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time-separable objectives
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Abstract

A class of intertemporal optimization models characterized by a recursive objective
functional obtained as the limit of iterations of the Koopmans aggregator is considered.
We focus on negative dynamic programming problems in which aggregators may be un-
bounded from below and establish existence of an optimal solution under the assumption
of strong concavity for the aggregator, both in the deterministic and in the stochastic
settings.

Keywords: Negative Dynamic Programming; Non-Additive Recursive Objective; Bell-
man Equation; Strongly Concave Functionals.
JEL Classification: C61, C65, D81

1 Introduction

Since the axiomatic approach by Koopmans (see [4] and [5]) in the sixties, the advantages of
considering recursive utilities that allow a flexible rate of time preference determined endoge-
nously by the underlying consumption stream, which generalize the standard approach based
on additively time-separable utilities, have been considered and widely discussed by many au-
thors in the field of dynamic economic models. After an early effort at venturing outside the
additively time-separable realm pursued by Mitra [12], who established necessary and sufficient
conditions for the existence of optimal solutions when the discount factor varies over time,
Lucas and Stokey [9] were the first authors that undertook the road of recovering the whole
utility function from an aggregator function that represents the fundamental preferences of the
agent.

The literature on this subject and on the analysis of the associated models of intertemporal
optimization is already large enough. Most contributions assume that aggregators are bounded
from below and provide quite satisfactory results (see, for instance, [2], [3], [10] and [1]). Con-
versely, for aggregators that are unbounded from below, up to our knowledge only few general
results are available (see, among others, [8] and [13]).

In the present paper we aim at contributing to fill this gap by studying topics related to
dynamic choices when aggregators have negative values and are potentially unbounded from
below. In particular, our goal is to extend already established results on negative dynamic
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programming when the return is additively time-separable (see [14]) to problems built through
more general aggregators. Our idea is to exploit the strong concavity property of the aggregator
to obtain coercivity of the recursive objective functional, which itself triggers the functional
analysis procedure to establish existence of optimal solutions in the infinite dimensional setting.

The paper is organized as follows. Section 2 collects some known basics results, together
with a few original contributions, on the negative dynamic programming under the hypothesis
that the objective function is recursive. Section 3 is dedicated to a detailed analysis for the
class of recursive functionals generated by strongly concave aggregators: we show that such a
restriction allows to establish our main existence result. In Section 4 we extend the strongly
concave recursive problems of Section 3 to a stochastic setting. To help the reading, we gather
in the Appendix some mathematical results used in the development of our analysis.

2 Preliminaries

This first part is dedicated to the class of deterministic dynamic programming problems with
non-additive objectives. This is realized through the introduction of an aggregator function
W : D×R → R, where the one-period constraint D is a subset of Rn×Rn. We writeW (x, y, ζ),
for (x, y) ∈ D and ζ ∈ R. The special additively time-separable aggregator W (x, y, ζ) =
u (x, y) + βζ gives rise to standard intertemporal optimization models in reduced form.

Taken W as a primitive, the total return function U , defined over time-unbounded paths, is
generated by the aggregatorW . Specifically, the functional U must satisfy Koopmans’ equation
(cf. [4] and [5]) given by

U (0x) = W (x0, x1, U (1x)) . (1)

Here 0x = (x0, x1, . . .) denotes a sequence of vectors in Rn and 1x = (x1, x2, . . .) is its one-time
shift.

Below we list the basic hypotheses made about this aggregator.

W. 1 D is a closed and convex set of X ×X, with π1 (D) = X ⊆ Rn where π1 : X ×X → X
is the first projection;

W. 2 W (x, y, ·) is nondecreasing and continuous over R− for each (x, y) ∈ D and
limζ→−∞W (x, y, ζ) = −∞;

W. 3 W (·, ·, ζ) is upper semicontinuous on D for every fixed ζ ≤ 0;

W. 4 W (·, ·, 0) ≤ 0.

Both the set of the states X and the sets D (x) of those states reachable from x ∈ X, i.e.,
the slices

D (x) = {y : (x, y) ∈ D}
are not necessarily bounded. This fact, along with the assumption W.4 of non-positivity of
the aggregator and the possible lack of monotonicity for W (·, y, ζ), make this class of recursive
problems nonstandard and little covered in literature.1 One example belonging to this family
is Uzawa’s [16] aggregator

