) indicate significance at 1%, 5% and 10%, respectively. The tests for autocorrelation for the estimated 
models are also reported. 
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Note: The table reports the estimation results of the GARCH-GJR(1,1) for the stock market under consideration. Squared 
brackets indicate the p-values, standard errors are reported below the estimated coefficients. Note that *), **) and ***) indicate 
significance at 1%, 5% and 10%, respectively. The tests for autocorrelation for the estimated models are also reported. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1B (Continue). Estimation single equation models for the stick market indexes under consider after the Covid-19 
outbreak started. 

  GSPTSE GSPC FTSE100 HIS SSE N225 

𝛼𝛼 0.084** 0.034** 0.203* 0.062* 0.076* 0.191* 
 (0.033) (0.156) (0.013) (0.360) (0.008) (0.020) 

𝛽𝛽 0.902* 0.905* 0.705* 0.917* 0.920* 0.814** 
 (0.005) (0.098) (0.011) (0.214) (0.321) (0.371) 

𝛾𝛾 0.636* -0.397* -0.330** -0.598* 0.228** -0.757** 

  (0.143) (0.101) (0.148) (0.028) (0.182) (0.301) 

ARCH Lag (10) 2.364 4.649 4.144 2.913 3.534 3.110 
 [0.432] [0.235] [0.327] [0.476] [0.354] [0.308] 
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Table 2A-2B present the results of the pairwise correlation in the time-frequency domain between 

the S&P500 and the other stock market returns obtained using the suggested WC-GARCH procedure. 

 

 

Table 2A. WC-GARCH-GJR(1,1) estimation results before the Covid-19 outbreak. 
 D1 D2 D3 D4 D5 D6 

FTSE100 0.433 0.476 0.513 0.570 0.818 0.769 

N225 0.056 0.114 0.178 0.359 0.456 0.782 

SSE 0.062 0.067 0.041 -0.187 0.269 0.414 

HIS 0.144 0.186 -0.331 -0.407 0.431 0.584 

S&P TSX 0.596 0.674 0.563 0.631 0.762 0.863 

Note: The table reports the WC-GARCH results which give the estimated correlations between the SP500 and the other stock 
market indexes by frequency. The oscillation periods are 2-4, 4-8, 8-16 days, 6-32, 32-64 days and 64-128 days defined as D1, 
D2, D3, D4, D5 and D6, respectively between the U.S. and the other stock markets under consideration. 

 

Table 2B. WC-GARCH-GJR(1,1) estimation results during Covid-19 crisis. 

  D1 D2 D3 D4 D5 D6 

FTSE100 0.582 0.617 0.652 0.768 0.832 0.856 

N225 0.172 0.148 0.209 0.226 0.212 0.219 

SSE 0.271 0.228 0.370 0.352 0.417 0.433 

HIS 0.191 0.216 0.257 0.242 0.245 0.237 

S&P TSX 0.645 0.724 0.746 0.758 0.824 0.876 

Note: The table reports the WC-GARCH results which give the estimated correlations between the SP500 and the other stock 
market indexes by frequency. The oscillation periods are 2-4, 4-8, 8-16 days, 6-32, 32-64 days and 64-128 days defined as D1, 
D2, D3, D4, D5 and D6, respectively between the U.S. and the other stock markets under consideration. 

 

In Table 2A, the pairwise dynamic correlations for the pre-Covid-19 period are reported.  From 

Table 2A it appears that the correlations substantially increase when the timescale increases. In this 

regard, from columns two, three and four it seems that the tail dependence is relatively weak in the 

short-run (time scales D1, D2 and D3) and increases by each decomposition in the pre-crisis period. 

These results are in agreement with the finding in Figure 1-5. For time scale D4, in column five, it 

appears that the correlations are higher for all the markets. In particular, the stock returns can be divided 

into closely correlated markets (Canada and the U.K.) with correlation coefficients around 0.6 and 0.57, 

respectively. Moderately correlated markets (Japan and Hong Kong) with correlation coefficients 0.36 

and 0.41, respectively and mildly correlated markets for those markets whose correlation was less than 

0.2, as in China for example.  

