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Abstract

We extend the classical discrete time stochastic one-sector optimal growth model with
logarithmic utility and Cobb-Douglas production á-la Brock and Mirman (1972) to allow
probabilities to be state-dependent. In this setting the probability of occurrence of a given
shock depends on the capital stock, thus, as the economy accumulates more capital, the
probability of occurrence of different shocks changes over time. We explicitly determine
the optimal policy and its relation with state-dependent probabilities both in the cen-
tralized and decentralized frameworks, focusing on two alternative scenarios in which the
probability function, assumed to take a logarithmic form, is either decreasing or increasing
with capital. We show that state-dependent probabilities introduce a wedge between the
centralized and decentralized solutions, as individual agents do not internalize the effects
of capital accumulation on the probability of shocks realization. In particular, when-
ever the probability is decreasing (increasing) in the capital stock the probability of the
most (least) favorable shock increases, leading the decentralized economy to underinvest
(overinvest) in capital accumulation, resulting in the long run into a steady state capital
distribution characterized by a leftward (rightward) shifted support. We also show how
the features of state-dependent probabilities affect the spread and shape of such a steady
state distribution, which tends to be more skewed (more evenly spread) whenever the
probability decreases (increases) with capital.
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1 Introduction

Over the last decades, following the seminal work by Brock and Mirman (1972), a large and
growing number of works has tried to characterize the implications of stochasticity on macroeco-
nomic dynamics and economic growth (see Olson and Roy, 2005, for a survey). Several of these
studies analyze the eventual fractal nature of the steady state in traditional macroeconomic
frameworks, which are now well known to give rise to random dynamics possibly converging
to invariant measures supported on fractal sets (Montrucchio and Privileggi, 1999). Indeed, in
a classical discrete time one-sector Ramsey (1928) model with logarithmic utility and Cobb-
Douglas production in which output is affected by binary random shocks, the optimal economic
dynamics can be converted into affine iterated function systems converging to invariant prob-
ability measures, which may turn out to be either singular and supported on a Cantor-like
set or absolutely continuous (Montrucchio and Privileggi, 1999; Mitra et al., 2003; Mitra and
Privileggi, 2004; 2006; 2009; La Torre et al., 2015). Several extensions of the standard setup
have been developed over the years in order to consider multi-sector frameworks, to allow for
sustained endogenous growth, to permit shocks to affect factor shares, and to account for pol-
lution externalities, showing that even in such contexts similar results apply apart from the
fact that the support of the invariant probability measure may be some other fractal set, like
the Sierpinski gasket or the Barnsley’s fern (La Torre et al., 2011, 2015, 2018b, 2018c).

To the best of our knowledge, all the refinements and extensions of the classical stochastic
optimal growth model rely upon the assumption that the probability with which shocks occur is
constant. Even if this setting is useful to characterize macroeconomic dynamics in a simple and
intuitive way, it limits the analysis of the implications of important issues, such as the economic
inefficiency induced by uncertainty. Indeed, whenever the shocks probability is constant the
centralized and decentralized solutions perfectly coincide and uncertainty does not generate
any efficiency loss. Whenever the shocks probability is not constant but endogenously changes
with economic conditions, individual agents may fail to internalize the way their decisions
affect the probability of shocks realization which in turn drives capital accumulation, resulting
eventually in the introduction of some important inefficiency. The presence of such a distortion
between the centralized and decentralized solutions explains why in reality policymakers do
play an essential role in favoring the achievement of the first-best. Understanding thus how
reconciling real world observations with macroeconomic theory is crucial to develop a realistic
theory of economic growth and development. This paper wishes to make a first contribution in
this direction by extending the classical optimal stochastic growth model to allow probabilities
to be state-dependent, that is to depend on the level of the capital stock. State-dependent
probabilities are a natural generalization of constant probabilities which allow to explain the
mechanisms through which uncertainty might be a source of efficiency loss.

Specifically, we extend the classical discrete time stochastic one-sector optimal growth model
with logarithmic utility and Cobb-Douglas production á-la Brock and Mirman (1972) to allow
probabilities to be state-dependent. We assume that the probability of occurrence of different
shocks depends on the capital stock, and thus as the economy accumulates capital the prob-
ability of realization of given stocks endogenously changes. We consider the state-dependent
probability to be a monotonic function of capital, analyzing how results may change in situations
in which the probability increases or decreases with capital. By assuming that the probability
function takes a logarithmic form, we are able to explicitly characterize the optimal solution
of such an extended optimal growth model, discussing how the centralized and decentralized
solutions differ. We show that since in a centralized setting state-dependent probabilities affect
the optimal policy, they act as an engine of capital accumulation, which through its effects
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on the probability of shocks realization crucially drives the steady state capital distribution.
However, since in a decentralized setting such effects are not accounted for, the optimal policy
turns out be independent of state-dependent probabilities, introducing a wedge between the
centralized and decentralized outcomes. In particular, whenever the probability is decreasing
(increasing) in the capital stock the probability of the most (least) favorable shock increases,
the decentralized economy underinvests (overinvests) in capital accumulation compared to the
first-best, leading the steady state capital distribution to be characterized by a leftward (right-
ward) shifted support. This result generalizes those traditionally discussed in the stochastic
optimal growth literature (Brock and Mirman, 1972; Montrucchio and Privileggi, 1999; Mitra et
al., 2003), as the wedge between the centralized and decentralized solutions vanishes whenever
probabilities do not depend on the capital stock. We also show how the features of state-
dependent probabilities affect the spread and shape of such a steady state distribution, which
tends to be more skewed (more evenly spread) whenever the probability decreases (increases)
with capital. We also show that the optimal dynamics can be converted into a contractive
affine iterated function system (IFS) with affine state-dependent probabilities (SDP) which,
under rather general conditions, converges to an invariant self-similar measure supported on
a (possibly fractal) compact attractor. This result generalizes those presented in the fractal
steady state and stochastic optimal growth literature (Montrucchio and Privileggi, 1999; Mi-
tra et al., 2003; La Torre et al., 2015), which has shown that under constant probabilities
the optimal dynamics can be transformed in a traditional IFS in which probabilities are not
state-dependent.

Despite the fact that the probability of shocks realization may depend on the level of some
state variable is a very intuitive and natural framework to consider, the role of state-dependent
probabilities has not been explored in depth thus far. State-dependent probabilities and in
particular IFSSDP have received much attention in the mathematics literature (Barnsley et
al., 1988; Stenflo, 2002), but they have only seldom been discussed in economics (La Torre et
al., 2019, 2023). La Torre et al. (2019) discuss the implications of state-dependent probabil-
ities on the possible steady state outcome in a purely dynamic economic growth model with
health capital (abstracting completely from optimizing behavior) in which the probability of
shocks depends on the relative abundance of health capital with respect to physical capital.
La Torre et al. (2023) instead introduce optimizing behavior in an economic-epidemiological
framework in which random shocks associated with the diffusion of a new disease strain occur
with probabilities depending on the level of disease prevalence. They analyze how the steady
state distribution of disease prevalence is affected by the characteristics of the state-dependent
probability function and by optimal policymaking in a first-best scenario. Different from them
we consider a macroeconomic framework by focusing on an optimal growth setup in which
we analyze how the first- and second-best outcomes compare to clarify the implications of
state-dependent probabilities on the gap in the steady state capital distribution between the
centralized and decentralized scenarios.

The paper proceeds as follows. Section 2 introduces our extended Brock and Mirman’s
(1972) model with state-dependent probabilities, distinguishing between situations in which
the probabilities are either decreasing or increasing with the capital stock. Section 3 derives
the optimal solution of the social planner’s problem discussing how the optimal policy changes
(with respect to the standard one under constant probabilities) because of the presence of
state-dependent probabilities. Section 4 determines the solution of the decentralized problem
comparing it with the first-best outcome to highlight the inefficiency introduced by state-
dependent probabilities. Section 5 characterizes some properties of the steady state distribution
in relation to convergence and singularity vs. absolute continuity, presenting some robustness
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checks of our main conclusions. Section 6 as usual presents concluding remarks and highlights
directions for future research. A brief review of the theory of IFS is presented in Appendix A,
while all the proofs of our main results are reported in Appendix B.

2 The Model

We extend the classical discrete time stochastic one-sector growth model á-la Brock and Mirman
(1972), with logarithmic utility and Cobb-Douglas production function, to allow probabilities to
be state-dependent. The optimization problem can be summarized by the following stochastic
dynamic programming model:

V (k0, z0) = max
ct

E0

∞
∑

t=0

βt ln ct (1)

s.t. kt+1 = ztk
α
t − ct

k0 > 0 and z0 ∈ {r, 1} given,

where E0 is the expectation operator at time t = 0, kt capital, ct consumption, 0 < α < 1
the capital share, 0 < β < 1 the discount factor, and {zt}

∞

t=0 a Bernoulli process taking values
0 < r < 1 and 1 with probabilities p (kt) and 1 − p (kt), respectively. Therefore, at each time
t, the productivity shock zt can take only two values with state-dependent probabilities, and
in particular the fact that probabilities depend on the capital level implies that the realization
of shocks is related to the past evolution of capital, suggesting that economic development
may be characterized by either monotonic or non-monotonic dynamics. Specifically, whenever
p′ < 0 at low (high) capital levels the probability of the worst shock realization is high (low)
and this tends to prevent (boost) capital accumulation deterring (inducing) economic growth.
Overall this may give rise to a persistence of negative (positive) growth periods characteriz-
ing monotonic economic dynamics. Conversely, whenever p′ > 0, at low capital levels the
probability of the worst shock realization is low and this tends to favor capital accumulation
promoting economic growth, but as capital increases so does the probability of the worst shock
realization which tends to reduce capital accumulation resulting eventually in negative growth.
Overall this may give rise to an alternate sequence of positive and negative growth periods
characterizing non-monotonic economic dynamics. These two alternative situations represent
diametrically different macroeconomic scenarios. The p′ < 0 case characterizes a framework in
which productivity shocks are procyclical, while the p′ > 0 case a setting in which productivity
shocks are countercyclical. Several studies discuss why the cyclicality of shocks may change
over time or vary across countries, and this may be related to changes in factor utilization,
the flexibility of labor and capital markets, the structural changes associated with economic
development, and the effectiveness of macroeconomic stabilization policies (Fernald and Wang,
2016; Mayer et al., 2018). Note that whenever p′ = 0 probabilities are constant, restoring the
classical Brock and Mirman’s (1972) model in which such alternative outcomes are not possi-
ble, so that productivity shocks are completely acyclical and capital accumulation resembles
a random walk. In order to understand how different characteristics of the state-dependent
probabilities might affect macroeconomic dynamics, in the remainder of the paper we will focus
on a setup in which the relation between p and kt is monotonic analyzing how the results may
change when either p′ ≤ 0 or p′ ≥ 0.
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The reduced problem associated with (1) can be stated as follows:

V (k0, z0) = max
kt

E0

∞
∑

t=0

βt ln (ztk
α
t − kt+1) (2)

s.t. 0 ≤ kt+1 ≤ ztk
α
t

k0 > 0 and z0 ∈ {r, 1} are given.