W (x, y, ζ) = (ζ − 1) exp (−u (x, y)) , (2)

1For additively time-separable aggregators W (x, y, ζ) = u (x, y) + βζ the assumption W.4 leads to the so-
called negative dynamic programming (see [14] and [13, Sect. 4]). No need to say, by the transformation
C (x, y, ζ) = −W (x, y,−ζ) we get the dual class of (positive) cost minimization problems.
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which satisfies W.1–4 under regularity conditions for the indirect utility u.
Consider the recursive system associated with Koopmans’ equation, that is

Un+1 (0x) = W (x0, x1, Un (1x)) for x1 ∈ D (x0) and n ≥ 0, (3)

with U0 ≡ 0, and denote by D the set of the feasible paths

D = {0x ∈ X∞ : (xt, xt+1) ∈ D ∀t ≥ 0} .

Analogously, define D (x) = {0x ∈ D : x0 = x} the set of the feasible paths starting from the
initial state x ∈ X at time t = 0. We have the following preliminary result on the existence of
recursive functionals.

Proposition 1 Under W.1–4 the sequence of partial returns Un (0x) generated by (3) from
the initial condition U0 ≡ 0 pointwise converges to an upper semicontinuous function U∞ that
satisfies Koopmans’ equation:

U∞ (0x) = W (x0, x1, U∞ (1x)) . (4)

In fact, U∞ is the maximal nonpositive solution to (1).

Proof. The unique delicate point of this proof concerns with the upper semicontinuity of the
functions Un (0x). As U0 ≡ 0 is trivially upper semicontinuous, let us assume, by induction, that
Un (0x) is upper semicontinuous. We must thus prove that this implies Un+1 (0x) to be upper
semicontinuous as well. Fix the path 0x and take any sequence of paths 0x

m → 0x pointwise,
as m → ∞. Of course, 1x

m → 1x and (xm0 , x
m
1 ) → (x0, x1). Since Un is upper semicontinuous

at 1x, for every λ > Un (1x) we have λ > Un (1x
m) for m ≥ m0 and m0 sufficiently large. By

W.2,
Un+1 (0x

m) = W (xm0 , x
m
1 , Un (1x

m)) ≤ W (xm0 , x
m
1 , λ) if m ≥ m0.

In view of W.3, by taking the limsup we have

lim sup
m→∞

Un+1 (0x
m) ≤ lim sup

m→∞
W (xm0 , x

m
1 , λ) ≤ W (x0, x1, λ) .

This is true for every λ > Un (1x). Since W (x0, x1, ·) is continuous,

lim sup
m→∞

Un+1 (0x
m) ≤ lim

λ↓Un(1x)
W (x0, x1, λ) = W (x0, x1, Un (1x)) = Un+1 (0x) ,

so that Un+1is upper semicontinuous. By induction, all the functions Un are thus upper semi-
continuous.

By (3) and W.4,
U1 (0x) = W (x0, x1, 0) ≤ 0 = U0 (0x) .

From the monotonicity assumption W.2, it follows that Un ≤ Un−1 implies Un+1 ≤ Un. In fact,

Un+1 (0x) = W (x0, x1, Un (1x)) ≤ W (x0, x1, Un−1 (1x)) = Un (0x) .

Therefore, 0 = U0 ≥ U1 ≥ U2 ≥ · · · . Hence {Un} is a decreasing sequence of nonpositive
functions so that Un ↓ U∞ and the function U∞ : D → R− ∪ {−∞} turns out to be upper
semicontinuous in the product topology. Moreover, taking limits in (3), we get

U∞ (0x) = lim
n→∞

Un+1 (0x) = lim
n→∞

W (x0, x1, Un (1x)) = W (x0, x1, U∞ (1x)) ,

3



and thus the return U∞ satisfies Koopmans’ equation.
To end the proof, if V is a nonpositive solution to Koopmans’ equation, then V ≤ 0 = U0.

It follows V ≤ Un for all n, so that V ≤ U∞.