From time scales D5 and D6, the differences in stock market interdependencies begin to show and 

are relatively high in D6. The U.K. and Canada have the highest correlation with the U.S., since the 

correlation is higher than 0.75 in these markets for the longest time brackets. Looking now at the 
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remaining stock markets, also in this case the correlation increases with the time scale. For example, 

the correlation between the U.S. and Japan’s was approximately 0.5 in D5 and increases to 

approximately 0.8 in D6, whereas Hong Kong’s correlation between approximately 0.4 and 0.6. China’s 

correlation varied substantially and was eventually slightly lower than Japan’s, at approximately 0.4 in 

D6. Overall, the results in Table 2A are in line with the definition of fundamental-based contagion where 

spillovers result from the normal interdependence among market economies. 

The picture dramatically changes in Table 2B where tail dependency increases in the frequency scale 

D1 and D2  for all the stock market under consideration, thus suggesting the existence of “pure” 

contagion even  according the strict criteria of contagion adopted by Gallegati (2012) and Dewandaru 

et al. (2015). Looking at scales D3 and D4 there is still evidence of volatility spillovers after a shock for 

up to 32 days for all stock markets, but HIS. Looking at the longest frequency scales, the picture 

changes, as for most pair-wise stock market indexes the estimated correlation coefficients are smaller 

or approximately the same. Taken together, these results suggest that the Covid-19 pandemic was a 

source of contagion not linked to observed changes in macroeconomic fundamentals but is mainly the 

result of the behaviour of investors or other financial agents. 

 

5. Conclusion  

 

In this study we propose a novel procedure to investigate the occurrence of cross market linkages 

during the Covid-19 pandemic. The main novelty of our model lies in combining wavelet analysis with 

copula estimation. In other words, the decomposed series obtained from the wavelet spectrum analysis 

are used to estimate a copula-GARCH model.  An interesting feature of the WC-GARCH procedure is 

its ability of unveiling relationships between stock market returns in the time-frequency domain, 

allowing a simultaneous assessment of the relationship between markets at different frequencies and 

the evolution of these links over time. In this respect, the procedure provides an alternative 

representation of the correlation structure of stock market returns on a scale-by-scale basis.  

To investigate cross-market linkages we distinguish between regular “interdependence” and “pure” 

contagion and associate changes in correlation between stock market returns at higher frequencies with 

contagion, that is a form of dependence that does not exist in tranquil periods but only occurs during 

periods of turmoil. On the other hand, changes at lower frequencies are associated with interdependence 

that relates to spillovers of shocks resulting from the normal dependence between markets and refers to 

the dependence that exists in all states of the world due to trade links and geographical position. The 

estimation results reveal evidence of long-run “interdependence” between the markets under 

consideration before the start of the Covid-19 pandemic in December 2019. However, strong evidence 

of “pure” contagion between stock markets was detected as the health crisis began.     
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Our results have important consequences since they show that despite the policy measures that have 

been put in place after the financial crisis of 2007-2008 still something still has to done to mitigate the 

impact of shocks on financial markets. The Covid-19 pandemic is the first health crisis that has the 

potential of triggering the devastating effects seen during the global financial crisis, which was arguably 

the first truly major global crisis since the Great Depression of 1929-32.  The sub-prime financial crisis 

had its origin in the United States in a relatively small segment of the lending market but it rapidly 

spread across virtually all countries in the world. In this respect, if lessons have to be learned from past 

experience, evidence of long and short run cross-market linkages constitutes a wake-up call highlighting 

the need of policy measures to mitigate contagion.  

 

References 

 

Allen, F., and Gale, D., 2000. “Financial Contagion.” Journal of Political Economy, 108, 1–33. 

Bae, K.H., Karolyi, G.A., Stulz, R.M., 2003. “A new approach to measuring financial contagion”. 
Review of Financial Studies, 16, 717-763. 
 
Baker, S.R., Bloom, N., Davis, S. J., Terry, S.J., 2020. "COVID-induced economic uncertainty," NBER 
Working Papers 2698.3 
 
Baig, T., and Goldfajn, I., 1999. “Financial market contagion in the Asian Crisis”, IMF Staff Papers, 
46, 1999. 
 
Baker, M., Wurgler, J., Yuan, Y., 2012. “Global, local, and contagious investor sentiment”. Journal 
of Financial Economics, 104, 272-287.  
 