Note that the probability p (kt) determines the occurrence of the random shock zt at the same
time t in which the actual amount of capital kt is employed in production; in this scenario
production occurs after the shock zt is realized, and its occurrence is controlled by the state-
dependent probability p (kt) depending on the actual availability of the stock of capital kt in
the same period t. However, as the amount of capital available at time t corresponds to the
investment decision made at time t − 1, such an assumption actually determines in essence a
Markov-type stochastic dynamic for capital, in which the probability of the random variable zt
at time t depends on a choice made in the previous period t− 1.

It is straightforward to verify that (2) is a concave problem as the zt-sections of the graphG =
{(kt, kt+1, zt) : kt+1 ∈ Γ (kt, zt)} of the optimal correspondence
Γ (kt, zt) = {kt+1 : 0 ≤ kt+1 ≤ ztk

α
t } are convex sets. Moreover, the dynamic constraint Γ (kt, zt)

eventually (monotonically) leads any feasible trajectory {kt}
∞

t=1 inside the interval [0, 1] as time
elapses, because ztk

α
t ≤ kα

t < kt for any value kt > 1. That is, the trapping region for the
dynamics that are admissible for problem (2) is the interval [0, 1], so that, without loss of gen-
erality, by assuming that the initial capital value k0 lies in such an interval, any trajectory will
have values that remain confined in it.

In order to explicitly solve the optimization problem above we need to specify the functional
form of the state-dependent probability function. As a matter of analytical tractability, we
assume a logarithmic form p (k) = A + B ln k for the state-dependent probability. Of course,
any such logarithmic forms turn out to be unbounded over the interval (0, 1], while state-
dependent probabilities must satisfy 0 < p (k) < 1 for any feasible state value k. We overcome
such an issue by opting for a piecewise functional form that is constant for k values close to 0
while taking the form p (k) = A+B ln k for larger k values, so to keep the probability bounded
between 0 and 1. Recall that, by assuming that the initial capital value k0 lies in the interval
[0, 1], any trajectory will have values that remain confined in it. Under such an assumption we
can introduce the following two piecewise-logarithmic forms for the state-dependent probability,
one decreasing and one increasing in k, defined for k ∈ [0, 1]:

p (k) =

{

1− δ if 0 ≤ k < e−
1−δ−γ

ε

γ − ε ln k if e−
1−δ−γ

ε ≤ k ≤ 1
(3)

p (k) =

{

δ if 0 ≤ k < e−
1−δ−γ

ε

1− γ + ε ln k if e−
1−δ−γ

ε ≤ k ≤ 1,
(4)

with δ, γ > 0 such that δ + γ < 1 and ε > 0 sufficiently small.
Clearly, as k ≤ 1, (3) defines a (Lipschitz) continuous state-dependent probability which

satisfies 0 < p (k) < 1 for all 0 ≤ k ≤ 1, is constant over
[

0, e−
1−δ−γ

ε

)

and strictly decreasing

in k over
[

e−
1−δ−γ

ε , 1
]

, while (4) defines a continuous state-dependent probability which again

satisfies 0 < p (k) < 1 for all 0 ≤ k ≤ 1, is constant over
[

0, e−
1−δ−γ

ε

)

and strictly increasing in

k over
[

e−
1−δ−γ

ε , 1
]

. Note that, for any fixed δ, γ > 0 satisfying δ+γ < 1, ε can be chosen small
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enough so to have the (more relevant) interval
[

e−
1−δ−γ

ε , 1
]

arbitrarily large; we shall return on

this property later on. Figure 1 shows an example of the probability functions according to (3)
and (4) for δ = γ = 0.01 and ε = 0.1756; for such parameters’ values the kink point turns out

to be e−
1−δ−γ

ε = 0.0038.

k

p (k)

0 0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

(a)
k

p (k)

0 0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

(b)

Figure 1: state-dependent probabilities for δ = γ = 0.01 and ε = 0.1756; a) as defined in (3), b) as
defined in (4).

In the next two sections we will characterize the optimal solution of problem (2) both in
centralized and decentralized settings to understand whether the state-dependency of probabil-
ities may generate some inefficiency and eventually to assess how the nature of such inefficiency
may change with the features of the state-dependent probability function.

3 The Centralized Setting

We start by analyzing the centralized setting in which the social planner effectively accounts for
the state-dependency of probabilities. Indeed, a social planner understands that their capital
investment affects the probability of shocks realization, thus they internalize the effects of
capital accumulation on future capital values induced by the state-dependent features of the
probability function. Therefore, in the centralized framework the Bellman equation associated
to (2) reads as:

V (k, z) = max
0≤y≤zkα

[ln (zkα − y) + βEyV (y, z′)] ,

where Ey denotes the expectation operator that depends on the probabilities of both realizations
of the random variable z′ occurring in the next period, itself depending on the saving choice y,
which corresponds to the capital available in the next period, that is, Pr (z′ = r) = p (y), while
Pr (z′ = 1) = 1− p (y)—recall that, for given y, the random variable z′ is independent of past
realizations. Then, the expectation Ey can be directly evaluated and the above equation can
be rewritten in the following form:

V (k, z) = max
0≤y≤zkα

{ln (zkα − y) + βp (y)V (y, r) + β [1− p (y)]V (y, 1)} . (5)

We search for a closed-form solution for the Bellman equation by applying the “Guess and
Verify” Method (Stokey and Lucas, 1989; Bethmann, 2007; La Torre et al., 2015) in order to
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determine a closed-form expression for the value function in (5) in situations in which p(kt) is
defined as either in (3) or in (4). Following previous literature we guess the following form for
the value function in (5):

V (k, z) = A+ B ln k + C ln z,

where A, B and C are constants to be determined. For such a logarithmic guess the Bellman
equation in (5) becomes:

V (k, z) = A+ B ln k + C ln z

= max
0≤y≤zkα

[ln (zkα − y) + β (A+ B ln y) + βp (y)C ln r] . (6)

Both state-dependent probabilities p (y) with the forms defined either in (3) or in (4) are

not differentiable at y = e−
1−δ−γ

ε ; hence, provided that zkα ≥ rkα > e−
1−δ−γ

ε , in both cases
we must consider two different Bellman equations of the type in (6) depending on whether

y ∈
[

0, e−
1−δ−γ

ε

)

or y ∈
[

e−
1−δ−γ

ε , zkα
]

. Specifically, when p (y) is defined according to (3), the

above equation becomes:

V (k, z) = A+ B ln k + C ln z

= max
0≤y<e−

1−δ−γ
ε

[ln (zkα − y) + βA+ βB ln y + β (1− δ)C ln r] , (7)

V (k, z) = A+ B ln k + C ln z

= max
e−

1−δ−γ
ε ≤y≤zkα

[ln (zkα − y) + βA+ βB ln y + β (γ − ε ln y)C ln r] , (8)

while when p (y) is defined according to (4), it takes the form:

V (k, z) = A+ B ln k + C ln z

= max
0≤y<e−

1−δ−γ
ε

[ln (zkα − y) + βA+ βB ln y + βδC ln r] , (9)

V (k, z) = A+ B ln k + C ln z

= max
e−

1−δ−γ
ε ≤y≤zkα

[ln (zkα − y) + βA+ βB ln y + β (1− γ + ε ln y)C ln r] . (10)

Equations (7) and (9) represent problems that keep probabilities constant forever (p = 1−δ
and 1 − p = δ in the former, p = δ and 1 − p = 1 − δ in the latter); however, if, after a finite

number of iterations, kt becomes larger than e−
1−δ−γ

ε , the relevant Bellman equations become
those defined in (8) and (10). Therefore, equations (7) and (9) turn out to be completely useless

unless we can guarantee that kt < e−
1−δ−γ

ε forever, that is, for every t ≥ 0. Because δ + γ < 1,

for ε sufficiently small the term e−
1−δ−γ

ε can be made arbitrarily small, which, in turn, implies

that the possibility of kt jumping above the level e−
1−δ−γ

ε after a finite number of iterations
becomes likely. As a matter of fact, the Inada conditions exhibited by the lower Cobb-Douglas
production function, rkα

t , invites the social planner to choose investment levels kt+1 much larger
than the actual stock of capital kt available at time t when the latter is very close to the left-end

point 0 of the feasible set [0, 1], thus easily leading to a value kt+1 > e−
1−δ−γ

ε .

For k values in
[

0, e−
1−δ−γ

ε

)

problem (2) turns out to be a standard stochastic intertemporal

model with constant probabilities, either p = 1− δ and 1− p = δ or p = δ and 1− p = 1− δ.
Hence, in this scenario we can invoke the well known result for this class of problems and easily
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find that, whenever k ∈
[

0, e−
1−δ−γ

ε

)

the optimal policy yields the optimal investment given by

(see, e.g., Mitra et al., 2003; Stokey and Lucas, 1989):

y∗ = h (k, z) = αβzkα. (11)

Now, if ε is chosen sufficiently small with respect to parameters α, β and r, after a finite
number τ of iterations of the policy (11) the optimal short-run trajectory will reach a value

kτ > e−
1−δ−γ

ε . The next assumption identifies such a threshold value for ε.

A. 1 Parameters δ, γ, ε satisfy δ, γ, ε > 0 and δ+γ < 1. Moreover ε is small enough to satisfy:

ε < −
(1− α) (1− δ − γ)

ln (αβr)
. (12)

Note that the RHS in (12) is positive as 1− δ − γ > 0 and ln (αβr) < 0.

Lemma 1 Under Assumption A.1—specifically, condition (12)—the regime represented by both
Bellman equations in (7) and (9) cannot be sustained over time, as there exist a finite number

of iterations τ ≥ 0 such that the optimal capital value in that iteration satisfies kτ ≥ e−
1−δ−γ

ε .

