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ABSTRACT

This paper investigates the relationship between local knowledge bases and recom-

binant dynamics in CE technologies. We focus on the role of accumulated green

and digital complementary capabilities and posit that they are positively associated

to regional ability to absorb and integrate new technological opportunities in CE-

based recombinations. The empirical analysis, conducted on a dataset of European

NUTS2 regions over the period 1985-2015, suggests that both green and digital com-

plementary localized capabilities represent crucial leverage for regional recombinant

activities around CE technologies.
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1. Introduction

The Circular Economy (CE) paradigm is globally gaining ground as a strategy to

make existing production and consumption patterns more sustainable (Geissdoerfer

et al., 2017). Following the seminal work of Stahel (1994), the reuse of goods and the

recycling of materials have been addressed by scholars as the foremost waste-reduction

and resource-saving strategies. The former extends the useful life of products and

delays the disposal of materials – the slowing resource loop. The latter makes the

recovery of resources possible, thus closing resource loop (Stahel, 1994). The CE

approach introduces closed resource loops in an effort to separate economic growth

from finite resource consumption (Korhonen, Honkasalo, & Seppälä, 2018). It opposes

the predominant linear model, based on the “take–make–use–dispose” pattern,

that led to resource extraction and waste production volumes beyond the Earth’s

regeneration and absorbing capacity (Murray, Skene, & Haynes, 2017). The CE seeks

to maintain the value of products, materials, and resources for as long as possible in

the economy by extending their useful life and reintroducing them in the production

cycle at the end of their life (Rosa, Sassanelli, & Terzi, 2019). Efficiency strategies

that reduce raw materials or energy employed in an item’s production, transportation,

and utilization phase ultimately allow for minimizing resource consumption, hence

narrowing the resource flow (Geissdoerfer et al., 2017). The CE paradigm has also

been subject to some critiques, pointing to underestimating the potential ”rebound

effects” of CE practices, on the one hand, and overestimating CE solutions as a

panacea for addressing sustainable development (Castro et al., 2022; Corvellec et al.,

2022).

To realize its full potential, the CE calls for a systemic change in companies,

industries, and the economy through radical shifts in societal values, norms, and

behaviors (Chizaryfard, Trucco, & Nuur, 2021; Murray et al., 2017). In this scenario,

industrial and regional systems are expected to encompass radical and systemic

innovation to search for new and creative solutions, such as cleaner technologies,

innovative business models, infrastructures, and institutional capacity (Chizaryfard et

al., 2021). Thus, the urgent need for a successful transition from a linear to a circular

organization of production and economy calls for a comprehensive understanding of

the relationship between innovation and CE implementation (De Jesus & Mendonça,

2018).

However, despite the crucial role of innovation in designing and implementing CE

transition strategies, the literature focusing on this nexus is still underdeveloped

(Jakobsen et al., 2021). Former quantitative research has analyzed the innovation

for the CE transition within the conceptual and methodological framework of the

eco-innovation literature (Barbieri et al., 2016). On the one hand, existing studies
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provide insights into the evolution of single technologies applied in specific CE-related

domains. For example, Barragán-Ocaña, Silva-Borjas, and Olmos-Peña (2021) sought

to identify the technological trajectory of wastewater reuse technologies by exploiting

patent data. At the same time, few studies dealt with the firm-level drivers of CE

innovation adoption, focusing on the role of demand-side factors and environmental

regulation (Cainelli, D’Amato, & Mazzanti, 2020; de Jesus et al., 2018; De Jesus &

Mendonça, 2018).

Within this context, the geography of innovation literature has largely neglected

the study of innovation dynamics related to the CE transition. This is quite an

important gap, as the heterogeneity of places in terms of skills and capabilities likely

affects the development of CE-related trajectories (Fusillo, Quatraro, & Santhià,

2021), and uneven spatial evolutionary patterns can be a source of inequalities

within and across regions. This paper aims to fill this gap by looking at European

regions’ innovation patterns in the CE domain. In doing so, we adopt a recombinant

knowledge perspective (Weitzman, 1998) and implement an analysis of the drivers

behind the generation of new technologies recombining CE-related knowledge.

We follow the growing literature on the so-called twin transition that shows

how digitalization can increase the chances of achieving an innovation-based green

transition (Cicerone et al., 2022; Montresor & Quatraro, 2020; Santoalha, Consoli, &

Castellacci, 2021). Recent technical and academic studies stressed the potential of

digital technologies for the unlocking of carbon emissions cuts, boosting the use of

renewables, and improving energy and material efficiency, thus promoting a CE model

(Huynh & Rasmussen, 2021; Ranta, Aarikka-Stenroos, & Väisänen, 2021; Rusthollka-

rhu, Ranta, & Aarikka-Stenroos, 2021). Moreover, given their general purpose nature,

digital technologies can also play a bridging role between different technological

domains and hence ease recombinant dynamics, above all when green technologies,

like those enabling the CE transition, are at stake (Montresor & Quatraro, 2017, 2020).

Our empirical analysis is based on a sample of European NUTS-2 regions observed

over 1980-2015 and focuses on the regional stock of CE-related technological recombi-

nation in patent citations. By exploiting European patent data, we construct a novel

indicator of digital technological complementarity with the CE domain and build

localized knowledge endowments in the green and digital complementary technology

fields. Our results show that the endowment of green and digital technological

knowledge is positively associated to regional recombinant activities around CE

technologies. We also find that the relatedness between the CE technologies and

the regional knowledge base is associated with CE recombinations at the local level

and that the complementary digital capabilities negatively moderate the role of

CE relatedness. Our findings suggest that circular technologies not only contribute
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to the roll-out of new knowledge but also that their complementarity with digital

technologies is functional to regional recombinant activities. Lastly, we investigate

the specific role of cumulated capabilities in different technological sub-fields. Out of

the green ones, we find a more pronounced relevance of climate change adaptation

technologies compared to mitigation technologies. Concerning the digital field, a

greater relevance of complementary computer technologies, digital communication,

and IT methods technology fields is found.

These findings contribute to the economic geography literature by opening the

black box of CE-related local recombinant dynamics. We make a step forward in un-

derstanding such mechanisms by investigating the role of existing technology-specific

capabilities in influencing the ability to absorb and integrate new technological

opportunities in the CE field. First, we provide evidence of the instrumental role

of green knowledge in sustaining the integration and exploitation of new recom-

bination opportunities in the CE field. Secondly, we contribute to the debate on

the interplay between green and digital transformation by pointing to the crucial

role of digital technologies and the exploitation of digital complementarities for

regional recombinant capabilities. Lastly, drawing upon regional branching litera-

ture, we provide additional evidence on the positive effects of cognitively related

regional knowledge bases and the role of regional characteristics in complement-

ing or substituting technological relatedness, studying whether the endowment of

digital complementary technologies might attenuate the stickiness of local capabilities.

The remainder of the paper is organized as follows. Section 2 provides the concep-

tual framework and reviews the relevant literature. Section 3 presents the data and

the methodology employed in the study, while results are presented and discussed in

Section 4. Section 5 concludes.

2. Conceptual framework

2.1. Localized recombinant capabilities, relatedness, and the CE transition

The deep transformation of the techno-economic structure implied by the transition

to the CE paradigm makes innovation intrinsic to this process. The understanding

of the CE transition can hence benefit from the extension of the innovation studies

literature, and specifically of the eco-innovation conceptual and empirical framework

of analysis (De Jesus & Mendonça, 2018).