A single aggregator may give rise to a multiplicity of solutions to Koopmans’ equation (1).
Consider, for instance, an additively time-separable aggregator W (x, y, ζ) = u (x, y) + βζ with
an upper semicontinuous short-run return u and β ∈ (0, 1). The uncountable family of upper
semicontinuous recursive functionals Vk defined by

Vk (0x) =
∞∑
t=0

u (xt, xt+1) β
t + Fk (0x) , ∀k ≥ 0

are solutions to equation (1), where Fk (0x) = 0 if lim supt→∞ |xt| ≤ k and Fk (0x) = −∞
elsewhere. Actually, the functionals Vk (0x) obey to the equation Vk (0x) = W (x0, x1, Vk (1x)),
as Fk (0x) = βFk (1x). Note that the multiplicity cannot be avoided not even by declaring strict
concavity for the aggregator.

However, a variant of Blackwell theorem (see Proposition 11 and Corollary 1 in Appendix
A.1) tells us that any two different solutions to (1) are far from each other (according to the
supnorm distance), provided that

|W (x, y, ζ1)−W (x, y, ζ2)| ≤ β |ζ1 − ζ2| (5)

holds for every (x, y) ∈ D, ζ1, ζ2 ∈ R− and 0 < β < 1. In other words, if U and V are two
different solutions to Koopmans’ equation, then

∥U − V ∥∞ = sup
0x∈D

|U (0x)− V (0x)| = ∞.

We refer to Appendix A.1 for more details.
The rather severe restriction W.4 on the sign of the aggregator can be remarkably relaxed

by assuming the existence of a positive upper bound W (x, y, 0) ≤ L. For this purpose, it
suffices replacing W.4 with the following assumption.2

W. 5 There is a constant k > 0 such that W (x, y, k) ≤ k for all (x, y) ∈ D.

In fact, the new aggregator

W̃ (x, y, ζ) = W (x, y, ζ + k)− k

satisfies W.4 if and only if W satisfies W.5. It is also easy to see that the relation U∞ = Ũ∞+k
holds between the returns generated by W and W̃ respectively. Observe that all the other
assumptions W.1–2–3 (also W.6–7–8 of the next section) are not affected by the transformation

W → W̃ . Hence, all our results can be extended to such a wider class of aggregators.
A caveat is in order yet: condition W.5 could require a more stringent discounting on the

future. To clarify this point, consider the additive aggregator W (x, y, ζ) = u (x, y) + βζ. If
u (x, y) ≤ 0 then W.4 holds for every β > 0. While if u (x, y) ≤ L with L > 0, then W satisfies
W.5 if and only if 0 < β < 1 and k = (1− β)−1 L.

A quite general result along this direction is formulated in the next proposition.

2Of course the conditions ζ ≤ 0 must be then replaced by ζ ∈ R in this case.
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Proposition 2 Assumption W.5 is fulfilled for any aggregator W such that W (x, y, 0) is
bounded from above, provided the Lipschitz condition (5) is satisfied. More precisely, ifW (x, y, 0) ≤
L then W (x, y, k) ≤ k for any k ≥ (1− β)−1 L. The sequence Un generated by the iterative
system (3) from U0 = c, where c is any constant, pointwise converges to the solution U∞ defined
in Proposition 1 and U∞ is the maximal bounded from above solution to (1).

Proof. Let W (x, y, 0) ≤ L with L > 0. In view of (5), for k > 0, it follows

W (x, y, k)−W (x, y, 0) ≤ βk

If k ≥ (1− β)−1 L (i.e. L ≤ (1− β) k) then

W (x, y, k) ≤ W (x, y, 0) + βk ≤ L+ βk = k

and so W.5 is true. Fix now some k ≥ (1− β)−1 L, then the sequence Un generated by (3)
from U0 = k converges monotonically to a solution to (4), say Un ↓ V . By Proposition 11 the
sequences Un from U0 = c converge to V as well. If we set c = 0, we get V = U∞.

To complete the proof, let V1 ≤ M where V1 is a solution to (4) and M ∈ R. There exists
some k such that V1 ≤ M ≤ k and k ≥ (1− β)−1 L. Applying the monotone operator T,
defined in (37), we have V1 = T (V1) ≤ T (k). Iterating, we get V1 ≤ Tn (k) ↓ U∞, as desired.