In view of Lemma 1, in the following we shall assume that Assumption A.1 holds and

that the initial capital stock satisfies k0 ∈
[

e−
1−δ−γ

ε , 1
]

, and focus exclusively on the (truly)

state-dependent case represented by the second-type Bellman equations (8) and (10) over the

(compact) interval
[

e−
1−δ−γ

ε , 1
]

. The next Propositions 1 and 2 will establish that, under such

assumptions, the optimal capital trajectory k∗
t remains confined in the interval

[

e−
1−δ−γ

ε , 1
]

for

all t ≥ 0 indeed, thus justifying the focus exclusively on the relevant Bellman equations (8) and
(10).

We consider first the case characterized by the decreasing state-dependent probability de-

fined in (3) for y ∈
[

e−
1−δ−γ

ε , 1
]

: p (y) = γ− ε ln y. In this case the (relevant) Bellman equation

(8) reads as:

V (k, z) = A+ B ln k + C ln z

= max
e−

1−δ−γ
ε ≤y≤zkα

[ln (zkα − y) + β (A+ γC ln r) + β (B − εC ln r) ln y] . (13)

It is then possible to prove the following result.

Proposition 1 Under Assumption A.1 and for k0 ∈
[

e−
1−δ−γ

ε , 1
]

, the solution of the Bellman

equation (13) is the function:

V (k, z) = A+B ln k + C ln z

where:

A =
ln [1− β (α− ε ln r)]

1− β
+

β (α− ε ln r) ln [β (α− ε ln r)] + βγ ln r

(1− β) [1− β (α− ε ln r)]
, (14)

B =
α

1− β (α− ε ln r)
, (15)

C =
1

1− β (α− ε ln r)
; (16)
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the optimal policy for capital is given by:

k∗
t+1 = h (k∗

t , zt) = β (α− ε ln r) zt (k
∗
t )

α , (17)

while the corresponding optimal policy for consumption is given by:

c∗t = [1− β (α− ε ln r)] zt (k
∗
t )

α . (18)

It is possible to show (see Appendix B) that β (α− ε ln r) < 1, which ensures that: i) co-
efficients B in (15) and C in (16) are strictly positive, which, in turn, imply that the value
function V (k, z) solving equation (13) is strictly concave in k and that the RHS is strictly
concave in y, so that the optimal policy in (17) is unique; and ii) the optimal consumption in
(18) is strictly positive. Therefore, Proposition 1 determines the unique optimal policy asso-
ciated with our extended Brock and Mirman’s (1972) model with decreasing state-dependent
probabilities. We can note that the optimal policy in (17) differs from the standard (under
constant probability) optimal policy k∗

t+1 = h (k, z) = αβzkα as in (11) because of the role of
the state-dependent probability p (k) = γ−ε ln k as in (3). Specifically, the positive term added
to the original multiplicative coefficient α appearing in (11) (i.e., −ε ln r) takes into account
that, as p (k) = γ − ε ln k is decreasing in k, investing more in future capital increases the
probability 1 − p (k) of having future favorable shocks zt = 1. Clearly, if ε = 0, that is, the
probability p (k) does no longer depend on capital, the optimal policy (17) perfectly coincides
with the standard one in (11).

We now move to the case of an increasing state-dependent probability defined in (4) for

y ∈
[

e−
1−δ−γ

ε , 1
]

: p (y) = 1− γ + ε ln y. In this case the (relevant) Bellman equation (10) reads
as:

V (k, z) = A+ B ln k + C ln z

= max
e−

1−δ−γ
ε ≤y≤zkα

[ln (zkα − y) + β [A+ (1− γ)C ln r] + β (B + εC ln r) ln y] . (19)

Unlike the case with decreasing state-dependent probabilities, now we need an additional con-
dition on parameter ε in the definition of probability in (4) – the following condition (20) – that
guarantees interiority of the optimal policy (24) determined in the next Proposition 2 whenever

its argument k∗
t ∈

[

e−
1−δ−γ

ε , 1
]

. In fact, now the term ε ln r < 0 indicates that, when the state-

dependent probability is increasing, the optimal choice on investment turns out to be strictly
lower than that prescribed by the standard optimal policy (11). This property requires that
the upper bound for parameter ε in condition (12) is further restricted in order to assure that

the optimal trajectory generated by (24) remains trapped in the (open) interval
(

e−
1−δ−γ

ε , 1
)

for all t ≥ 0.

A. 2 Under Assumption A.1, suppose that ε is sufficiently small to satisfy:

e−
(1−α)(1−δ−γ)

ε − (βr ln r) ε < αβr. (20)

Condition (20), although stated in implicit form with respect to ε, is meaningful, as the RHS
is strictly positive and the LHS is strictly positive, strictly increasing in ε and approaches 0 as
ε → 0+. In other words, for any choice for 0 < α, β, δ, γ, r < 1 satisfying all our assumptions,
there always exist some values ε > 0 satisfying (20). Its threshold upper bound value is the
unique ε > 0 satisfying (20) with equality. Moreover, as − (βr ln r) ε > 0, condition (20)

is stricter than (i.e., implies) condition (12); indeed, e−
(1−α)(1−δ−γ)

ε − (βr ln r) ε < αβr =⇒

e−
(1−α)(1−δ−γ)

ε < αβr, where the last inequality is equivalent to (12). Therefore, Lemma 1
always holds true under Assumption A.2.
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Proposition 2 Under Assumption A.2 and for k0 ∈
[

e−
1−δ−γ

ε , 1
]

, the solution of the Bellman

equation (19) is the function:

V (k, z) = A+B ln k + C ln z

where:

A =
ln [1− β (α + ε ln r)]

1− β
+

β (α + ε ln r) ln [β (α + ε ln r)] + β (1− γ) ln r

(1− β) [1− β (α + ε ln r)]
, (21)

B =
α

1− β (α + ε ln r)
, (22)

C =
1

1− β (α + ε ln r)
; (23)

the optimal policy for capital is given by:

k∗
t+1 = h (k∗

t , zt) = β (α + ε ln r) zt (k
∗
t )

α , (24)

while the corresponding optimal policy for consumption is given by:

c∗t = [1− β (α + ε ln r)] zt (k
∗
t )

α . (25)

Also in this case it is possible to show (Appendix B) that under condition (20)
0 < β (α + ε ln r) < 1 holds, thus assuring that: i) the optimal investment in (24) is strictly pos-
itive; ii) the optimal consumption in (25) is strictly positive; and iii) coefficients B in (22) and C
in (23) are both strictly positive, which, in turn, together with the property β (α + ε ln r) > 0,
imply that the value function V (k, z) solving equation (19) is strictly concave in k and that
the RHS is strictly concave in y, so that the optimal policy in (24) is unique. Therefore,
Proposition 2 determines the unique optimal policy associated with our model with increas-
ing state-dependent probabilities. We can note that also in the case of increasing probability
the optimal policy in (24) differs from the standard (under constant probability) optimal pol-
icy k∗

t+1 = h (k, z) = αβzkα in (11) because of the effects of the state-dependent probability
p (k) = 1 − γ + ε ln k as in (4). The negative term added to the original multiplicative coeffi-
cient α appearing in (11) (i.e., +ε ln r), emphasizes the fact that, as p (k) = 1 − γ + ε ln k is
increasing in k, the social planner takes into account that too large an investment increases the
probability p (k) of bad shocks zt = r occurring in subsequent times that will cause a reduction
in the future capital stock. Also in this case, whenever ε = 0 the probability p (k) turns out
not to depend on capital any longer, and thus the optimal policy (24) perfectly coincides with
the standard one in (11).

Comparing the optimal policies (17) and (24) under decreasing and increasing state-dependent
probabilities respectively, it is straightforward to notice that they differ only for the additive
term ε ln r, whose sign is positive in the former case and negative in the latter case, such that the
optimal policy prescribes a larger (smaller) investment whenever the probability decreases (in-
creases) with the capital stock. However, independently of whether the probability increases or
decreases with the capital stock, the optimal policy under state-dependent probability crucially
depends on the shocks probability p(kt). Therefore, by affecting the optimal capital dynamics,
state-dependent probabilities act as an engine of capital accumulation, which through its ef-
fects on the probability of shocks realization impacts the evolution of capital over time. Such
effects are completely absent under the standard constant probability assumption, since in the
standard Brock and Mirman’s (1972) setup capital dynamic is completely independent of the
(constant) probability.
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Since affecting the time evolution of capital, state-dependent probabilities affect also its long
run steady state distribution. Indeed, the optimal policies (17) and (24) derived in Propositions
1 and 2 can be rewritten as follows, respectively:

kt+1 =

{

θ1rk
α
t with probability p1 (kt)

θ1k
α
t with probability 1− p1 (kt)

(26)

and:

kt+1 =

{

θ2rk
α
t with probability p2 (kt)

θ2k
α
t with probability 1− p2 (kt)

, (27)

where θ1 = β (α− ε ln r), p1 (kt) = γ − ε ln kt as in (3), θ2 = β (α + ε ln r), and p2 (kt) =
1−γ+ ε ln kt as in (4). Equations (26) and (27) characterize two nonlinear IFSSDPs which, by
relying on the IFS theory (see Appendix A for a brief review), converge to a unique invariant
distribution µ̄ supported on an interval (possibly the whole interval) whose endpoints are the
fixed points of the two nonlinear maps wl (k) = θirk

α (lower map) and wh (k) = θik
α (higher

map) for i = 1, 2, given by

[

(θ1r)
1

1−α , θ
1

1−α

1

]

and

[

(θ2r)
1

1−α , θ
1

1−α

2

]

, respectively. Note that,

due to the Inada condition of the Cobb-Douglas production function, kα, the derivative of the
higher map wh (k) = θik

α, in each IFS evaluated at the left endpoint of their attractor may be
larger than 1;1 in such circumstances, all the associated nonlinear IFSSDPs turn out to be not
contractive and, in principle, convergence to a unique invariant measure may not be guaranteed.
However, convergence to a unique invariant distribution is established by the fact that they are
topologically conjugate of an affine IFSSDP, which, being a contraction, converges to a unique
invariant measure (see the IFSSDP (31) introduced in Section 5).