Within the Schumpeterian stream of literature, an established tenet concerns the

conceptualization of the innovation process as an outcome of individuals’ capacity to
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combine ideas and technology in new ways (Schumpeter, 1934). This has originated

a fertile domain of research that has articulated an analytical framework known

as recombinant knowledge approach, according to which discoveries and innovations

are the outcomes of combinatorial dynamics involving the novel combination of

existing ideas, information, or technological components (Arthur, 2009; Kauffman,

1993; Weitzman, 1998). From an evolutionary perspective, recombinant dynamics

incorporate technological improvements along several paths, speeding up technical

progress and sustaining technological transitions (Frenken, Izquierdo, & Zeppini,

2012). Limited access to knowledge sources, risk aversion, and other organizational

impediments may constrain the search process through existing know-how and narrow

the possibility of developing new technological knowledge (Fleming, 2001). Based on

these grounds, recent literature grafted the recombinant knowledge approach onto the

analysis of innovation capabilities. The concept of recombinant capabilities has hence

been proposed to indicate agents’ capacity to access external knowledge and manage

novel recombinations successfully (Carnabuci & Operti, 2013; Orsatti, Quatraro, &

Pezzoni, 2020).

At the regional level, innovation capabilities denote instead the capacity of insti-

tutions and local agents to master and coordinate systemic interactions to produce

new knowledge (Cooke, 2001; Lawson & Lorenz, 1999; Quatraro, 2009; Romijn &

Albu, 2002). Accordingly, regional recombinant capabilities refer to the presence in

local contexts of individuals and organizations able to manage combinatorial efforts

leading to the introduction of novelty (Orsatti, Quatraro, & Scandura, 2021).

An increasing number of studies have framed the analysis of eco-innovation

generation focusing on recombinant capabilities (Barbieri, Marzucchi, & Rizzo, 2020;

Orsatti et al., 2020; Quatraro & Scandura, 2019; Zeppini & van den Bergh, 2011).,

highlighting various specific characteristics of eco-innovation processes. For instance,

Zeppini and van den Bergh (2011) proposes a model in which the generation of Green

Technologies (GTs) is based on combining diverse and loosely related elements from

the knowledge space. Combining highly heterogeneous technological components is

more likely to lead to a paradigm shift from a traditional (non-green) regime to

a cleaner one (Fleming, 2001; Nightingale, 1998). Furthermore, numerous studies

utilizing patent data indicate that GTs exhibit higher technological complexity

than conventional technologies and that the recombination of technological elements

they rely on is often novel or infrequently attempted before (Barbieri et al., 2020;

Fusillo, 2023; Messeni Petruzzelli, Maria Dangelico, et al., 2011; Orsatti, Quatraro, &

Scandura, 2023).

The diffusion and integration of green technologies into existing production

techniques are necessary to observe an actual impact on environmental performance.
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Adopting a recombinant perspective on CE innovation allows for appreciating

the diffusion of CE technologies and their contribution to further developing new

technologies by looking at how new knowledge builds on and combines existing

CE-related knowledge (Barbieri et al., 2020; Hall & Helmers, 2013).

Yet, regional knowledge integration and recombination capabilities are constrained

by the cognitive proximity between the knowledge to be combined and local innovating

agents’ knowledge base. The evolutionary economic geography literature has stressed

this aspect and showed that technological relatedness represents a crucial factor

affecting the success of new knowledge recombination in local contexts (Balland et

al., 2019; Boschma, 2017; Montresor & Quatraro, 2017).

According to the relatedness framework, the recombination of knowledge is more

likely to occur when the components are close to each other in the knowledge space

(Colombelli, Krafft, & Quatraro, 2014; Rigby, 2015; Tanner, 2014). This implies

that the similarity between the pre-existing local knowledge base and the new

technological knowledge shapes knowledge recombination. Accordingly, high levels of

cognitive proximity between the extant knowledge bases and the new technological

knowledge may increase the absorptive capacity and ease the assimilation of such

new knowledge. Recent contributions highlighted the importance of relatedness in

sustaining regional specialization in specific technological domains associated to

climate change mitigation and adaptation (Montresor & Quatraro, 2020; Moreno &

Ocampo-Corrales, 2022). Based on these considerations, we spell out our first working

hypothesis:

H1: The relatedness between regions’ existing technological capabilities and CE-

related knowledge is positively correlated to the local stock of CE-related knowledge

recombination

2.2. Learning dynamics and technological expertise in the green domain

Regional innovation capabilities result from localized knowledge interactions and

exchange activities among local agents that trigger the accumulation of skills and

knowledge (Antonelli, 1998; Freeman et al., 1987). Learning dynamics are crucial in

this respect, as they influence an innovating agent’s ability to combine different inputs

in novel ways or discover new applications for existing combinations. Agents who have

previously invested resources in accumulating tacit and codified knowledge are better

equipped to manage these mechanisms. The accumulation of knowledge enhances

agents’ absorptive capacity, which refers to their ability to comprehend, process,

and integrate external knowledge inputs (Cohen & Levinthal, 1990; Pavitt, 1988).

The evolutionary process of developing absorptive capacity leads to the emergence
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of innovation routines, i.e., essentially established processes that support and guide

innovative endeavors (Nelson, 1985). These routines involve generating new com-

binations and selecting the most promising research directions (Tidd & Bessant, 2018).

Learning dynamics are not only cumulative but also localized (Dosi & Grazzi,

2006, 2010). This implies that search processes and the development of new tech-

nologies tend to occur within the proximity of the technological competencies that

innovating agents have already developed (Antonelli, 1995; David, 1975; Laursen,

2012; Rosenkopf & Nerkar, 2001). Consequently, while learning dynamics and the

establishment of innovation routines improve the overall effectiveness of the innovation

process, they also limit the scope for experimenting with new combinations due to the

influence of path-dependence. In sum, the localness and cumulativeness of learning

dynamics introduce both path- and place-dependent processes based on technological

capabilities accumulated in local contexts to absorb and integrate new technological

opportunities (Cohen & Levinthal, 1990; Colombelli et al., 2014; Henning, Stam, &

Wenting, 2013; Martin & Sunley, 2006; Storper, 2018).

The characteristics of learning dynamics also affect the emergence of green tech-

nological capabilities. Recent literature has indeed stressed the impact of previous

experience in green innovation dynamics for the further generation of novelties in this

domain (Orsatti et al., 2020). In the context of CE-related technological change, de

Jesus et al. (2018) stressed the instrumental role of environmental innovation (EI) in

achieving the CE objectives. More recently, microeconomic evidence has shown that

CE solutions depend more on existing technologies that address systemic innovations

rather than radical ones. Moreover, a firm’s technological capabilities and knowledge

sourcing from diverse networks have proven essential in fostering the production of

circular eco-innovation and creating a competitive advantage (Demirel & Danisman,

2019; Kiefer, del Ŕıo, & Carrillo-Hermosilla, 2021; Triguero, Cuerva, & Saez-Mart́ınez,

2022).

In this direction, established capabilities in green technological change can be a

source of competitive advantage in CE-based recombinations, given their reliance on

diversified knowledge bases stemming from the integration of diverse and heteroge-

neous knowledge sources, requiring different and heterogeneous technology fields and

skills (Barbieri, Marzucchi, & Rizzo, 2021; De Marchi, 2012; Fusillo, 2023; Fusillo,

Quatraro, & Usai, 2022; Messeni Petruzzelli, Dangelico, et al., 2011). Based on these

arguments, we can spell out the following hypothesis:

H2: Previous experience in the generation of GTs is positively associated to the

ability to integrate and exploit new recombination opportunities in the CE field.
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2.3. The role of digital complementarities

The local availability of complementary technological capabilities can play a key role

in the development of regions’ technological strategies. Balland and Boschma (2021a),

for example, show that access to technological complementarities allows regions

to escape lock-ins. Moreover, they provide evidence of the impact of technological

complementarities on regional diversification patterns. Barbieri et al. (2021) shows

that the development of GTs is influenced by innovation dynamics in non-green but

complementary technological areas.