Baker, S., Bloom, N., Davis, S.J., Kost, K., Sammon, M. and Viratyosin, T.2020. “The unprecedented 
stock market impact of COVID-19”. CEPR Covid Economics Review, NBER Working Paper No. 
w26945. 
 
Bartram, S.M., Taylor, S.J., Wang,Y.-H., (2007). “The Euro and European financial market 
dependence”. Journal of Banking and Finance, 51, 1461-1481. 
 
Bashir, U., Yu, Y., Hussain, M., Zebenede, G., 2016. “Do foreign exchange and equity markets co-
move in Latin American region? Detrended cross-correlation approach”. Physica A, 462, 889–897. 
 

Bekaert, G., Harvey, C.R. and Ng., A., 2005, “Market integration and contagion”. Journal of Business, 
78, 39-70. 
 
Benhmad, F., 2013. “Bull or bear markets: A wavelet dynamic correlation perspective”. Economic 

Modelling, 32, 576-591 

 

Bikhchandani, S., Sharma, S., 2000. “Herd Behavior in Financial Markets”. IMF Economic Review, 
47, 279-310. 
 

javascript:void(0)


21 
 
 

Billio, M. and Caporin, M. 2010. “Market linkages, variance spillover and correlation stability: 
empirical evidences of financial contagion”. Computational Statistics and Data Analysis, 54, 2443-
2458. 
 
Calvo, S., and Reinhart, C., 1996.“Capital flows to Latin America: Is there evidence of contagion 
effects?”, in Calvo,  Goldstein, Hochreiter (eds,) Private Capital Flows to Emerging Markets After the 
Mexican Crisis, Washington, DC: Institute for International Economics. 
 
Chen, M.H., Jang, S.S., Kim, W.G., 2007. “The impact of the SARS outbreak on Taiwanese hotel stock 
performance: an event-study approach”. International Journal of Hospital Management, 26, 200-212. 
 
Chen, X., Wang, R., Tang, M., Cai, S., Stanley, H.E. and Braunstein, L.A., 2018. “Suppressing 
epidemic spreading in multiplex networks with social-support”. New Journal of Physics, 20, 013007. 
 
Chiang, T.C., Jeon, B.N., Li, H., 2007. “Dynamic correlation analysis of financial contagion: evidence 
from the Asian Markets”. Journal of International Money and Finance, 26, 1206–1228. 

Conlon, T., Cotter, J., Ramazan, G., (2018) “Long-run wavelet-based correlation for financial time 
series”. European Journal of Operational Research, 271, 676-699. 

Crowley, P.M., 2007. “A guide to wavelets for economists”. Journal of Economic Surveys, 21, 207-
267. 
 
Daubechies, I., 1992. “Ten Lectures on Wavelets. In: CBSM-NSF”. Regional Conference Series in 
Applied Mathematics, SIAM, Philadelphia. 
 
Del Giudice, A., Paltrinieri, A., 2017. “The impact of the Arab Spring and the Ebola outbreak on African 
equity mutual fund investor decisions”. Research in International Business and Finance, 41, 600–612. 
 
Dewandaru, G., Masih, R., Masih, A.M.M., 2016. “Contagion and interdependence across Asia-Pacific 
equity markets: An analysis based on multi-horizon discrete and continuous wavelet transformations”. 
International Review of Economics and Finance, 43, 363–377. 
 
Dornbusch, R., Park, Yung Chul, Claessens, S., 2000. “Contagion: understanding how it spreads”. 
World Bank Research Observer, 15, 177–197. 
 
Dungey, M. and Gajurel, D., 2015. “Equity market contagion during the global financial crisis: evidence 
from the world's eighth largest economies”. Economic Systems, 38, 161-177. 
 
Eichengreen, B., Rose, A.K., Wyplosz, C., 1996. “Contagious currency crises: first tests”. Scandinavian 
Journal of Statistics, 98, 463-484. 
 
Fama, E. 1970. “Efficient capital markets: A review of theory and empirical work”. Journal of 
Finance, 25, 383-417.  
 
Fernández-Macho, J. (2012). “Wavelet multiple correlation and cross-correlation: A multiscale analysis 
of Eurozone stock markets”. Physica A: Statistical Mechanics and its Applications, 391, 1097–1104. 