The expressions for the supports of the invariant measures associated with the optimal poli-
cies (17) and (24) clearly show the effects of the features of the state-dependent probabilities
on the steady state distribution of capital. In particular, when the state-dependent probability
is decreasing (increasing) the steady state distribution is spread over a larger (smaller) range of
values characterized on average by higher (lower) capital.2 This is consistent with the working
mechanisms of state-dependent probabilities as an engine of capital accumulation: since the
optimal policy requires larger (smaller) investment when the probability is decreasing (increas-
ing), this results in the long run in higher (smaller) capital values on average. Apart from
such effects on the support of the invariant measure, state-dependent probabilities may affect
the shape of the steady state distribution, but unfortunately it is not possible characterizing
explicitly how. Therefore, in the following we will rely on a numerical approach to shed some
light on this issue.

Specifically, we numerically approximate the evolution of a given probability distribution
over time according to our nonlinear IFSSDPs (26) and (27) associated to the optimal policies
(17) and (24), which solve (2). To this purpose, we apply a Maple algorithm3 that approximates
successive iterations of the Markov operator given by (39) in Appendix A associated with the
relevant IFSSDP based on Algorithm 1 in La Torre et al. (2019), in order to have a qualitative
idea on what the invariant distribution µ̄ may look like. In our benchmark parametrization
(see Section 5 for a robustness analysis of our numerical results) we set the following values:

α = 0.5, β = 0.96, r = 0.25, δ = γ = 0.01 and ε = 0.1756. (28)

1To be precise, this occurs whenever α > r, as in all our numerical simulations below.

2To see this, note that, as 0 < α, r < 1, θ1 > θ2 =⇒ θ
1

1−α

1
− (θ1r)

1

1−α > θ
1

1−α

2
− (θ2r)

1

1−α .
3The detailed code is available upon request.
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Note that the value ε = 0.1756 is 0.0001 less than its upper bound 0.1757 defined by
condition (20). The maps in the IFSSDPs (26) and (27) turn out to be kt+1 = θ1ztk

α
t =

(0.7137) ztk
0.5
t and kt+1 = θ2ztk

α
t = (0.2463) ztk

0.5
t for zt ∈ {0.25, 1} respectively, and their at-

tractors turn out to be the interval
[

(rθ1)
2 , θ21

]

= [0.0318, 0.5094] and
[

(rθ2)
2 , θ22

]

= [0.0038, 0.0606] respectively. In both the the IFSSDPs (26) and (27) the im-
ages of the two maps wl (k) = rθik

0.5 (lower map) and wh (k) = θik
0.5 (higher map) almost do

not overlap, having in common only one point: wl (θ
2
1) = wh

[

(rθ1)
2] = 0.12736 for the IFSSDP

(26) and wl (θ
2
2) = wh

[

(rθ2)
2] = 0.0152 for the IFSSDP (27). Therefore, in both cases the in-

variant measure has a full interval as support: [0.0318, 0.5094] and [0.0038, 0.0606] respectively.
The plots of the state-dependent probabilities p (k) for these parameters’ values, both for the
decreasing and for the increasing probability, are those reported in Figure 1 for the relevant

interval
[

e−
1−δ−γ

ε , 1
]

= [0.0038, 1].
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Figure 2: a) initial uniform density µ0 (k) ≡ 2.0938 over [0.0318, 0.5094], b) 1st and c) 7th iterations
of our Algorithm for the IFSSDP (26); d) initial uniform density µ0 (k) ≡ 17.59 over [0.0038, 0.0606],

e) 1st and f) 7th iterations of our Algorithm for the IFSSDP (27).

Figure 2 shows the initial uniform density µ0 (k) ≡
1

θ2i−(rθi)
2 (left panels), the 1st (mid panels)

and 7th (right panels) iterations of our Maple algorithm for the IFSSDP (26) (top panels for
i = 1, with µ0 (k)≡2.0938)—i.e. when the probability of the shock z = r is decreasing and
defined according to p1 (k) = 0.01 − (0.1756) ln k—or for the IFSSDP (27) (bottom panels
for i = 2, with µ0 (k) ≡ 17.59)—i.e. when the probability of the shock z = r is increasing
and defined according to p2 (k) = 0.99 + (0.1756) ln k. As convergence toward the unique
invariant measure is geometric, i.e., very fast, Figures 2(c) and 2(f), can be considered as
good approximations of the invariant measures to which the IFSSDPs (26) and (27) converge
asymptotically. From Figure 2(c) we learn that, as expected, µ̄ tends to concentrate most of the
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mass on k values close to the endpoints of [0.0318, 0.5094]. This is explained by the fact that a
decreasing probability p1 (k) introduces a conservative pattern for the k values, with a higher
probability to either remain close to k = 0.0318 if the system is already there or to remain
close to k = 0.5094 if the system is already in that area. This suggests that in the p′(·) < 0
case economic development is characterized by a monotonic increase in the capital level which
tends to be concentrated near one of (or both) the extremes of the support of the invariant
measure, so that in steady state the outcome is associated with a high frequency of either large
or small capital values, or both. Conversely, Figure 2(f) shows that an increasing probability
like p2 (k) = 0.99 + (0.1756) ln k tends to concentrate more mass in the middle of the support
[0.0038, 0.0606], that is, future values of k are more likely to jump (almost) anywhere in the
interval support than in the previous case. Again the justification of this pattern originates
from the increasing probability p2 (k) that raises the chance of the occurrence of the best shock
z = 1 when k is small and viceversa. Therefore, in the p′(·) > 0 case economic development is
characterized by fluctuations in the capital level which tends to continually rise and fall leading
on average to be dispersed but more densely concentrated toward the middle of the support
of the invariant measure, so that the steady state outcome is associated with a state of diffuse
capital levels.

We can clearly conclude that the property of increasingness or decreasingness of the state-
dependent probabilities affects in a nontrivial way the steady state capital distribution. Indeed,
it does not only determine the size of its support, which is wider and characterized by larger
capital values in the p′ < 0 case, but it impacts also on how the steady state distribution is
spread over its support, which tends to be highly concentrated near one or both extremes of
(more evenly spread over) the support in the p′ < 0 (p′ > 0) case. This also suggests that the
optimal policy response to the procyclicality of productivity shocks tends to generate a more
favorable long run outcome than the one we would observe in the case of countercyclical shocks.

4 The Decentralized Framework

We now move to the decentralized setting in which individual agents fail to account for the
state-dependency of probabilities. Indeed, a single agent may not perceive that their individual
capital investment affects the probability of shocks realization, thus they do not internalize
the effects of capital accumulation on future capital values induced by the state-dependency of
probabilities. Therefore, in the decentralized framework individual agents take the probability
as given, forming thus their decision plans as if the probability of shocks realization were
constant at the value p̄. In such a framework, the Bellman Equation (5) associated to problem
(2) when the shocks have constant probability p̄, reads as follows:

V (k, z) = max
0≤y≤zkα

[ln (zkα − y) + βp̄V (y, r) + β (1− p̄)V (y, 1)] ,

It is well known (see, e.g., Mitra et al., 2003; Stokey and Lucas, 1989) that the optimal policy
in this case is independent of the probability itself, as it is given by (11). The investment
level given by this expression is the common choice of all individual agents in a decentralized
economy, who fail to consider how the capital level affects the shock process through the state-
dependent probabilities p (k) defined as in (3) or (4). As it is different than both the social
planner optimal policies (17) and (24), it characterizes a second-best, suboptimal solution for
problem (2). By comparing the centralized and decentralized outcomes it is straightforward to
conclude the following.
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Proposition 3 The centralized optimal policy prescribes a larger (smaller) capital investment
than the decentralize policy whenever the state-dependent probability is decreasing (increasing).

Proposition 3 states that the state-dependency of probabilities plays a crucial role in deter-
mining the extent of the difference between the centralized and decentralized solutions. If the
state-dependent probability is decreasing in capital the decentralized economy underinvests in
capital accumulation: by failing to internalize that capital accumulation reduces the probability
of the worst shock realization individual agents devote less resources than the socially optimal
level for the future, resulting thus eventually in a steady state distribution characterized by
lower capital levels. If instead the state-dependent probability is increasing the decentralized
economy overinvests in capital accumulation: by failing to internalize that capital accumula-
tion increases the probability of the worst shock realization individual agents allocate more
resources than the socially optimal level for the future, resulting thus eventually in a steady
state distribution characterized by higher capital levels. Indeed, the second-best policy can be
written in terms of a nonlinear IFSSDP as follows

kt+1 =

{

αβrkα
t with probability pi (kt)

αβkα
t with probability 1− pi (kt)

for i = 1, 2, (29)

with p1 (kt) = γ − ε ln kt as in (3) and p2 (kt) = 1− γ + ε ln kt as in (4). Similarly to what we
have discussed for the optimal policy, the IFSSDP (29) converges to an invariant measure whose
support is a subset of the interval (possibly the whole interval) whose endpoints are the fixed

points of the nonlinear maps wl (k) = αβrkα, wh (k) = αβkα, given by
[

(αβr)
1

1−α , αβ
1

1−α

]

. It

is straightforward to verify that such a support is leftward (rightward) shifted with respect to
the support of the first-best distribution whenever the state-dependent probability is decreas-
ing (increasing). In the classical Brock and Mirman (1972) framework, because the probability
of shocks realization is constant, the centralized and decentralized solutions coincide, explain-
ing why the standard macroeconomic theory—which abstracts from the state-dependency of
probabilities—is not capable of justifying why in reality economic regulation is essential to re-
store the first-best outcome. As a matter of fact, if first- and second-best coincide, there is no
need of regulation as competitive markets will achieve the first-best automatically.

As in the first-best framework, state-dependent probabilities affect also the shape of the
steady state distribution; again, unfortunately, characterizing explicitly how is not possible and
thus we need to rely on a numerical approach. By relying on the same parameter as in (28),
the second-best policy turns out to be kt+1 = αβztk

α
t = (0.48)ztk

α
t , with associated IFSSDP

(29) having the interval
[

(αβr)2 , (αβ)2
]

= [0.0144, 0.2304] as attractor, all contained in the

relevant interval
[

e−
1−δ−γ

ε , 1
]

= [0.0038, 1] for the state-dependent probabilities considered in

our simulation and reported in Figure 1. Also the images of the two maps wl (k) = αβrkα

(lower map) and wh (k) = αβkα (higher map) in the IFSSDPs (29) almost do not overlap,
having in common only one point: wl

[

(αβ)2
]

= wh

[

(αβr)2
]

= 0.0576. Therefore, the invariant
measure has the full interval [0.0144, 0.2304] as support. Note that, because θ1 > αβ > θ2, the
attractor lies in a somewhat intermediate position between the attractors of the IFSSDPs (26)
and (27).