Define now the value functions

v (x) = sup
0x∈D(x)

U∞ (0x) (6)

vn (x) = sup
0x∈D(x)

Un (0x) , n ≥ 1

Clearly, v (x) ∈ [−∞, 0], while vn (x) ∈ (−∞, 0].

Proposition 3 Under W.1–4, the value functions v and vn satisfy the optimality equations

v (x) = sup
y∈D(x)

W (x, y, v (y)) (7)

vn+1 (x) = sup
y∈D(x)

W (x, y, vn (y)) , n ≥ 0.

Note that this Proposition still holds if W.4 is replaced by W.5.

Proof. Let us first prove the equality

sup
1x∈D(y)

W (x, y, U∞ (1x)) = W

(
x, y, sup

1x∈D(y)

U∞ (1x)

)
. (8)

Under W.2 it holds:

sup
1x∈D(y)

W (x, y, U∞ (1x)) ≤ W

(
x, y, sup

1x∈D(y)

U∞ (1x)

)
.

If sup
1x∈D(y) U∞ (1x) = −∞, it holds with equality; otherwise, i.e., if sup

1x∈D(y) U∞ (1x) > −∞,
for any ε > 0, a path 1x (ε) ∈ D (y) exists such that

U∞ (1x (ε)) ≥ sup
1x∈D(y)

U∞ (1x)− ε.

5



Consequently,

sup
1x∈D(y)

W (x, y, U∞ (1x)) ≥ W (x, y, U∞ (1x (ε)))

≥ W

(
x, y, sup

1x∈D(y)

U∞ (1x)− ε

)

As ε ↓ 0, we get the reversed inequality,

sup
1x∈D(y)

W (x, y, U∞ (1x)) ≥ W

(
x, y, sup

1x∈D(y)

U∞ (1x)

)
;

therefore, (8) is true.
To prove the first optimality equation, by (8) we have

v (x) = sup
0x∈D(x)

W (x, x1, U∞ (1x)) = sup
y∈D(x)

sup
1x∈D(y)

W (x, y, U∞ (1x))

= sup
y∈D(x)

W

(
x, y, sup

1x∈D(y)

U∞ (1x)

)
= sup

y∈D(x)

W (x, y, v (y)) .

The other optimality equations can be similarly deduced by means of (3).

The Bellman equation (7) provides a value function v for each recursive solution U of Koop-
mans’ equation (4). Thus, in general, there may be many solutions to the Bellman equation.3

Example 1 The additively time-separable quadratic aggregator

W (x, y, ζ) = −1

2
(y −mx)2 + βζ

is a simple example exhibiting multiple solutions. Clearly U∞ (0x) ≤ U∞ (0x
∗) = 0 where 0x

∗ is
the optimal path generated by the policy xt+1 = mxt. Hence v (x) ≡ 0 is the value function for
any β > 0.

If βm2 > 1, it is easy to check that also the quadratic function

w (x) = −βm
2 − 1

2β
x2

solves (7). It is not the unique extra-solution: for instance, the family of linear functions

w (x) = αx+
α2

2m (m− 1)
∀α ∈ R and m ̸= 0, 1

are solutions to (7) as well, provided that βm = 1.

When W (x, y, ·) is strictly increasing, it is easy to check that the optimal solutions to (6),
if any, satisfy the Bellman principle: if a path 0x is optimal from x0, then 1x is optimal from
x1. This in turn implies that optimal paths satisfy the Bellman equation (7).

3This kind of phenomena may occur also in bounded problems, as it has been discussed by [1] in the concave
and bounded case.
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The Bellman operator
B : f 7−→ sup

y∈D(x)

W (x, y, f (y))

is clearly monotone and the iterates vn+1 = Bvn decrease,

0 = v0 ≥ v1 ≥ · · · ≥ vn ≥ · · · ≥ v, (9)

but the convergence vn ↓ v may fail. Namely, the sequence vn could converge to a function
v∞ ≥ v which differs from the value function v.