Forbes, K., Rigobon, R., 2002. “No contagion, only interdependence: measuring stock markets 
comovements”. Journal of Finance, 57, 2223–2261. 
 
Gallegati, M., 2012. “A wavelet-based approach to test for financial market contagion”. Computational 
Statistics and Data Analysis, 56, 3491-3497. 
 



22 
 
 

Gallo, G.M., Otranto, E., 2008. “Volatility spillovers, interdependence and comovements: a Markov 
switching approach”. Computational Statistic and Data Analysis, 52, 3011-3026. 
 
Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Hu, B., Zhang, W., 
Peng, C., and Zhang, Y.J., 2013. “Isolation and characterization of a bat SARS-like coronavirus that 
uses the ACE2 receptor”. Nature, 503, 535-538. 
 
Gençay, R., Selçuk, F., and Whitcher, B.J., 2001. An introduction to wavelets and other filtering 
methods in finance and economics. Elsevier. 
 
Glosten, L.R., Jagannathan, R. and Runkle, D.E., 1993. “On the relation between the expected value 
and the volatility of the nominal excess return on stocks”. The Journal of Finance, 48, 779-1801.  
 
Goodell, J.W., 2020. “COVID-19 and finance: agendas for future research”. Finance Research Letters. 
35, 101-512. https://doi.org/10.1016/j.frl.2020.101512. 

Hernández, L.F. and Valdés, R.O., 2001. “What drives contagion: trade, neighborhood, or financial 
links?”. International Review of Financial Analysis, 10, 203-218. 
 
Hon, M.T., Strauss, J., Yong, S.K., 2004. “Contagion in financial markets after September 11: myth 
or reality?”. Journal of Financial Research, 27, 95–114. 
 

Huang, X. An, H., Gao, X., Hao, X. 2015. “Multiresolution transmission of the correlation modes 
between bivariate time series based on complex network theory”. Physica A, 428, 493-506. 
 

Ichev, R., Marinč, M., 2018. “Stock prices and geographic proximity of information: evidence from 
the Ebola outbreak”. International Review of Financial Analysis, 56, 153-166. 
 
Joe, H., 1997. Multivariate models and multivariate dependence concepts. CRC Press. 
 
Jondeau, E. and Rockinger, M., 2002. “Conditional dependency of financial series: the copula-GARCH 
model”. FAME research paper RP 69. 
 
Jondeau, E., Rockinger, M., 2006. “The copula-GARCH model of conditional dependencies: an 
international stock market application”. Journal of International Money and Finance, 25, 827–853. 
 
Kaminsky, G., Reinhart, C., 2000. “On crises, contagion, and confusion”. Journal of International 
Economics, 51, 145–168. 
 
King, M., Wadhwani, S., 1990. “Transmission of volatility between stock markets”. Review Financial 
Studies, 3, 5-33. 
 
Koo, J., and Fu, D., 2003. “The effects of S.A.R.S. on east Asian economies”. Federal Reserve Bank of 
Dallas, Expand Your Insight.  
 
Kyle, A. S., and Xiong, W., 2001. “Contagion as a Wealth Effect”. Journal of Finance, 56, 1401-40. 
 
Lee, S.B., Kim, K.W., 1993. “Does the October 1987 crash strengthen the comovements among national 
stock markets?”. Review of Financial Economics, 3, 89-102. 
 
Masson, P. (1998) “Contagion: Monsoonal Effects, Spillovers, and Jumps between Multiple 
Equilibria.” IMF Working Paper WP/98/142. International Monetary Fund, Washington, D.C. 
 



23 
 
 

Macciocchi, D., Lanini, S., Vairo, F., Zumla, A., Figueiredo, L.T.M., Lauria, F.N., Strada, G., Brouqui, 
P.; Puro, V.; Krishna, S., 2016. “Short-term economic impact of the Zika virus outbreak”. New 
Microbiology, 2016, 39, 287-289. 
 
Mohti, W., Dionísio, A., Vieira, I., Ferreira, P., 2019. “Financial contagion analysis in frontier markets: 
evidence from the US subprime and the Eurozone debt crises”. Physica A, 525, 1388–1389. 
 