Figure 3 shows the initial uniform density µ0 (k) ≡ 1
(αβ)2−(αβr)2

= 4.63 (left panels), the

1st (mid panels) and 7th (right panels) iterations of our Maple algorithm for the IFSSDP (29)
when the probability of the shock z = r is decreasing and defined according to p1 (k) =
0.01 − (0.1756) ln k (top panels) or when the probability of the shock z = r is increasing and
defined according to p2 (k) = 0.99 + (0.1756) ln k (bottom panels).
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Figure 3: initial uniform density µ0 (k) ≡ 4.63 over [0.0144, 0.2304] (left), 1st (mid) and 7th (right)
iterations of our Algorithm for the IFSSDP (29) whenever p1 (k) = 0.01− (0.1756) ln k (top) or

p2 (k) = 0.99 + (0.1756) ln k (bottom).

By comparing the approximations of the invariant measure generated by the IFSSDPs as-
sociated to the social planner first-best policies in Figures 2 with those associated to the de-
centralized second-best policies in Figure 3, it is interesting to observe that the latter exhibit a
pattern which is consistent with the former. In fact, the characteristic pattern introduced by
the Markov operator (39), clearly visible in Figures 2(b) and 2(e), is being replicated in Figures
3(b) and 3(e), as in both cases the same decreasing/increasing state-dependent probabilities
are at work. Moreover, and more importantly, the high degree of concentration close to one
of (or both) the endpoints of the support of the invariant measure exhibited by Figure 2(c),
typical of the behavior generated by a decreasing state-dependent probability, is being main-
tained by Figure 3(c); similarly, both Figures 2(f) and 3(f) exhibit a fair degree of spreadness,
as we should expect when the state-dependent probability is increasing.4 However, a relatively
higher spike on the left in Figure 3(b) than that in Figure 2(b) yields a dramatically different
picture asymptotically: the approximation of the invariant measure in Figure 3(c) concentrates
most of its weight close to the left endpoint of the support, instead of concentrating it close to
the right endpoint, as occurs in Figure 2(c). Similarly, but less dramatically, a relatively lower
spike on the left in Figure 3(e) than that in Figure 2(e) has the effect of slightly concentrat-
ing slightly more mass close to the left endpoint of the support of the approximation of the
invariant measure in Figure 3(f) than what occurs in Figure 2(f).

4Note that the values on the vertical axis in Figures 2 and 3 should be considered in relative terms. Specifi-
cally, differences in spike values on the vertical axis in both figures are consistent with differences in diameters
of the supports. For example, a spike of around 100 in Figure 2(c), where the diameter of the support is around
0.5, roughly corresponds to a spike higher than 200 in Figure 3(c), where the diameter is around 0.22.
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Consistent with the fact that both Figures 3(c) and 3(f) represent invariant measures gen-
erated by suboptimal second-best dynamics, it is clear that in both scenarios considered for the
decreasing and the increasing state-dependent probabilities such invariant measures concen-
trate more mass toward the lower endpoint of their support than their counterparts in Figures
2(c) and 2(f) do, thus determining a higher frequency of lower levels of capital in the long run
due to suboptimal choice by the decentralized agents. Despite the difference in the support
size and range of values, by normalizing the supports over the unit interval through a mono-
tonically increasing transformation it is possible to conclude that decentralization leads to a
stochastic steady state characterized on average by lower capital levels, independent of whether
the state-dependent probabilities are either increasing or decreasing (see Section 5). In fact,
the second-best policy kt+1 = αβztk

α
t represents systematic underinvestment (overinvestment)

when p (k) is decreasing (increasing) that is when capital accumulation favors (deters) eco-
nomic development, leading the economy to a worse outcome than that generated by the social
planner first-best policy kt+1 = θiztk

α
t for i = 1, 2.

5 Properties of the Invariant Measures

From our analysis thus far we have conjectured that the nonlinear IFSSDPs, (26) and (27) in the
centralized framework and (29) in the decentralized context, have a steady state characterized
by an invariant distribution supported on some closed set, but we have not proved anything
yet in relation to its existence and the their eventual convergence to it. We now formally prove
both claims by performing a variable change which recasts the above IFSSDPs in terms of a
topologically equivalent linear IFSSDPs. Such a transformation allows us also to assess the
singularity vs. absolute continuity properties of the invariant measure and to perform some
robustness checks of our conclusions in relation to the features of the steady state distribution.

Recall that θ1 = β (α− ε ln r), θ2 = β (α + ε ln r); moreover, set θ3 = αβ. Consistent with
extant literature (Montrucchio and Privileggi, 1999; Mitra et al., 2003; La Torre et al., 2019),
it is straightforward to show that the following log-linear transformation:

xt = −
1− α

ln r
ln kt + 1 +

ln θi
ln r

, for i = 1, 2, 3, (30)

defines an affine dynamic in the new variable xt, which is topologically conjugate to the non-
linear map kt+1 = θiztk

α
t in the capital variable kt and has the interval [0, 1] as trapping

region for the dynamics associated to the first-best centralized solutions (17), (24) when the
state-dependent probability is decreasing (i = 1) or increasing (i = 2), and to the (unique)
second-best decentralized solution (11) with state-dependent probability either decreasing or
increasing (i = 3). As 0 < r < 1 and, by Propositions 1 and 2, 0 < θi < 1 for i = 1, 2, 3
as well, (30) are increasing affine transformations of ln kt for i = 1, 2, 3. Specifically, they are
continuous, invertible and each of them establishes a one-to-one correspondence between the
nonlinear dynamics of kt defined by the three maps (17), (24), (11) and the affine dynamics of
the new variable xt according to:

xt+1 = αxt + (1− α)

(

1−
ln zt
ln r

)

,

which, in turn, can be rewritten in terms of the following IFSSDP:

xt+1 =

{

αxt with probability pj (xt)
αxt + (1− α) with probability 1− pj (xt) ,

(31)
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where the conjugate state-dependent probabilities pj (x) : [0, 1] → [0, 1] are the affine functions
defined in the next proposition.

Proposition 4 For the probabilities defined in (3) and (4), under Assumptions A.1 and A.2
the conjugate state-dependent probabilities pj (x) : [0, 1] → [0, 1] associated to the IFSSDP (31)
for j = FD (first-best, decreasing), FI (first-best, increasing), SD (second-best, decreasing),
SI (second-best, increasing) are:

pFD (x) = γ −
ε

1− α
ln (θ1r) +

ε ln r

1− α
x (32)

pFI (x) = 1− γ +
ε

1− α
ln (θ2r)−

ε ln r

1− α
x (33)

pSD (x) = γ −
ε

1− α
ln (θ3r) +

ε ln r

1− α
x (34)

pSI (x) = 1− γ +
ε

1− α
ln (θ3r)−

ε ln r

1− α
x. (35)

All satisfy 0 < pj (x) < 1 for all x ∈ [0, 1], pFD (x) and pSD (x) are strictly decreasing while
pFI (x) and pSI (x) are strictly increasing.

Different from what happens under constant probabilities, Proposition 4 states that with
state-dependent probabilities also the probability function needs to be converted in an affine
function in order to derive a topologically equivalent transformation of the original dynamical
system. Specifically, pFD (x) is the affine state-dependent probability associated to the affine
IFSSDP (31) when solution is given by the first-best map kt+1 = θ1ztk

α
t and the original state-

dependent probability is decreasing; pFI (x) is the affine state-dependent probability associated
to the affine IFSSDP (31) when the first-best solution is given by the first-best map kt+1 =
θ2ztk

α
t and the original state-dependent probability is increasing; while pSD (x) and pSI (x) are

the affine state-dependent probabilities associated to the affine IFSSDP (31) when the solution
is given by the (unique) second-best map kt+1 = θ3ztk

α
t = αβztk

α
t and the original state-

dependent probability is either decreasing or increasing. Note that Proposition 4 establishes
that the IFS defined by the unique affine map xt+1 = αxt + (1− α)

(

1− ln zt
ln r

)

is topologically
equivalent to all four dynamics defined by the nonlinear maps kt+1 = θiztk

α
t , including first-

and second-best dynamics; the difference among all four is crucially and exclusively determined
by which of the four probabilities (32)–(35) is being associated to it.

The IFSSDP (31) with associated state-dependent probabilities (32)–(35) can be analyzed
through the tools from the IFS theory (see Appendix A), which ensure the existence and con-
vergence of a unique stationary distribution µ̄ for such an IFSSDP. Since the unique IFS in (31)
is topologically equivalent to either (26), (27) or (29) when the appropriate affine probabilities
pj (x) are used, this confirms that the nonlinear IFSSDPs analyzed in the previous sections do
converge to a unique stationary distribution as well. Note that the log-linear transformation
(30), as it applies to both the first- and second-best policies, generates a normalization of the
support of all their steady state distributions over the unit interval, allowing for a more straight-
forward comparison of the effects of different properties of the state-dependent probabilities on
the characteristics of the invariant measure.

Consistent with the IFS theory, the linearity property of the IFSSDP (31) allows us also
analyze the features of the invariant measure in terms of singularity or absolute continuity.
Absolutely continuous measures can be represented by a density and thus admit a full repre-
sentation depending only on a few parameters, while singular invariant measures do not have
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a simple and effective representation unless we state their value on every point of their do-
main (Mitra et al., 2003; La Torre et al., 2023). As absolutely continuous measures are more
well-behaved than singular measures as they allow for a more precise forecasting of future dy-
namics, it may be useful characterize the conditions under which the invariant measure may
be absolutely continuous. Theorem 5 in Appendix A can be directly applied to our IFSSDP
(31) by setting β = α, τ1 = 0 and τ2 = 1− α, and this allows us to conclude that the invariant
distribution may be either singular if the capital share α is small (i.e., α ≤ 1/2) or absolutely
continuous if it is large (i.e., α > 1/2), and in particular absolute continuity requires that
α > eΘ, namely that the capital share exceeds a certain value, where:

Θ = max {psup ln (psup) , pinf ln (pinf)}+

+max {(1− psup) ln (1− psup) , (1− pinf) ln (1− pinf)} < 0, (36)

with pinf = inf {p (x) : 0 ≤ x ≤ 1} > 0 and psup = sup {p (x) : 0 ≤ x ≤ 1} < 1. Note that these
results are consistent with what has been shown in the case of constant probabilities by Mitra
et al. (2003) for intermediate values of the constant probability p (i.e., 1/3 ≤ p ≤ 2/3) and
by Shmerkin (2014) for smaller and larger values (i.e., p < 1/3 and p > 2/3). Therefore, the
capital share plays an important role in the determination of the steady state of our state-
dependent-probability extended Brock and Mirman’s (1972) model as its magnitude drives the
singularity vs. absolute continuity properties of the invariant distribution, and, as we are going
to see through some specific examples, different values of the capital share have important
implications for the long run macroeconomic dynamics.