The next proposition, which extends Strauch’s result established for additively time-separable
aggregators (see [14] and [13, Ch. 4]), claims that if the pointwise limit vn ↓ v∞ of the finite
horizon value functions satisfies the Bellman equation, that is Bv∞ = v∞, then v∞ is the value
function v of the infinite horizon problem. Unfortunately, without further assumptions, the
sufficient condition Bv∞ = v∞ is not necessary.

Proposition 4 Under W.1–4 and the further Lipschitz condition

|W (x, y, ζ1)−W (x, y, ζ2)| ≤ L |ζ1 − ζ2| (10)

for some L ≥ 0, if the limit function vn ↓ v∞ satisfies the Bellman equation, then v∞ = v.

For example, Uzawa’s aggregator (2) satisfies (10) when u is bounded from below.

Proof. Fix ε > 0 and pick a number λ > 0 so that Lλ < 1 and a number η such that
0 < η < ε (1− λL). As

v∞ (x) = (Bv∞) (x) = sup
y∈D(x)

W (x, y, v∞ (y))

we can find a feasible sequence 0x such that

v∞ (xn) ≤ W (xn, xn+1, v∞ (xn+1)) + λnη

for every n ≥ 0.
By substitution and using (10) we get that for all N it holds4

v∞ (x0) ≤ UN (0x) + η

N−1∑
n=0

Lnλn ≤ UN (0x) +
η

1− λL
≤ UN (0x) + ε.

Taking the limit for N → ∞, it follows

v∞ (x0) ≤ U∞ (0x) + ε ≤ v (x0) + ε.

As ε is arbitrarily small, we have v∞ ≤ v. On the other hand, (9) implies v∞ ≥ v. The equality
v∞ = v is thus proved.

4The proof can be made by induction. We omit lengthy calculations.
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Example 2 The cake eating with logarithmic utility and discounting which depends on the
amount of cake, leads to the aggregator

W (x, y, ζ) = log (x− y) + β (x) ζ

with X = [0, x] and D (x) = [0, x] for 0 ≤ x ≤ x.
Under 0 ≤ β (x) ≤ β < 1, conditions W.1-2-3 are true. Also (10) holds in this case.

Moreover, W (x, y, 0) is bounded from above, as W (x, y, 0) ≤ log x. In view of Proposition 2,
thanks to Proposition 1 it follows that the total return function

U∞ (0x) =
∞∑
t=0

(
t−1∏
s=0

β (xs)

)
log (xt − xt+1)

is upper semicontinuous.
Whenever the discount factor is constant, i.e., β (x) ≡ β, calculation in closed form can be

easily obtained. Indeed, we have

vn (x) = An log x+Bn

with
An+1 = 1 + βAn and Bn+1 = βBn + max

ξ∈[0,1]
[log (1− ξ) + βAn log ξ] ,

and A0 = B0 = 0. This sequence converges to

v (x) = (1− β)−1 log x+ (1− β)−1 max
ξ∈[0,1]

[
log (1− ξ) + β (1− β)−1 log ξ

]
which is a fixed point of the Bellman operator B. Hence v is the value function.

A closer investigation of the problems presented in this section requires some specification
for the structure of the dynamic constraint D and/or the growth conditions on the aggregator
W . Next example applies Boyd’s weighted contraction mapping theorem (see Boyd [2]) for
clarifying the domain of the recursive functionals. More precisely, the effective domain of
the total return U∞ : D → R, defined in (4), is generally smaller than D. In the following
example, among other things, we provide an insight on the collection of sequences 0x such that
U∞ (0x) > −∞.

Example 3 Suppose that the aggregator obeys to the growth condition

W (x, y, 0) ≥ −A (x) (1 + |y|η) (11)

for all (x, y) ∈ D, with A (x) > 0 for all x ∈ X, and for some η > 0. Here |·| is a norm in Rn.
Assume further that W obeys the Lipschitz condition (5) with 0 < β < 1. For a fixed scalar
β < δ < 1, consider the sequence space

ℓη (δ) =

{
0x ∈ (Rn)∞ : Φδ (0x) ≡

∞∑
t=0

|xt|η δt <∞

}
.