Digital technologies have been proposed as essential enablers of CE innovation

dynamics (Bag et al., 2020; Chauhan, Parida, & Dhir, 2022; Ranta et al., 2021).

The European Eco-Innovation Observatory has first recognized the importance

of EI in carrying out the transition from a linear to a circular economic system

(EIO, 2016) and, more recently, the role of digitalization and artificial intelli-

gence as an accelerator of energy and resource optimization (EIO, 2021). Digital

technologies are critical in managing the increasing amount of knowledge and

information flows captured and transferred among companies, tracking products and

materials, and improving production and distribution processes (Salvador et al., 2021).

Following Pagoropoulos, Pigosso, and McAloone (2017) we can classify digital

technologies into three categories: data collection, data integration, and data analysis.

Data collection technologies encompass sensors (e.g., radio frequency identification)

and devices that connect products and users to the Internet (e.g., the Internet of

Things). These technologies are essential for identifying inefficiencies in current

business models and production methods, enabling optimization of the production

process and management of the value chain (Ranta et al., 2021). Data integration

and analysis technologies (e.g., AI tools, Big Data analytics) process large volumes of

data to provide valuable information. These technologies are thus central in driving

the adoption of innovative business models such as hybrid product-service solutions

(PSS) and pay-per-usage models (Chauhan et al., 2022; Pagoropoulos et al., 2017).

Indeed, IoT technologies gather data and inform owners about items’ location and

maintenance status. This facilitates access for multiple users and enables data-driven

improvements in durability, preventing premature breakdowns and reducing resource

consumption. In sum, digitalized systems find increasing applications in production,

organization, and waste management, critical aspects of CE transition goals (Sarc et

al., 2019).

Because of their enabling role and broad applicability across domains, digital

technologies and AI are assimilated to General Purpose Technology (GPT) (Trajten-

berg, 2019). GPTs have been found to widen the scope for knowledge search and

move the technological frontier, allowing local systems to exploit complementarities
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across knowledge domains and introduce new and unprecedented recombinations

(Bresnahan & Trajtenberg, 1995; Capello & Lenzi, 2021). Regional scholars have

widely confirmed the role of GPTs and their new generation, i.e., the Key Enabling

Technologies (KETs), on the regional ability to open new technological diversification

paths (Montresor & Quatraro, 2017). The local endowment of KETs in general,

and AI in particular, has also been found to increase the likelihood of regional

technological diversification in the green domain (Montresor & Quatraro, 2020).

However, AI seems to favor regions already possessing sound green technological

specializations (Cicerone et al., 2022).

These considerations suggest that the transition to a CE could greatly benefit from

digital technologies’ potential to integrate multiple and technologically dispersed

knowledge bits. Accordingly, the localized endowment of digital technologies can be

seen as promising levers for recombinant dynamics based on CE-related technologies.

Yet, the wide spectrum of digital technologies may reveal high differences in how they

connect knowledge bases and favor successful recombination (Martinelli, Mina, &

Moggi, 2021). Circular strategies rely on timely and effective data management and

sharing, optimizing energy and material usage in both the production and utilization

phases, and managing forward and reverse logistics. Thus, technologies for data

collection, storage and processing, and digital communication may provide regions

with specific but complementary digital capabilities instrumental to the absorption

and recombination of new CE-related knowledge. On the basis of these arguments,

we can spell out the following hypothesis:

H3.a: Localized cumulated knowledge in digital complementary technologies is

positively associated to regional recombinant capabilities around CE-related knowledge.

Building on the relatedness framework, an emerging body of research identified a

broad set of regional factors that may substitute or complement the role of relatedness

(Castellani et al., 2022; He, Yan, & Rigby, 2018; Montresor & Quatraro, 2017). These

factors may attenuate the cognitive constraints that being close to the existing

knowledge base may pose to the recombination and development of new and/or

unrelated technologies (Elekes, Boschma, & Lengyel, 2019; Miguelez & Moreno, 2018;

Neffke et al., 2018; Zhu, He, & Zhou, 2017).

Within the European landscape, Santoalha and Boschma (2021) point to the role of

the local development of supporting institutions in mitigating the constraining effects

of relatedness on regional technological diversification in the green domain, while

Perruchas, Consoli, and Barbieri (2020) shows that the impact of relatedness differs

for developed vis-á-vis lagging behind regions. Because of the enabling role of digital

capabilities to connect distant but complementary knowledge domains and ease the
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exploitation of recombination opportunities, digital complementary capabilities could

mitigate lock-in effects triggered by related paths, enabling regions to overcome the

stickiness of local capabilities.

In this direction, Montresor and Quatraro (2020) provide evidence of how the

local availability of technological capabilities related to key enabling technologies

(KETs) reduces the impact of relatedness in technological diversification in the green

domain. On similar grounds, Santoalha et al. (2021) stresses the relevance of the

availability of digital skills in local labor markets. Balland and Boschma (2021b) and

Corradini, Santini, and Vecciolini (2021) find that the knowledge around industry

4.0 technologies (I4T) is more likely to thrive in regions with local capabilities in

I4T-related technologies. On these premises, we spell out the following hypothesis:

H3.b: Localized cumulated knowledge in digital complementary technologies nega-

tively moderates the impact of relatedness on regional CE recombinant dynamics.

3. Data and Methodology

3.1. Identifying Circular Economy-related technologies

In order to investigate the knowledge recombination dynamics of CE technologies, we

make use of patent data. Patents are commonly employed as proxies for inventions to

assess technological progress since they provide granular information on the location,

time, and specific technological classification of the invention. Notwithstanding the

well-known drawbacks in using patent data (Griliches, 1998), primarily due to the

existence of alternative protecting tools and to the different patenting rates or the

impossibility to protect all inventions with patents, this remains one of the most effec-

tive ways to explore the broad set of invention activities and the recombinant pattern

of CE knowledge (Jaffe & Trajtenberg, 2002; Strumsky, Lobo, & Van der Leeuw, 2012).

Data related to patents are sourced from the Organisation for Economic Co-

operation and Development (OECD) REGPAT database, March 2020. We focus on

patent applications at the European Patent Office (EPO) published between 1980

and 2015. We use the inventor’s address, provided at the NUTS2 regional level, to

detect the patents’ geographic origin. 1 We also exploit the OECD Citation Database,

March 2020, to retrieve all the citations in the EPO and PCT patent documents. In

the case of co-invented patents with inventors residing in different regions, patent

applications are proportionally allocated to all the co-inventing regions following a

fractional counting procedure.

1Patent applications beyond 2015 are excluded because of the known drop in recorded applications due to

the time required to complete the patent application process.
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We rely on the widely accepted classification developed by the European Commis-

sion (EC) to identify patents related to the CE. Included in the set of CE indicators to

monitor progress towards a circular economy on the thematic area of competitiveness

and innovation, the EC provides a list of CPC (Cooperative Patent Classification)

technological classes associated to CE.2 The list encompasses all technological fields

in the subclass Y02W: ”Climate change mitigation technologies related to wastewater

treatment or waste management”. Accordingly, we identify as CE-related those patents

classified with least one of these technology fields. In line with Cainelli et al. (2020),

we focus on the development of innovative techniques for the collection, reduction, and

recycling of waste, water, and materials that will help to reduce the dependence on

critical commodities while improving economic resilience. The procedure allowed us

to identify 6,407 CE-related patents spanning years of application from 1980 to 2015,

including at least one European region among their contributors.