Also for the affine IFSSDPs (31) with associated state-dependent probabilities (32)–(35)
it is impossible to explicitly characterize their invariant measure; once again we rely on their
numerical approximation as the marginal measure obtained after some iterations of the Markov
operator (39). We rely on the same parametrization earlier employed, but we consider different
values of the capital share in order to understand how this parameter affects our previous
conclusions. Specifically, we consider the following values for the capital share:

α = 0.33, α = 0.5, and α = 0.8. (37)

For α = 0.5 we keep the same ε value as in Sections 3 and 4: ε = 0.1756. Hence, the first-
best optimal policies (17) and (24) are characterized by parameters θ1 = 0.7137 and θ2 = 0.2463
respectively, while the second-best policy (11) is defined by θ3 = 0.48. According to Proposition
4, to the original nonlinear probabilities p1 (k) = 0.01 − (0.1756) ln k and p2 (k) = 0.99 +
(0.1756) ln k for the first-best dynamics correspond the log-linearized affine probabilities (32)
and (33) defined as pFD (x) = 0.6154−(0.4870) x and pFI (x) = 0.0107+(0.4870) x respectively,
while for the second-best dynamics correspond the log-linearized affine probabilities (34) and
(35) defined as pSD (x) = 0.7548 − (0.4870) x and pSI (x) = 0.2452 + (0.4870) x respectively.
Figure 4 shows the first n = 7 iterations of our Maple algorithm for the four cases just described,
starting from the uniform initial distribution, µ0 (x) ≡ 1 over the interval [0, 1]. Note that for
α = 0.5 the support of the invariant measure µ̄ is always the full interval [0, 1].

By comparing Figures 2(c), 2(f), 3(c) and 3(f)—plotting the approximations of the invariant
measure of the dynamics defined by the original nonlinear maps—with Figure 4 it is apparent
that the main features of the invariant measures are preserved under the log-linear transfor-
mation, both for the maps through (30) and for the state-dependent probabilities according to
(32)–(35), in all four scenarios: when the probability is decreasing (Figures 2(c), 3(c), 4(a) and
4(c)) the invariant measure µ̄ concentrates most of the mass on x values close to the endpoints
of the support; while when the probability is increasing (Figures 2(f), 3(f), 4(b) and 4(d)) the
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invariant measure µ̄ tends to spread most of the mass on x values more evenly in the middle of
the support. Consistent with Figure 2(c) vs. Figure 3(c) and 2(f) vs. Figure 3(f), the invari-
ant measure generated by first-best dynamics (top panels in Figure 4) concentrates more mass
close to the right endpoint, 1, of the support [0, 1] than what the invariant measure associated
to second-best dynamics (bottom panels in Figure 4) does. In Figure 4 this feature is more
neatly observable than in Figures 2 and 3 because in the former the support, the interval [0, 1],
is the same in all four scenarios, while the comparison between Figures 2 and 3 is somewhat
more problematic due to (relevant) differences in the diameters of the supports of the invariant
measures. This confirms our previous conclusions regarding the inefficiency in a decentralized
setting: independent of whether the state-dependent probability is increasing or decreasing
with capital, decentralization leads to a stochastic steady steady state characterized on average
by lower capital levels.
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Figure 4: 7th iteration of our Algorithm to approximate the Markov operator (39) associated to the
IFSSDP (31) for β = 0.96, r = 0.25, δ = γ = 0.01, α = 0.5, ε = 0.1756 with a) θ1 = 0.7137 (first-best

dynamics) and decreasing probability pFD (x) = 0.6154− (0.4870)x; b) θ2 = 0.2463 (first-best
dynamics) and increasing probability pFI (x) = 0.0107 + (0.4870)x; c) θ3 = 0.48 (second-best
dynamics) and decreasing probability pSD (x) = 0.7548− (0.4870)x; d) θ3 = 0.48 (second-best

dynamics) and increasing probability pSI (x) = 0.2452 + (0.4870)x.
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Finally, a direct comparison between the invariant measure associated to each nonlinear
dynamic and its log-linearized affine counterpart introduces a slight ‘uniform’ shift of the mass
to the right in all four cases: while this is self evident between Figures 2(f) vs. 4(b), Figures
3(c) vs. 4(c) and Figures 3(f) vs. 4(d), in the case of Figures 2(c) vs. 4(a) note that, although
the spike on the right in the former figure is higher than a similar spike in the latter figure, the
spikes on the left in the former figure are smaller in the latter figure and, although having a
lower edge, a larger mass is being accumulated close to the endpoint 1 in the latter figure. The
height and irregularity of the spikes in all four plots in Figure 4 are consistent with an invariant
distribution µ̄ which is singular with respect to Lebesgue measure, as established by point 2.
of Theorem 5 in Appendix A for α = β = 0.5 and pj (x) 6= α = 0.5 for i = 1, 2 and j = F, S.

With different values of α condition (20) may no longer be met, thus we cannot rely on the
same values of ε we have employed thus far in all our simulations. Specifically, for α = 0.33 the ε
value satisfying condition (20) with equality is 0.1720, so that we set ε = 0.1719, that is, 0.0001
less that its upper bound. Thus, the relevant interval for the nonlinear dynamics becomes
[

e−
1−δ−γ

ε , 1
]

= [0.0033, 1], the first-best optimal policies (17) and (24) are characterized by

parameters θ1 = 0.5456 and θ2 =0.0880 respectively, while the second-best policy (11) is defined
by θ3 = 0.3168. According to Proposition 4, to the original nonlinear probabilities p1 (k) =
0.01 − (0.1719) ln k and p2 (k) = 0.99 + (0.1719) ln k for the first-best dynamics correspond
the log-linearized affine probabilities (32) and (33) defined as pFD (x) = 0.5211 − (0.3557) x
and pFI (x) = 0.0110 + (0.3557) x respectively, while for the second-best dynamics correspond
the log-linearized affine probabilities (34) and (35) defined as pSD (x) = 0.6606 − (0.3557) x
and pSI (x) = 0.3394 + (0.3557) x respectively. Figure 5 shows the first n = 7 iterations of our
Maple algorithm for the four cases just described, starting from the uniform initial distribution,
µ0 (x) ≡ 1 over the interval [0, 1]. For α = 0.33 the support of the invariant measure µ̄ turns
out to be classical Ternary Cantor set. In fact, all invariant measures in Figure 5 concentrate
on a much thinner and sparser set than the invariant distributions in Figure 4; besides this
feature, the general patterns exhibited by the approximations of Figure 5 seem consistent with
that already discussed for the approximations in Figure 4. Clearly, consistent with point 1. of
Theorem 5, all four invariant measures in Figure 5 must be singular with respect to Lebesgue
measure.

If α = 0.8 the ε value satisfying condition (20) with equality is 0.1058, so that we set
ε = 0.1057, that is, 0.0001 less that its upper bound. Now, the relevant interval for the

nonlinear dynamics becomes
[

e−
1−δ−γ

ε , 1
]

= [0.0001, 1], the first-best optimal policies (17) and

(24) are characterized by parameters θ1 =0.9087 and θ2 =0.6273 respectively, while the second-
best policy (11) is defined by θ3 = 0.768. According to Proposition 4, to the original nonlinear
probabilities p1 (k) = 0.01 − (0.1057) ln k and p2 (k) = 0.99 + (0.1057) ln k for the first-best
dynamics correspond the log-linearized affine probabilities (32) and (33) defined as pFD (x) =
0.7932 − (0.7326) x and pFI(x) =0.0110 + (0.7326) x respectively, while for the second-best
dynamics correspond the log-linearized affine probabilities (34) and (35) defined as pSD (x) =
0.8821 − (0.7326) x and pSI (x) = 0.1179 + (0.7326) x respectively. Figure 6 shows the first
n = 7 iterations of our Maple algorithm for the four cases just described, starting from the
uniform initial distribution, µ0 (x) ≡ 1 over the interval [0, 1]. For α = 0.8 the support of
the invariant measure µ̄ is the full interval [0, 1]. Again, the general patterns exhibited by the
approximations of Figure 6 are consistent with those already discussed for the approximations
in Figures 4 and 5. In this case the two maps wl (x) = αx and wh (x) = αx + (1− α) in the
IFSSDP (31) exhibit a large overlapping region, with magnitude of 0.6.
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Figure 5: 7th iteration of our Algorithm to approximate the Markov operator (39) associated to the
IFSSDP (31) for β = 0.96, r = 0.25, δ = γ = 0.01, α = 0.33, ε = 0.1719 with a) θ1 = 0.5456

(first-best dynamics) and decreasing probability pFD (x) = 0.5211− (0.3557)x; b) θ2 = 0.0880
(first-best dynamics) and increasing probability pFI (x) = 0.0110 + (0.3557)x; c) θ3 = 0.3168

(second-best dynamics) and decreasing probability pSD (x) = 0.6606− (0.3557)x; d) θ3 = 0.3168
(second-best dynamics) and increasing probability pSI (x) = 0.3394 + (0.3557)x.