Nelsen, R.B., 2003. “Properties and applications of copulas: A brief survey”. In Proceedings of the first 
Brazilian conference on statistical modeling in insurance and finance. University Press USP Sao Paulo. 
 
Nikoloulopoulos, A.K., Joe, H. and Li, H., 2012. “Vine copulas with asymmetric tail dependence and 
applications to financial return data”. Computational Statistics and Data Analysis, 56, 3659-3673. 
 
Nippani, S., Washer, K.M., 2004. SARS: “A non-event for affected countries’ stock markets?”. Applied 
Financial Economics, 14, 1105–1110. 
 
Park, C.Y., and Shin, K., 2020. "Contagion through National and Regional Exposures to Foreign Banks 
during the Global Financial Crisis". Journal of Financial Stability, 46, 100721, 
https://doi.org/10.1016/j.jfs.2019.100721 
 
Percival, D.B. and Walden, A.T., 2000. Wavelet methods for time series analysis (Vol. 4). Cambridge 
University Press, Cambridge. 
 
Priestley, M. B. (1981). Spectral analysis and time series: I and II. London: Academic Press. 
 
Pritsker M., 2001. “The channels for financial contagion” in International Financial Contagion, (S. 
Claessens, K. J. Forbes, eds.). Kluwer Academic Publishers, London. 
 
Ramsey, J.B., 2002. “Wavelets in economics and finance: Past and future”. Studies in Nonlinear 
Dynamics and Econometrics, 6, 1-29. 
 
Ranta, M., 2013. “Contagion among major world markets: A wavelet approach”. International Journal 
of Managerial Finance, 9, 133–149. 
 
Rodriguez, J., 2007. “Measuring financial contagion: a copula approach”. Journal of Empirical 
Finance, 14, 401–423. 
 
Sklar, C., 1959. “Fonctions de repartition a n dimensions et leurs marges”. Publications de l'Institut 
Statistique de l'Université de Paris. 8, 229-231. 
 
Siu, A., Wong, Y.C.R., 2004. “Economic impact of SARS: The case of Hong Kong”. Asian Economic 
Papers, 3, 62–83. 
 
Voronkova, S., 2004. “Equity market integration in Central European emerging markets: A 
cointegration analysis with shifting regimes”. International Review of Financial Analysis, 13, 633-647. 
 
Wu, S.-J., Lee, and W.M., 2015. “Predicting severe simultaneous bear stock markets using 
macroeconomic variables as leading indicators”. Finance Research Letters, 13,196–204.  
 

Wolf, H. 1999. “International asset price and capital flow comovements during Crisis: The role of 
contagion, demonstration effects, and fundamentals”. Paper presented at the World Bank/IMF/WTO 
conference on “Capital Flows, Financial Crises, and Policies,” April 15–16, Washington, D.C. 
 

https://doi.org/10.1016/j.jfs.2019.100721


24 
 
 

Yang, J., Kolari, J. W., and Min, I., 2003. “Stock market integration and financial crises: the case of 
Asia”. Applied Financial Economics, 13, 477-486. 
 

Yazgan, M.E., Özkan, H., 2015. “Detecting structural changes using wavelets”. Finance Research 
Letters, 12, 23–37.  
 
Yogo, M., 2008. “Measuring business cycles: A wavelet analysis of economic time series”. Economic 
Letters, 100, 208–212. 
 
Zaremba, A., Kizys, R., Aharon, D.Y., Demir, E., 2020. “Infected markets: novel coronavirus, 
government interventions, and stock return volatility around the globe”. Finance Research Letters. 
101597. 
 
Zhang, D., Broadstock, D.C., 2020. “Global financial crisis and rising connectedness in the international 
commodity markets”. International Review of Financial Analysis, 101239,    
https://doi.org/10.1016/j.irfa.2018.08.003 

 
Zhang, D., Hu, M., Ji, Q., 2020. “Financial markets under the global pandemic of COVID-19”. Finance 
Research Letters, 101528, https://doi.org/10.1016/j.frl.2020.101528 


	1. Introduction
	Conlon, T., Cotter, J., Ramazan, G., (2018) “Long-run wavelet-based correlation for financial time series”. European Journal of Operational Research, 271, 676-699.