3.2. Empirical Strategy

The dependent variable in our empirical exercise is a measure of the region-level stock

of CE-related knowledge recombination arising from patents classified as circular.

Considering the purpose of our analysis and the limited number of CE patents by

region, we count the number of patents citing at least one circular patent in the

backward citations of a region’s patenting portfolio.3 Since count variables may suffer

from year-to-year fluctuations in the number of patents, using stock variables allows

to overcome the volatility problem, allowing to account for the cumulated knowledge,

and provide a deeper insight into the phenomenon at stake. The stock of circular

recombinations (CE Stock) is computed using the perpetual inventory method (PIM).

Precisely, we calculate the cumulative stock of CE citing patents by region, applying

a yearly rate of obsolescence of 15%.4

Our baseline specification focuses on the role of overall localized knowledge, ex-

2https://ec.europa.eu/eurostat/web/circular-economy/indicators/monitoring-framework
3NUTS-2 regions, being larger than NUTS-3 regions, may include a number of smaller administrative units

with possible heterogeneous characteristics. Despite this limitation, two main reasons motivate our choice of

considering NUTS-2 as the appropriate geographical level. Firstly, we rely on the extensive economic geography
literature investigating local recombination dynamics and technological capabilities of NUTS-2 regions. The
second reason is grounded on data and methodological constraints. As discussed in the previous section, CE, as
well as its codified technological development, is a relatively recent construct with highly heterogenous efforts
both in time and across European regions. This is confirmed by the still relatively low number of patents by
NUTS-2 regions recombining CE knowledge. Measuring CE patent dynamics at the NUTS-3 levels, thus, would
lead to the observation of an excessive number of regions with zero (or a few) CE citing patents in each period
of our sample, thereby hindering the proper measurement of the mechanisms at stake.
4Existing literature made several attempts to estimate the patent depreciation rate with inconclusive evidence

(Pakes & Schankerman, 1979; Schankerman, 1998). In this work, we set the obsolescence rate at 15%, which is
the most frequent value employed in the literature (see among others Hall, Jaffe, & Trajtenberg, 2005; Keller,
2002; McGahan & Silverman, 2006; Nesta, 2008).
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pressed in the following form:

CEStockrt = α+ β1KStockrt−1 + β2CErelrt−1

+ β3GDPpcrt−1 + µrt

(1)

where r denotes the region and t the time period consisting of 5-year time intervals

from 1980 to 2015. In this first specification, the ability to recombine CE technologies

is associated to the regional knowledge stock (K Stock) that accounts for the region’s

absorptive capacity and a measure of CE technological relatedness (CE relatedness)

to capture the cognitive proximity between regions’ existing technological capabilities

and CE-related knowledge. The former is computed by applying the PIM method to

regions’ patent portfolios. In order to measure the relatedness around CE technologies,

we first exploit the co-occurrence of 4-digits CPC classes in patent documents to

calculate the degree of proximity between each technology s and c at time (ϕsct).

Proximity is here defined as the minimum pairwise conditional probability of a region

having a specialization in technology s given that it has a Revealed Technology

Advantage in another technology c. In the second step, we calculate the relatedness

density of each technology s with respect to all technologies c in which region r has

a technological specialization. Lastly, we filter the technology-specific relatedness by

selecting the density value of the CE technology in order to obtain a measure of the

region r relatedness around CE-related knowledge. We expect regions with a more

extensive knowledge base and a higher density of the proximity linkages between

CE technology and existing regional capabilities to be more likely to master CE

knowledge and exploit the new technological domain for successful recombinations.

We add gross domestic product (GDP) per capita (GDP per capita) as a control to

account for the level of economic development in a region.5 µrt is an idiosyncratic

error term.

In a second specification, we investigate whether cumulated know-how in the green

and digital fields may be associated to the region’s circular technological recom-

binations. To account for the localized endowment of green-related technological

knowledge, we measure, for each region, the stock of patents with a backward citation

toward green patents (GT Stock). The identification of green-tech patents is performed

according to the OECD ENV-TECH classification (Haščič & Migotto, 2015), which

provides a list of technological classification codes associated to environment-related

technologies based on the International Patent Classification (IPC) and Collaborative

Patent Classification (CPC).6

5GPD and population data are extracted from Eurostat.
6For the sake of consistency between technological classification, IPC codes are converted into CPC

codes by exploiting the concordance tables available at https://www.cooperativepatentclassification.org/
cpcConcordances
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In order to identify the digital patents, we employ the classification proposed

by Schmoch (2008, updated 2011). Accordingly, digital patents are those including

at least one technology code that is covered by the electrical engineering area. To

capture the role of regional complementary digital capabilities, we compute the stock

of digital citing patents for each region, weighted by the degree of complementarity

of the corresponding digital technology (DG compl Stock). Indeed, as mentioned in

Section 2, we expect the enabling role of digital technologies in the recombination

of CE knowledge to be proportional to the extent of complementarity between

the digital and the CE technology fields. To operationalize this concept, for each

digital technology, we calculate its degree of complementarity with respect to circular

technologies. We first identify all patents co-classified in both CE and digital tech-

nologies. Then, for each digital technology, we compute the relative frequency with

which it co-occurs in the hybrid CE-digital patents as a proxy of complementarity.

This implies that the degree of complementarity of digital technologies is thus

proportional to the extent to which they are successfully exploited in circular-related

recombination. A list of the top 10 digital complementary technologies is provided in 1

Table 1. Top 10 Digital complementary technologies

CPC Technology Complementarity

H01M Processes or means, e.g. batteries, for the direct conversion
of chemical into electrical energy

0.4533

G06Q Data processing systems or methods, specially adapted for
administrative, commercial, financial, managerial, supervi-
sory or forecasting purposes

0.1705

H01J Electric discharge tubes or discharge lamps 0.1380
H01B Cables 0.0419
H05K Printed circuits 0.0379
G06K Recognition of data 0.0325
G11B Information storage based on relative movement between

record carrier and transducer
0.0257

H05B Electric heating 0.0257
F21V Functional features or details of lighting devices or systems

thereof
0.0230

G06F Electric digital data processing 0.0230

The GT Stock and DG compl Stock add to equation 1, yielding the following model:

CEStockrt = α+ β1GTStockrt−1 + β2DGcomplStockrt−1

+ β3CErelrt−1 + β4GDPpcrt−1 + µrt

(2)

Lastly, we investigate the moderating role of complementary digital knowledge on

CE-specific relatedness in affecting regional CE technological recombinations. To do

so, we extend the model (2) by including an interaction term between the DG compl
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Stock and (CE rel), as follows:

CEStockrt = α+ β1GTStockrt−1 + β2DGStockrt−1

+ β3CErelrt−1 + β4DGcomplStock ∗ CErelr,t−1

+ β5GDPpcrt + µrt

(3)

In the models in equations 1 - 3, there could be unobserved regional characteris-

tics not captured by our models, that may affect the regional ability to recombine

CE-related knowledge. These unobserved characteristics may also be correlated with

the explanatory variable. Furthermore, there may be macroeconomic shocks and tech-

nology fluctuations common to all regions in our sample that may affect regional CE

recombinant capabilities. In order to control for region and period unobserved hetero-

geneity, we allow the error term (µrt) to include a full set of region (Dr) and time (Dt)

dummies:

µrt = Dr +Dt + ϵrt (4)

In turn, we employ two-way panel fixed-effects models estimated through OLS.7

In all specifications, we apply the natural logarithm transformation to adjust for the

skewed distribution of the continuous variables, and we cluster the standard errors on

NUTS2 regions to account for heteroskedasticity.