Such a property implies that the invariant distribution µ̄ is more likely to be smooth, a
feature clearly apparent from all plots in Figures 6. More precisely, the invariant measures
approximated in Figures 6(a), 6(c) and 6(d) satisfy the condition α > eΘ, and thus they are
almost surely absolutely continuous. In fact, for pFD (x) = 0.7932 − (0.7326) x in Figure 6(a)
the term Θ in (36) turns out to be Θ = −0.2287, so that eΘ = e−0.2287 = 0.7956 < 0.8 = α;
similarly, for both pSD (x) = 0.8821 − (0.7326) x and pSI (x) = 0.1179 + (0.7326) x in Figures
6(c) and 6(d) the term Θ turns out to be the same, Θ = −0.2484, so that eΘ = e−0.2484 = 0.78 <
0.8 = α. In other words, the spikes present in the finite-time approximation of µ̄ in Figures
6(a), 6(c) and 6(d) are likely to be asymptotically smoothed out as the number of iterations
approaches infinity. Conversely, the condition α > eΘ does not hold for the invariant measure
approximated in Figure 6(b), as for pFI (x) = 0.0110 + (0.7326) x the term is Θ = −0.0607, so
that eΘ = e−0.0607 = 0.9411 > 0.8 = α.
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Figure 6: 7th iteration of our Algorithm to approximate the Markov operator (39) associated to the
IFSSDP (31) for β = 0.96, r = 0.25, δ = γ = 0.01, α = 0.8, ε = 0.1057 with a) θ1 = 0.9087 (first-best

dynamics) and decreasing probability pFD (x) = 0.7932− (0.7326)x; b) θ2 = 0.6273 (first-best
dynamics) and increasing probability pFI (x) = 0.0110 + (0.7326)x; c) θ3 = 0.768 (second-best
dynamics) and decreasing probability pSD (x) = 0.8821− (0.7326)x; d) θ3 = 0.768 (second-best

dynamics) and increasing probability pSI (x) = 0.1179 + (0.7326)x.

All our numerical examples confirm our previous results regarding the effects of the property
of increasingness or decreasingness of the state-dependent probabilities on the steady state
capital distribution, along with those regarding the inefficiency arising in a decentralized setting.
This also suggests that our results are robust to different values of the capital share, and in
particular different values of the parameter only determine whether the invariant measure may
turn out to be singular or absolutely continuous, without modifying the nature of our main
conclusions.

6 Conclusion

We extend the classical discrete time stochastic one-sector growth model with logarithmic util-
ity and Cobb-Douglas production function á-la Brock and Mirman (1972) to allow probabilities
to be state-dependent. Under state-dependent probabilities the probability of occurrence of a
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given shock depends on the capital stock, thus as the economy accumulates more capital along
its process of economic development the probability of occurrence of different shocks changes
over time. As the social planner in making their investment decisions needs to account for
how the future capital stock level will impact these probabilities, the optimal policy critically
depends on the characteristics of the state-dependent probability function. Therefore, state-
dependent probabilities act as an engine of capital accumulation, which through its effects on
the probability of shocks realization impacts the process of economic development. We show
that whenever the probability (assumed to take a logarithmic form) is decreasing (increasing)
in the capital stock the probability of the most (least) favorable shock increases, and this incen-
tivizes the planner to increase (decrease) his capital investment, generating monotonic (non-
monotonic) economic dynamics, resulting in a steady state capital distribution more skewed
(symmetric) towards the upper extreme (around the middle) of its support. In a decentralized
setting in which single individuals do not internalize the effects of capital accumulation on the
state-dependent probabilities, capital accumulation turns out to be independent of the prob-
abilities leading to situations of underinvestment (overinvestment) with respect the first-best.
We also show that both the centralized and decentralized optimal solutions can be converted
into a contractive affine IFS with affine SDP which, under rather general conditions, converges
to an invariant self-similar measure supported on a (possibly fractal) compact attractor.

To the best of our knowledge, ours is the first attempt to analyze the role of state-dependent
probabilities in optimal stochastic economic growth settings. Therefore, several interesting is-
sues associated with the role of state-dependent probabilities on macroeconomic dynamics still
need to be uncovered. We have considered only the situation in which the probability function
monotonically depends on the capital stock, thus it is natural to wonder how results may change
in more general settings in which the probability may be non-monotonic in capital. Moreover,
our focus has been placed on the effects of state-dependent probabilities on capital accumu-
lation, while other macroeconomic variables such as wealth and public debt may be affected
by shocks occurring with state-dependent probabilities as well, thus it would be interesting to
analyze the consequence of state-dependent probabilities on other macroeconomic dynamics.
The analysis of these further issues is left for future research.
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A Iterated Function Systems

We now review some basic concepts and the main results in the theory of Iterated Function
Systems (IFSs) with constant and state-dependent probabilities. The notion of IFS was firstly
introduced by Barnsley et al. (1990) and Hutchinson (1981) and then extended in different
contexts (see Kunze et al., 2012, and the references therein).

Given a compact metric space (X, d), an N -map Iterated Function System (IFS) on X,
w = {w1, . . . , wN}, is a set of N contraction mappings on X, i.e., wi : X → X, i = 1, . . . , N ,
with contraction factors ci ∈ [0, 1). It can be proved that under these assumptions the following
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set-valued mapping ŵ defined on the space H (X) of nonempty compact subsets of X:

ŵ (S) :=
N
⋃

i=1

wi (S) , S ∈ H (X) .

is a contraction on the complete metric space H (X) endowed with the classical Hausdorff
distance h defined as:

h (A,B) = max

{

sup
x∈A

inf
y∈B

d (x, y) , sup
x∈B

inf
y∈A

d (x, y)

}

.

This result implies the existence and uniqueness of a fixed point A such that ŵ (A) = A.
Moreover, A is self-similar, that is, it is the union of distorted copies of itself and it is also
attracting, that is, for any B ∈ H (X), h (A, ŵtB) → 0 as t → ∞.

An N -map iterated function system with (constant) probabilities (w,p) is an N -map IFS w
with associated probabilities p = {p1, . . . , pN},

∑N

i=1 pi = 1. It can be proved that the Markov
operator defined by ν(S) = (Mµ)(S):

ν (S) = (Mµ) (S) =
N
∑

i=1

piµ
(

w−1
i (S)

)

.

is a contraction mapping on the space M (X) composed by all probability measures on (Borel
subsets of) X with respect to the Monge-Kantorovich distance defined as follows: For any pair
of probability measures µ, ν ∈ M (X), we have

dMK (µ, ν) = sup
f∈Lip1(X)

[
∫

fdµ−

∫

fdν

]

,

where Lip1 (X) = {f : X → R : |f (x)− f (y)| ≤ d (x, y)}. These assumptions imply the exis-
tence of a unique attracting measure µ̄ ∈ M (X).

The family of IFS with state-dependent probabilities extends the above definitions. Within
this framework, the probabilities pi are no longer constant but they are are state-dependent,
i.e., pi : X → [0, 1] such that:

N
∑

i=1

pi (x) = 1, for all x ∈ X. (38)

The result is an N -map IFS with state-dependent probabilities (IFSSDP). The Markov op-
erator M : M (X) → M (X) associated with an N -map IFSSDP, (w,p), is defined as:

ν (S) = Mµ (S) =
∑

i

∫

w−1
i (S)

pi (x) dµ (x) , (39)

where µ ∈ M(X) and S ⊂ X is a Borel set.

Theorem 1 (La Torre et al., 2018a) Given M as defined in equation (39), then M maps
M (X) to itself. In other words, if µ ∈ M (X), then ν = Mµ ∈ M (X).

Under appropriate conditions, the above Markov operator can be contractive with respect
to the Monge-Kantorovich metric.
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Theorem 2 (La Torre et al., 2018a) Let (X, d) be a compact metric space and (w,p) an
N -map IFSSDP with IFS maps wi : X → X with contraction factors ci ∈ [0, 1). Furthermore,
assume that the probabilities pi : X → R are Lipschitz functions, with Lipschitz constants
Ki ≥ 0. Let M : M (X) → M (X) be the Markov operator associated with this IFSSDP, as
defined in (39). Then for any µ, ν ∈ M (X),

dMK (Mµ,Mν) ≤ (c+KDN) dMK (µ, ν) ,

where c = maxi ci, K = maxi Ki and D = diam (X) < ∞.

Theorem 3 (La Torre et al., 2018a) Under the same assumptions as in the above Theo-
rem, if c + KDN < 1 then the Markov operator M has a unique fixed point µ in M (X).
Furthermore, for any ν ∈ M (X), the orbit Mnν converges to µ in dMK when n → +∞.

We now describe the so-called Chaos Game for an IFS with probabilities. Start with x0 ∈ X,
and define the sequence xt ∈ X by:

xt+1 = wσt
(xt) ,

where σt ∈ {1, 2, . . . , N} is chosen according to the probabilities pi (xt) (that is, P [σt = i] =
pi (xt)). We note that the sequence (xt) is a Markov chain with values in X. The following
theorem (from results in Elton, 1987; and Barnsley et al., 1988) gives conditions as to when
an IFSSDP has a unique stationary distribution µ and the Chaos Game “converges” to µ in a
distributional sense.

Theorem 4 (Elton, 1987; Barnsley et al., 1988) Suppose that there is a δ > 0 so that
pi (x) > δ for all x ∈ X and i = 1, 2, . . . , N and suppose further that the moduli of continuity
of the pis satisfy Dini’s condition (see Elton, 1987; and Barnsley et al., 1988). Then there is
a unique stationary distribution µ̄ for the Markov operator. Furthermore, for each continuous
function f : X → R,

1

t+ 1

t
∑

i=0

f (xi) →

∫

X

f (x) dµ̄ (x) . (40)

Theorem 4 can be used to show the following result.

Corollary 1 Suppose that the IFSSDP {w, pi} satisfies the hypothesis of Theorem 4. Then the
support of the invariant measure µ̄ of the N -map IFSSDP (w,p) is the attractor A of the IFS
w, i.e.,

supp µ̄ = A.

Therefore the invariant measure µ satisfies the following equation

µ (S) =
∑

i

∫

w−1
i (S)

pi (x) dµ (x) , (41)

for any subset S of X. This equation shows how the invariant measure can be obtained by
combining different distorted copies of itself. This justifies why the invariant measure is a self-
similar object. Moreover, the invariant measure can be characterized by either singularity or
absolute continuity, and such a property can be determined as follows.
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Theorem 5 (La Torre et al., 2023) Take the two-map IFS on R given by {αx+ τ1, βx+ τ2},
with α, β ∈ [0, 1) along with the two probability functions p1 (x) = p (x) and p2 (x) = 1− p (x).
Assume that δ < p(x) < 1 − δ for all x and some δ > 0 and also that p is Hölder continuous.
Let µα,β be the invariant measure of this state-dependent IFS.

1. If 0 ≤ α + β < 1 then µα,β is singular with respect to Lebesgue measure.

2. If α + β = 1 then µα,β is either singular with respect to Lebesgue measure or is equal to
the (normalized) Lebesgue measure on the closed interval with endpoints τ1

1−α
and τ2

1−β
and

p (x) = α.