Despite the inclusion of fixed effects and controls, the relationship between

CE-based recombinations and cumulated local capabilities may raise an endogeneity

issue. This may happen because successful CE-based recombination might provide

incentives to regions to invest more resources in R&D and consequently in engaging

in recombinant activities that increase the stock of cumulated knowledge. Further,

because of the presence of technology spillovers, higher recombinant activity in green

and digital complementary technologies may be the result, rather than the effect, of

higher CE recombinations. At the same time, previous literature has highlighted that

the use of patent stock measures might alleviate endogeneity in the analysis. Also,

under the assumption that the persistence of knowledge stocks’ series makes them

less likely to adjust quickly to shocks, the magnitude of the potential bias associated

with lagged stock series should be small in samples covering long time periods.

Accordingly, in all our specifications, independent variables are lagged by one period.

In addition, to further reduce biases due to potential endogeneity, the stock-based

7In order to check the robustness of our findings to a different estimation procedure, we use the dynamic
approach of a generalized method of moments (GMM) model and implemented the GMM estimator as proposed
by Arellano and Bond (1991). In particular, we employ a GMM System estimator (Arellano & Bover, 1995;
Blundell & Bond, 1998) which instruments the levels variables with lagged first differenced terms. The results
of the GMM system estimator, available upon request from the authors, are qualitatively robust and confirm
our main findings.

14



independent variables are calculated by excluding CE-related patents.

Summary statistics of the variables employed in the models are reported in Table

2. Figure 1 and 2 offer a graphical visualization of the geographic distribution over

NUTS2 regions of, respectively, the stock of CE-based recombinations and the stock

of digital complementary technologies, in the period 1980-2015. Regions are colored

according to the quintile rank of the distribution, where darker colors indicate

higher quintiles. Both figures highlight a heterogeneous distribution across European

NUTS2 regions, showing that CE recombinant activities and the cumulated digital

complementarity capabilities are more concentrated in Central Europe regions (i.e.,

Germany, northern Italy, Austria and southern France) with a marked difference with

Eastern European regions.

Table 2. Summary statistics

Statistic N Mean St. Dev. Min Max

K Stock 1,763 2,112.8590 4,662.0510 0.1250 59,095.3400
CE Stock 1,763 23.8790 44.1263 0.0000 440.1709
GT Stock 1,763 297.9278 735.0063 0.0000 10,146.9600
DG Stock 1,763 656.8777 1,805.2360 0.0000 24,008.2400
DG compl Stock 1,763 21.8665 60.1338 0.0000 812.5498
DG non-compl Stock 1,763 635.0112 1,746.9140 0.0000 23,195.6900
CE rel 1,763 0.1600 0.1202 0.0000 0.4620
GDPpc 1,685 18,466.7700 14,665.5200 452.8554 223,603.0000

Figure 1. Geographic distribution of the stock of CE recombinations of European NUTS2 regions, from 1980

to 2015.
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Figure 2. Geographic distribution of the stock of digital complementary technologies of European NUTS2
regions, from 1980 to 2015

4. Results and Discussion

Tables from 3 to 7 present the results of our econometric estimations.8 Column

1 of Table 3 includes K Stock and CE rel as focal regressors. The coefficient

of K Stock is positively and significantly associated to the ability to recombine

circular knowledge. This result suggests that regional knowledge competences and

absorptive capacity may facilitate the recombination process of pre-existing CE-

related technologies leading to the development of new knowledge. In support of

our first hypothesis H1, CE rel shows a positive and statistically significant coeffi-

cient in all model specifications confirming that technological capabilities in domains

related to the CE might positively contribute to the circular knowledge recombination.

The model in column 2 focuses on the pre-existing green and digital expertise,

including among the regressors the variables GT Stock and DG compl Stock. The

cumulated know-how in both the green field and complementary digital technologies

is positively associated with regions’ ability to introduce new technologies stemming

from the recombination of the CE knowledge. Supporting our hypotheses H2 and

H3.a, these findings suggest that accumulated competencies in the green and digital

sectors significantly contribute to circular knowledge recombination and creation. This

also highlights that the knowledge developed within the two fields that characterize

the “twin transition” may be assimilated and exploited in knowledge generated

through the recombination of circular competencies.

8Results’ table report at the bottom the mean value of the VIF tests performed across all specifications. The
mean value and the individual VIF values of all the variables below 10 – the upper bound generally indicated
by the relevant literature – allow us to exclude critical multicollinearity issues.
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In model 3, we add the interaction term DG compl Stock * CE rel to investigate

if and to what extent the complementarity between digital and circular technolo-

gies might moderate the role of CE relatedness on CE recombinant activity. The

estimated coefficient is negative and significant, suggesting that complementary

digital capabilities seem to attenuate the role of CE-relatedness. Overall, increasing

innovation through the recombination of pre-existing CE knowledge is facilitated by

technological similarity with the extant knowledge base. However, it appears that

established competencies in digital fields – complementary to the circular one – help

regions to advance their knowledge as a result of the recombination of CE know-how,

possibly making the acquisition of new technological solutions more accessible to

regions with knowledge bases less cognitively close to the circular one. In line with

our hypothesis H3.b, digital complementary knowledge may not only contributes

directly to the development of new technological knowledge but also shrink the risk

of lock-ins due to relatedness.

Interestingly, our findings suggest that it may not be digital technology per se that

is conducive to recombination, but rather its complementarity with CE technologies.

Accordingly, we re-estimate models 2 and 3 considering, alternatively, the total stock

of digital technologies or the stocks of complementary and non-complementary digital

technologies. Results, presented in Table 4, show a positive estimated coefficient for

the digital knowledge stock, though modest in magnitude and statistical significance.

In models 2 and 3, we detect a non-significant role of the stock of non-complementary

digital technologies. At the same time, the coefficient of DG compl Stock is still

positive and highly significant. Results hold when introducing the interaction term

DG compl Stock * CE rel, which shows, as expected, a negative and significant

estimated coefficient.

To deeply delve into the relation between technology-specific regional knowledge

stocks and knowledge advancement through circular recombination processes, we

explore whether different green and digital technological sub-fields play a role. To this

end, we run an additional set of regressions, replacing the knowledge stock explanatory

variables, with the stocks calculated for each green and digital technological sub-field.

Based on the ENV-TECH classification (Haščič & Migotto, 2015), we differentiate

green technologies between two macro-technology groups: adaptation technologies

and mitigation technologies. 9 Following Schmoch (2008, updated 2011), digital

technologies are broken down into: electrical machinery, apparatus, energy; audio-

9The former encompasses (a) environmental management and (b) water-related adaptation technologies; the

latter includes (c) climate change mitigation technologies (CCMT) related to energy generation, transmission
or distribution, (d) capture, storage, sequestration or disposal of greenhouse gases, (e) CCMT related to trans-

portation, (f) CCMT related to buildings, (g) CCMT related to wastewater treatment or waste management,
and (h) CCMT in the production or processing of goods.
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visual technology; Telecommunications; digital communication; basic communication

processes; computer technology; IT methods for management; semiconductors.

Tables from 5 to 7 report the results. Starting with the green sub-fields, Table

5 shows a positive association with both adaptation and mitigation technologies.

Indeed, the former category includes environmental management-related technologies,

among which installations for pollution and emissions abatement, and the collec-

tion and processing of a wide range of discarded materials. The second category

encompasses technologies seeking to limit the emissions of greenhouse gases with

particular reference to the energy and transport sector, buildings construction, and

the production and processing of goods. Most of these are specifically designed for

the recovery and recycling of materials, such as the reuse of by-products or heat

recovery, the energy efficiency of the production processes, and the energy production

from renewables. Hence, it is not surprising that technologies for the substitution of

non-renewable and scarce resources for renewable ones both in manufacturing and in

energy generation might be more easily integrated into the recombination of circular

knowledge.

Moving to the disaggregated analysis of the digital knowledge stocks, as reported in

Tables 6 and 7, we found a statistically significant role of the digital complementary

IT methods, digital communication, computer technology, and electrical machinery

technology fields in facilitating the CE knowledge recombination dynamics (Table 6)

and in moderating the role of the CE relatedness (as shown in Table 7). The computer

technology sub-field comprises technologies related to image and speech recognition

and processing, digital or analogue information storage, and information and commu-

nication technology (ICT) adapted for specific purposes. ICT, in particular, is crucial

in facilitating end-of-use strategies and collaborative consumption models. Indeed,

these technologies allow for remote monitoring, which helps companies to reveal

inefficiencies in their processes and detect failures in their products or users’ activity.

Similarly, data collected from the logistics system may be used to optimize the logistic

operations, including the take-back in the supply chain. ICT adapted for the Internet

of Things (IoT), enabling physical objects to sense and collect information from their

internal state or external environment, can also enhance waste management systems.

Further, in a user-oriented PSS where products are equipped with IoT sensors, it

becomes possible to track their location and monitor the condition and availability of

the products themselves, as all the items are connected to a platform and virtually

communicate via software.

The sub-class IT methods consists of technologies to deal with complex data pro-

cessing operations, while digital communication technologies cover the transmission of

signals in digital form and wireless communication systems. Our results, thus, confirm
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the role that systems for data processing and the transmission of digital information

may play in integrating CE-related knowledge. Indeed, many circular strategies rely

on timely and effective data management and sharing, e.g.: the optimization of energy

and material usage, the management of forward and reverse logistics, products, and

assets sharing.

Lastly, complementary electrical machinery technologies cover various generators,

engines, and other electric elements. Though positive, their role seems to be less pro-

nounced compared to the other digital subfields, in line with recent studies suggest-

ing that the circular transition tends to be less driven by incremental improvements

of physical machinery, requiring instead the innovative rethinking of production and

consumption systems.

Table 3. CE recombinations, localized knowledge and digital complementarities

(1) (2) (3)

K Stock 0.1669∗∗∗

(0.0472)
GT Stock 0.2027∗∗∗ 0.1680∗∗∗

(0.0438) (0.0452)
DG compl Stock 0.1468∗∗∗ 0.3202∗∗∗

(0.0406) (0.0669)
CE rel 3.9507∗∗∗ 2.9141∗∗∗ 3.3805∗∗∗

(0.4861) (0.4624) (0.4894)
DG compl Stock * CE rel −0.4877∗∗∗

(0.1607)
GDPpc 0.1353∗ 0.2793∗∗∗ 0.2564∗∗∗

(0.0780) (0.0768) (0.0748)

Time FE YES YES YES
NUTS2 FE YES YES YES
mean VIF 4.25 4.232 5.384
Observations 1,345 1,345 1,345
R2 0.2061 0.2517 0.2636
F Statistic 94.7300∗∗∗ 91.9966∗∗∗ 78.2411∗∗∗

Dep var: regional stock of patents citing CE-related technologies. Explanatory variables
are log transformed and lagged by one year. Heteroskedastic-robust standard errors,
reported in parentheses, are clustered at the NUTS2 level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4. CE recombinations, localized knowledge, complementary and non complementary digital technolo-
gies

(1) (2) (3)

GT Stock 0.1900∗∗∗ 0.1816∗∗∗ 0.1675∗∗∗

(0.0510) (0.0483) (0.0484)
DG Stock 0.0745∗

(0.0398)
DG compl Stock 0.1365∗∗∗ 0.3192∗∗∗

(0.0428) (0.0777)
DG non-compl Stock 0.0428 0.0013

(0.0406) (0.0436)
CE rel 2.9842∗∗∗ 2.7995∗∗∗ 3.3751∗∗∗

(0.4886) (0.4560) (0.5044)
DG compl Stock * CE rel −0.4858∗∗∗

(0.1740)
GDPpc 0.1767∗∗ 0.2632∗∗∗ 0.2560∗∗∗

(0.0744) (0.0806) (0.0783)

Time FE YES YES YES
NUTS2 FE YES YES YES
mean VIF 4.816 4.982 6.113
Observations 1,345 1,345 1,345
R2 0.2373 0.2532 0.2636
F Statistic 85.1099∗∗∗ 74.1274∗∗∗ 65.1417∗∗∗

Dep var: regional stock of patents citing CE-related technologies. Explanatory variables
are log transformed and lagged by one year. Heteroskedastic-robust standard errors,
reported in parentheses, are clustered at the NUTS2 level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5. CE recombinations, localized knowledge and digital complementarities (green-tech fields)

(1) (2) (3) (4)

GT Adapt Stock 0.2054∗∗∗ 0.1857∗∗∗

(0.0408) (0.0402)
GT Mitig Stock 0.1914∗∗∗ 0.1702∗∗∗

(0.0383) (0.0375)
DG compl Stock 0.1109∗∗∗ 0.3080∗∗∗ 0.0998∗∗ 0.2918∗∗∗

(0.0414) (0.0652) (0.0444) (0.0670)
CE rel 3.0836∗∗∗ 3.4756∗∗∗ 3.1741∗∗∗ 3.5604∗∗∗

(0.4377) (0.4415) (0.4532) (0.4595)
DG compl Stock * CE rel −0.5542∗∗∗ −0.5329∗∗∗

(0.1515) (0.1511)
GDPpc 0.3189∗∗∗ 0.2868∗∗∗ 0.3098∗∗∗ 0.2796∗∗∗

(0.0767) (0.0748) (0.0741) (0.0723)

Time FE YES YES YES YES
NUTS2 FE YES YES YES YES
mean VIF 4.124 5.176 4.106 5.183
Observations 1,345 1,345 1,345 1,345
R2 0.2573 0.2735 0.2576 0.2725
F Statistic 94.7338∗∗∗ 82.2954∗∗∗ 94.9197∗∗∗ 81.8830∗∗∗

Dep var: regional stock of patents citing CE-related technologies. Explanatory variables are log transformed
and lagged by one year. Heteroskedastic-robust standard errors, reported in parentheses, are clustered at the
NUTS2 level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 6. CE recombinations, localized knowledge and digital complementarities (main digital fields)

(1) (2) (3) (4)

GT Stock 0.2151∗∗∗ 0.2121∗∗∗ 0.2180∗∗∗ 0.2147∗∗∗

(0.0432) (0.0444) (0.0445) (0.0433)
Computer Tech Stock 0.1341∗∗∗

(0.0353)
DG communications Stock 0.1190∗∗∗

(0.0337)
Electrical Machinery Stock 0.0910∗∗

(0.0407)
IT methods 0.1272∗∗∗

(0.0332)
CE rel 3.5678∗∗∗ 3.7673∗∗∗ 3.0841∗∗∗ 3.6298∗∗∗

(0.4819) (0.5322) (0.4800) (0.4912)
GDP per capita 0.2723∗∗∗ 0.2473∗∗∗ 0.2523∗∗∗ 0.2673∗∗∗