3. For each α + β > 1, let hα,β be defined by

hα,β = −

∫

{p(x) ln[p(x)] + [1− p(x)] ln[1− p(x)]}dµα,β(x)

and

χα,β = − log(β) + [log(β)− log(α)]

∫

p(x) dµα,β(x).

Then µα,β is singular for every α, β with hα,β < χα,β.

Furthermore, there is an open subset Θ ⊂ {(α, β) ∈ (0, 1)2 : α + β > 1} so that µα,β is
absolutely continuous with respect to Lebesgue measure for Lebesgue almost every (α, β) ∈
Θ such that hα,β > χα,β.

These basic concepts related to the theory of IFSSDP are useful to derive the steady state
equilibrium and understand its characteristics in our stochastic economic growth model.

B Proofs of the Main Results

B.1 Proof of Lemma 1

Fix an initial value k0 for capital, possibly, but not necessarily, such that

k0 ∈
(

0, e−
1−δ−γ

ε

)

, and suppose, by contradiction, that the optimal saving/investment y∗ = kt+1

in each period t remains bounded inside the interval
[

0, e−
1−δ−γ

ε

)

. Hence, both definitions (3)

and (4) imply that at each time t ≥ 0 the probability of the shock r is constant—given by
p (y∗) ≡ 1 − δ or p (y∗) ≡ δ respectively—so that either the Bellman equation (7) or (9)
fully represent problem (2). It is well known that the optimal policy solving either equa-
tion (7) or equation(9) is the same and is given by (11); such a policy generates trajecto-
ries kt+1 = h (kt, zt) = αβztk

α
t having the deterministic trajectory generated by the lower

map kt+1 = αβrkα
t as lower bound, so that kt+1 = αβztk

α
t ≥ αβrkα

t for all t ≥ 0. The
lower bound trajectory generated by kt+1 = αβrkα

t converges to the (deterministic) fixed point

limt→∞ αβrkα
t = (αβr)

1
1−α . As condition (12) is equivalent to

e−
1−δ−γ

ε < (αβr)
1

1−α ,

we conclude that there exists a finite date τ ≥ 0 such that kτ ≥ kτ ≥ e−
1−δ−γ

ε , thus contradicting

the assumption that kt remains bounded inside the interval
[

0, e−
1−δ−γ

ε

)

for all t ≥ 0.
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B.2 Proof of Proposition 1

Under the assumption that B − εC ln r > 0 (we shall see that it holds at the end of the proof)
the RHS in (13) is strictly concave in y, and the FOC with respect to y yields the unique
solution

y∗ =
β (B − εC ln r)

1 + β (B − εC ln r)
zkα, (42)

Substituting y∗ as in (42) into the RHS of (13) after some algebra yields

V (k, z) = A+ B ln k + C ln z

= ln

[

zkα −
β (B − εC ln r)

1 + β (B − εC ln r)
zkα

]

+ β (B − εC ln r) ln

[

β (B − εC ln r)

1 + β (B − εC ln r)
zkα

]

+ β (A+ γC ln r)

= α [1 + β (B − εC ln r)] ln k + [1 + β (B − εC ln r)] ln z

+ β (B − εC ln r) ln [β (B − εC ln r)]− [1 + β (B − εC ln r)] ln [1 + β (B − εC ln r)]

+ β (A+ γC ln r) .

By equating all similar terms in both sides we find that a solution of the Bellman equation
(13) is given by the constants A, B and C that satisfy















(1− β)A = βγC ln r + β (B − εC ln r) ln [β (B − εC ln r)]
− [1 + β (B − εC ln r)] ln [1 + β (B − εC ln r)]

B = α [1 + β (B − εC ln r)]
C = 1 + β (B − εC ln r) .

From the second and third equations we see that B = αC, so that, after substituting this in the
third equation, we easily find the value of C as in (16), C = 1

1−β(α−ε ln r)
, which, when replaced

into the second equation, yields the (crucial) value for B as in (15): B = α
1−β(α−ε ln r)

.
After cumbersome algebra the value of parameter A can be easily obtained; as

B = αC = α
1−β(α−ε ln r)

, we get

β (B − εC ln r) = β (αC − εC ln r) = β (α− ε ln r)C =
β (α− ε ln r)

1− β (α− ε ln r)
,

so that:

A =
1

1− β

{

β (α− ε ln r)

1− β (α− ε ln r)
ln

[

β (α− ε ln r)

1− β (α− ε ln r)

]

−

[

1 +
β (α− ε ln r)

1− β (α− ε ln r)

]

ln

[

1 +
β (α− ε ln r)

1− β (α− ε ln r)

]

+
βγ ln r

1− β (α− ε ln r)

}

=
[1− β (α− ε ln r)] ln [1− β (α− ε ln r)] + β (α− ε ln r) ln [β (α− ε ln r)] + βγ ln r

(1− β) [1− β (α− ε ln r)]
,

which is the expression in (14).
After replacing B and C as in (15) and in (16) respectively into (42) we easily obtain

y∗ = h (k, z) =
β (B − εC ln r)

1 + β (B − εC ln r)
zkα = β (α− ε ln r) zkα,

which confirms the expression in (17) for the optimal policy.
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The solution in (17) is certainly interior under condition (12). In fact, on one hand it is
straightforward to show that

ε < −
(1− α) (1− δ − γ)

ln (αβr)
⇐⇒ αβr

(

e−
1−δ−γ

ε

)α

> e−
1−δ−γ

ε ,

which implies that, as −ε ln r > 0, for any k ≥ e−
1−δ−γ

ε ,

y∗ = β (α− ε ln r) zkα > αβzkα ≥ αβrkα ≥ αβr
(

e−
1−δ−γ

ε

)α

> e−
1−δ−γ

ε ,

that is, y∗ > e−
1−δ−γ

ε . On the other hand, to prove that y∗ = β (α− ε ln r) zkα < zkα we show
that condition (12) implies that 0 < β (α− ε ln r) < α− ε ln r < 1. To this purpose note that,
as 0 < αβ < 1 and 0 < r < 1, the following holds:

ln (αβ) + ln r = ln (αβr) < ln r ⇐⇒ −
1− α

ln r
> −

1− α

ln (αβr)

=⇒ −
1− α

ln r
> −

(1− α) (1− δ − γ)

ln (αβr)
> ε,

where the last inequality is condition (12); as the last two inequalities are equivalent to α −
ε ln r < 1, we have just established that that y∗ < zkα.

The property that 0 < β (α− ε ln r) < 1 ⇐⇒ 1 − β (α− ε ln r) > 0 also implies that
both coefficients B and C are strictly positive; this establishes that the RHS in (13) is strictly
concave.

Finally, it is a simple exercise to show that problem (2) satisfies all assumptions of Theorem
9.12 on p. 274 in Stokey and Lucas (1989): therefore, the function
V (k, z) = A + B ln k + C ln z—with coefficients A, B and C defined in (14), (15) and (16)
respectively—that solves the Bellman equation (13) is exactly the value function of problem
(2), while the function h (k∗

t , zt) = β (α− ε ln r) zt (k
∗
t )

α defined in (17) is exactly the optimal
policy. We omit the details for brevity.

B.3 Proof of Proposition 2

Provided that B + εC ln r > 0, the RHS in (19) is strictly concave in y; hence, steps similar
to those used in the proof of Proposition 1 easily yield the values A, B and C as in (21),
(22) and (23), together with the optimal policy as in (24) and the optimal consumption as
in (25). Being the same exercise as in the previous proof of Proposition 1, also establishing
that Theorem 9.12 on p. 274 in Stokey and Lucas (1989) holds is straightforward, so that the
function V (k, z) = A + B ln k + C ln z—with coefficients A, B and C defined in (21), (22)
and (23) respectively—that solves the Bellman equation (19) is exactly the value function of
problem (2), while the function h (k∗

t , zt) = β (α + ε ln r) zt (k
∗
t )

α defined in (24) is exactly the
optimal policy.

We only need to establish that the unique solution in (24) is interior under condition (20).
In fact, on one hand it is immediately shown that

e−
(1−α)(1−δ−γ)

ε − (βr ln r) ε < αβr ⇐⇒ β (α + ε ln r) r
(

e−
1−δ−γ

ε

)α

> e−
1−δ−γ

ε ,

which implies that, for any k ≥ e−
1−δ−γ

ε ,

y∗ = β (α + ε ln r) zkα ≥ β (α + ε ln r) rkα ≥ β (α + ε ln r) r
(

e−
1−δ−γ

ε

)α

> e−
1−δ−γ

ε ,
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that is, y∗ > e−
1−δ−γ

ε . Note, in turn, that, as e−
1−δ−γ

ε > 0, the last inequality also establishes
that β (α + ε ln r) > 0. On the other hand, as ε ln r < 0, β (α + ε ln r) < 1 definitely holds, so
that y∗ = β (α + ε ln r) zkα < zkα as well.

Finally,

β (α + ε ln r) > 0 ⇐⇒
βα

1− β (α + ε ln r)
+

βε ln r

1− β (α + ε ln r)
= β (B + εC ln r) > 0,

which establishes that the RHS in (19) is strictly concave in y.

B.4 Proof of Proposition 4

The inverse transformation of (30) yields k as a function of x according to k = (θir)
1

1−α

(

r−
1

1−α

)x

.

Therefore, pj (x) = p (k) = p
[

(θir)
1

1−α

(

r−
1

1−α

)x]

, so that, according to (3), pFD (x) = γ −

ε ln k = γ − ε ln
[

(θ1r)
1

1−α

(

r−
1

1−α

)x]

, which is equivalent to (32), while, according to (4),

pFI (x) = 1 − γ + ε ln k = 1 − γ + ε ln
[

(θ2r)
1

1−α

(

r−
1

1−α

)x]

, which is equivalent to (33). A

similar argument holds for the affine probabilities in (34) and (35) for j = SD, SI and θ3 = αβ.

As, under Assumptions A.1 and A.2, Propositions 1 and 2 establish that kt ∈
[

e−
1−δ−γ

ε , 1
]

for

all t ≥ 0, definitions (3) and (4) guarantee that pj (x) = p (k) = p
[

(θir)
1

1−α

(

r−
1

1−α

)x]

satisfy

0 < pj (x) < 1 for all x ∈ [0, 1] and j = FD,FI, SD, SI. Finally, as ε ln r
1−α

< 0, clearly pFD (x)

and pSD (x) are decreasing, while, as − ε ln r
1−α

> 0, pFI (x) and pSI (x) are increasing.
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