(0.0749) (0.0731) (0.0782) (0.0750)

Time FE YES YES YES YES
NUTS2 FE YES YES YES YES
mean VIF 3.823 3.725 4.122 3.7459
Observations 1,345 1,345 1,345 1,345
R2 0.2534 0.2486 0.2404 0.2544
F Statistic 92.8125∗∗∗ 90.4988∗∗∗ 86.5630∗∗∗ 93.3124∗∗∗

Dep var: regional stock of patents citing CE-related technologies. Explanatory variables are log transformed
and lagged by one year. Heteroskedastic-robust standard errors, reported in parentheses, are clustered at the
NUTS2 level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7. CE recombinations, localized knowledge and digital complementarities (main digital fields)

(1) (2) (3) (4)

GT Stock 0.1971∗∗∗ 0.2045∗∗∗ 0.1914∗∗∗ 0.1993∗∗∗

(0.0427) (0.0440) (0.0454) (0.0427)
Computer Tech Stock 0.4909∗∗∗

(0.0913)
DG communications Stock 0.4063∗∗∗

(0.0896)
Electrical Machinery Stock 0.2618∗∗∗

(0.0744)
IT methods 0.4923∗∗∗

(0.0947)
CE rel 3.9789∗∗∗ 3.8980∗∗∗ 3.5095∗∗∗ 3.9114∗∗∗

(0.4752) (0.5251) (0.4993) (0.4788)
Computer Tech Stock * CE rel −1.1098∗∗∗

(0.2637)
DG communications Stock * CE rel −0.9609∗∗∗

(0.2773)
Electrical Machinery Stock * CE rel −0.4977∗∗∗

(0.1812)
IT methods Stock * CE rel −1.1699∗∗∗

(0.2769)
GDP per capita 0.2585∗∗∗ 0.2292∗∗∗ 0.2399∗∗∗ 0.2458∗∗∗

(0.0731) (0.0725) (0.0763) (0.0727)

Time FE YES YES YES YES
NUTS2 FE YES YES YES YES
mean VIF 5.268 5.019 5.368 5.024
Observations 1,345 1,345 1,345 1,345
R2 0.2727 0.2576 0.2499 0.2751
F Statistic 81.9470∗∗∗ 75.8338∗∗∗ 72.8372∗∗∗ 82.9792∗∗∗

Dep var: regional stock of patents citing CE-related technologies. Explanatory variables are log transformed and lagged by one year.

Heteroskedastic-robust standard errors, reported in parentheses, are clustered at the NUTS2 level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

23



5. Conclusions

According to the widely recognized recombinant knowledge framework, the innovation

process leading to the production of new knowledge relies on the recombination of the

existing wealth of knowledge. Regions are expected to leverage on the technological

capabilities cumulated at the local level to advance their knowledge. Building on

this strand of research, this paper investigates the role of region- and technology-

specific cumulated knowledge on the recombination of localized knowledge CE field.

The increasing interest in the CE has led governments and industries to adopt

policies and strategies to overcome the linear economic model. Yet, the literature

on innovation and regional economics has given little attention to the innovative

processes that generate circular knowledge and that stem from it. More precisely, a

gap still exists in our knowledge of the drivers that could foster the recombinant dy-

namics around circular technologies and lead to the development of further knowledge.

We address this gap by exploiting a sample of European NUTS-2 regions over the

period 1980-2015 and patent data as a proxy of technological invention. Our analysis

provides novel empirical evidence on the relationship between pre-existing regional

knowledge competencies, and the relatedness between CE technology and local

knowledge bases, which may facilitate the successful recombination of CE-related

knowledge for new knowledge creation. We show that the localized stock of green

and digital knowledge – complementary to the circular one – may ease regional

recombination processes of CE-related technologies. In particular, our findings

suggest that the know-how at the heart of the envisaged twin transition may represent

a crucial factor in fostering circular knowledge recombination dynamics. We further

provide a more accurate picture of the role of the green and digital technological

cumulated capabilities in specific sub-domains. Notably, both green adaptation

technologies and CCMT seem to play a central role, while, among the complementary

digital technologies, IT methods, digital communication, computer technology are

associated to successful CE-based recombination to a greater extent with respect to

improvements in physical machinery (electrical machinery technologies).

Our study is not free from caveats. The first limitation is related to the use of

patents to proxy for technological efforts and to the classification of CE-related

technologies provided by the EC, mostly focused on wastewater treatment and waste

management, which are crucial but partial features of the CE. Secondly, despite

the increasing concerns about the need to understand innovation processes for a

sustainable CE transition, focusing on the technologies related to the CE may come at

the risk of underestimating the wide range of CE practices introduction and adoption.

Nevertheless, extant literature highlighted that while CE innovation is still relatively

incremental, the innovative efforts in searching for radical solutions and achieve a full
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CE transition show an increasing technological reliance, based on the larger potential

of technology advancement and their recombination opportunities. Similarly, given the

systemic nature of digitalization, patent data might not capture the full spectrum of

digital technologies and their impact on production and innovation processes, despite

their increasingly codified content, providing only a partial account of the digital

enabling role. Third, notwithstanding the methodological precautions introduced, our

empirical exercise does not allow us to rule out potential endogeneity concerns, and

further studies may be required to claim the existence of causal relationships in our

findings.

In spite of these limitations, this work contributes to the previous literature and

public debate in two ways. First, we shed new light on the mechanisms behind the

generation of new knowledge by means of the recombination of circular technology,

highlighting the crucial role of local cumulated knowledge capabilities at the regional

level. Second, we make a step forward in the consideration of regional recombinant

dynamics, showing that, on the one hand, green-digital local capabilities are essential

to trigger continuous knowledge improvements and the necessary transition to low-

impact economies; on the other hand, that the enabling role of digital technologies in

integrating multiple and technologically dispersed knowledge bits is more effective in

regions endowed with digital capabilities complementary to the circular technology

domain.

These contributions also bear important policy implications. Directing regional

innovative activities toward green and digital technologies through policy actions

aimed at prioritizing the reinforcement of local existing capabilities could be a leverage

for the elaboration of successful strategies to promote research and innovation in the

CE-related domain and the successful integration of new circular knowledge. Indeed,

limited awareness of the benefits, opportunities, and complexities associated with

the importance of local cumulated capabilities might have limited the incentive and

resources deployed in developing strategic policies. Relatedly, regional policy-makers

might face regulatory or institutional barriers and competing priorities, which may

hinder the integration of CE, digital, and green technologies. Thus, strengthening

the institutional framework and providing incentives for the successful transfer of

technological capabilities acquired in green and digital complementary fields might

be more effective in supporting regional recombinant capabilities. Lastly, recognizing

the relevance of the exploitation of digital technological complementarities calls

for policy efforts aimed at fostering the identification and development of such

digital complementary capabilities. This suggests the need to exploit knowledge

hybridization, complementarities, and spillover between CE and digital technologies

domains by designing strategic policies that support the creation of network dynamics

among inventors, firms, universities, and regional actors, boosting the integration
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of their different skills and competences. Yet, because of fragmented governance

structures, regional policy-makers may struggle to deploy collaborative ecosystem

policies, whose effective implementation requires resources and coordination across

multiple governance levels.

26



References

Antonelli, C. (1995). The economics of localized technological change and industrial dynamics

(Vol. 3). Springer Science & Business Media.

Antonelli, C. (1998). Localized technological change, new information technology and the

knowledge-based economy: the european evidence. Journal of evolutionary economics, 8 (2),

177–198.

Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte carlo

evidence and an application to employment equations. The review of economic studies,

58 (2), 277–297.

Arellano, M., & Bover, O. (1995). Another look at the instrumental variable estimation of

error-components models. Journal of econometrics , 68 (1), 29–51.

Arthur, W. B. (2009). The nature of technology: What it is and how it evolves. Simon and

Schuster.

Bag, S., Yadav, G., Wood, L. C., Dhamija, P., & Joshi, S. (2020). Industry 4.0 and the circular

economy: Resource melioration in logistics. Resources Policy , 68 , 101776. doi:

Balland, P.-A., & Boschma, R. (2021a). Complementary interregional linkages and smart

specialisation: an empirical study on european regions. Regional Studies , 55 (6), 1059-1070.

doi:

Balland, P.-A., & Boschma, R. (2021b). Mapping the potentials of regions in europe to

contribute to new knowledge production in industry 4.0 technologies. Regional Studies ,

55 (10-11), 1652-1666. doi:

Balland, P.-A., Boschma, R., Crespo, J., & Rigby, D. L. (2019). Smart specialization policy in

the european union: relatedness, knowledge complexity and regional diversification. Regional

studies, 53 (9), 1252–1268.

Barbieri, N., Ghisetti, C., Gilli, M., Marin, G., & Nicolli, F. (2016). A survey of the literature

on environmental innovation based on main path analysis. Journal of Economic Surveys ,

30 (3), 596–623.

Barbieri, N., Marzucchi, A., & Rizzo, U. (2020). Knowledge sources and impacts on subsequent

inventions: Do green technologies differ from non-green ones? Research Policy . doi:

Barbieri, N., Marzucchi, A., & Rizzo, U. (2021). Green technologies, complementarities,

and policy. SEEDS Working Papers 1021, Sustainability Environmental Economics and

Dynamics Studies.

Barragán-Ocaña, A., Silva-Borjas, P., & Olmos-Peña, S. (2021). Scientific and technological

trajectory in the recovery of value-added products from wastewater: A general approach.

Journal of Water Process Engineering , 39 , 101692. doi:

Blundell, R., & Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel

data models. Journal of econometrics , 87 (1), 115–143.

Boschma, R. (2017). Relatedness as driver of regional diversification: A research agenda.

Regional Studies, 51 (3), 351–364.

Bresnahan, T. F., & Trajtenberg, M. (1995). General purpose technologies ‘engines of growth’?

Journal of econometrics , 65 (1), 83–108.

Cainelli, G., D’Amato, A., & Mazzanti, M. (2020). Resource efficient eco-innovations for a

circular economy: Evidence from eu firms. Research Policy , 49 (1), 103827. doi:

Capello, R., & Lenzi, C. (2021). 4.0 technologies and the rise of new islands of innovation in

27



european regions. Regional Studies, 55 (10-11), 1724–1737.

Carnabuci, G., & Operti, E. (2013). Where do firms’ recombinant capabilities come from? in-

traorganizational networks, knowledge, and firms’ ability to innovate through technological

recombination. Strategic management journal , 34 (13), 1591–1613.

Castellani, D., Marin, G., Montresor, S., & Zanfei, A. (2022). Greenfield foreign direct invest-

ments and regional environmental technologies. Research Policy , 51 (1), 104405.

Castro, C. G., Trevisan, A. H., Pigosso, D. C., & Mascarenhas, J. (2022). The rebound effect

of circular economy: Definitions, mechanisms and a research agenda. Journal of Cleaner

Production, 345 , 131136.

Chauhan, C., Parida, V., & Dhir, A. (2022). Linking circular economy and digitalisation tech-

nologies: A systematic literature review of past achievements and future promises. Techno-

logical Forecasting and Social Change, 177 , 121508. doi:

Chizaryfard, A., Trucco, P., & Nuur, C. (2021). The transformation to a circular economy:

framing an evolutionary view. Journal of Evolutionary Economics , 31 , 475–504. doi:

Cicerone, G., Faggian, A., Montresor, S., & Rentocchini, F. (2022). Regional artificial

intelligence and the geography of environmental technologies: does local ai knowledge

help regional green-tech specialization? Regional Studies , 0 (0), 1-14. Retrieved from

https://doi.org/10.1080/00343404.2022.2092610 doi:

Cohen, W. M., & Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning

and innovation. Administrative science quarterly , 128-152.

Colombelli, A., Krafft, J., & Quatraro, F. (2014). The emergence of new technology-based

sectors in european regions: A proximity-based analysis of nanotechnology. Research Policy ,

43 (10), 1681-1696. doi:

Cooke, P. (2001). Regional innovation systems, clusters, and the knowledge economy. Industrial

and Corporate Change, 10 . doi:

Corradini, C., Santini, E., & Vecciolini, C. (2021). The geography of industry 4.0 technologies

across european regions. Regional Studies, 55 (10-11), 1667-1680. doi:

Corvellec, H., Stowell, A. F., & Johansson, N. (2022). Critiques of the circular economy.

Journal of Industrial Ecology , 26 (2), 421–432.

David, P. A. (1975). Technical choice innovation and economic growth: essays on american

and british experience in the nineteenth century. Cambridge University Press.

de Jesus, A., Antunes, P., Santos, R., & Mendonça, S. (2018). Eco-innovation in the transition

to a circular economy: An analytical literature review. Journal of Cleaner Production, 172 ,

2999-3018. doi:

De Jesus, A., & Mendonça, S. (2018). Lost in transition? drivers and barriers in the eco-

innovation road to the circular economy. Ecological economics , 145 , 75–89.

De Marchi, V. (2012). Environmental innovation and R&D cooperation: Empirical evidence

from Spanish manufacturing firms. Research Policy , 41 (3), 614–623. doi:

Demirel, P., & Danisman, G. O. (2019). Eco-innovation and firm growth in the circular

economy: Evidence from european small- and medium-sized enterprises. Business Strategy

and the Environment , 28 (8), 1608-1618. doi:

Dosi, G., & Grazzi, M. (2006). Technologies as problem-solving procedures and technologies

as input–output relations: some perspectives on the theory of production. Industrial and

Corporate Change, 15 (1), 173–202.

28



Dosi, G., & Grazzi, M. (2010). On the nature of technologies: knowledge, procedures, artifacts

and production inputs. Cambridge Journal of Economics , 34 (1), 173–184.

EIO. (2016). Policies and practices for eco-innovation up-take and circular economy transition

(Tech. Rep.). EC & EIO: European Commission & Eco-Innovation Observatory.

EIO. (2021). Eco-innovation and digitalisation: case studies, environmental and policy lessons

from eu member states for the eu green deal and the circular economy (Tech. Rep.). EC &

EIO: European Commission & Eco-Innovation Observatory.

Elekes, Z., Boschma, R., & Lengyel, B. (2019). Foreign-owned firms as agents of structural

change in regions. Regional Studies, 53 (11), 1603–1613.

Fleming, L. (2001). Recombinant uncertainty in technological search. Management science,

47 (1), 117–132.

Freeman, R., Freeman, C., & Freeman, S. (1987). Technology, policy, and economic perfor-

mance: lessons from japan. Burns & Oates.

Frenken, K., Izquierdo, L. R., & Zeppini, P. (2012). Branching innovation, recombinant inno-

vation, and endogenous technological transitions. Environmental Innovation and Societal

Transitions , 4 . doi:

Fusillo, F. (2023). Green technologies and diversity in the knowledge search and output phases:

Evidence from european patents. Research Policy , 52 (4), 104727.
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