The set of feasible paths belonging to the space ℓη (δ) is

D (δ) = D ∩ ℓη (δ) ,
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supposed to be nonempty. The total returns U (0x) will be understood as functionals U : D (δ) →
R−. Endow the space RD(δ) of these functionals by the weight

ψ (0x) = 1 + Φδ (0x)

which gives rise to the Banach space B (D (δ) ;ψ) of the so-called ψ-bounded functions (see [2]
and [10]), that is, the collection of the functions U (0x) for which

sup
0x∈D(δ)

|U (0x)|
ψ (0x)

<∞.

We are in a position to apply the weighted contraction theorem (see Proposition 12 in Appendix

A.2) to the operator T : B− (D (δ) ;ψ) → RD(δ)
− given by

(TU) (0x) = W (x0, x1, U (1x)) .

Clearly fixed points of T are solutions to the Koopmans’ equation.
In view of (5), we can write

T (U − λψ) (0x) = W (x0, x1, U (1x)− λψ (1x)) ≥ W (x0, x1, U (1x))− λβψ (1x)

= T (U) (0x)− λβψ (1x) .

Moreover, from the relation ψ (1x) ≤ δ−1ψ (0x) it follows

T (U − λψ) (0x) ≥ T (U) (0x)−
(
βδ−1

)
λψ (0x)

and so the (ii) of Proposition 12 is met, as βδ−1 < 1.
Now, in view of (11), we have

(T0) (0x) = W (x0, x1, 0) ≥ −A (x0) (1 + |x1|η)

Hence, the inequality |(T0) (0x)| ≤ A (x0) δ
−1ψ (0x) follows easily. Thus, T0 is ψ-bounded and

so condition (iii) of Proposition 12 is verified.
Below we list the consequences of Proposition 12. If U∞ is the return function (4) then

0x ∈
⋃
δ>β

D (δ) =⇒ U∞ (0x) > −∞.

For every fixed δ > β, the restriction of U∞ to the space D (δ) is the unique solution to Koop-
mans’ equation in the space B− (D (δ) ;ψ). Moreover, the convergence Un ↓ U∞ is uniform over
every nonempty sublevel Φδ ≤ k.

3 Strongly concave aggregators

So far the conditions listed in previous section are in general not enough to guarantee the
existence of optimal solutions to such recursive problems, as well as to infer other nice proper-
ties. In this section we tackle the particular subclass of concave aggregators having a positive
curvature. The following assumptions are added to those of the previous section.

W. 6 W (·, ·, ·) is concave on D×R− and W (·, ·, 0) is (α1, α2)-concave
5 on D with α1, α2 ≥ 0

and α1 + α2 > 0;
5This is a property of strong concavity illustrated in Definition 1 of Appendix A.3.
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W. 7 there is a scalar β > 0 such that

|W (x, y, ζ1)−W (x, y, ζ2)| ≥ β |ζ1 − ζ2| (12)

holds for all x, y ∈ D and all ζ1, ζ2 ∈ R−;

W. 8 if α1 · α2 = 0, there is a point (x̄, ȳ) ∈ D for which W (x, y, 0) ≥ W (x, y, 0) for every
(x, y) ∈ D.

Remark 1 When α1 ·α2 > 0, the condition W.8 is superfluous since the existence of the point
(x̄, ȳ) is assured by W.6 (see Theorem 4 in Appendix A.3).

Remark 2 The additional assumption 0 < β < 1 in W.7 is not restrictive. This qualification
is maintained throughout this section.

Next lemma, related to the strong concavity of the aggregator, plays an important role in
the following.

Lemma 1 Under W.6-7-8, if (x̄, ȳ) is a maximizer of the function W (·, ·, 0) over D, then

W (x, y, ζ) ≤ −1

2
α1 ∥x− x∥2 − 1

2
α2 ∥y − y∥2 + βζ

for all (x, y) ∈ D and ζ ≤ 0.

Proof. As (x̄, ȳ) is a maximizer of the (α1, α2)-concave function W (·, ·, 0), it follows that
(see Proposition 13)

W (x, y, 0) ≤ −1

2
α1 ∥x− x∥2 − 1

2
α2 ∥y − y∥2 +W (x, y, 0)

≤ −1

2
α1 ∥x− x∥2 − 1

2
α2 ∥y − y∥2 .

According to W.7 we can write

W (x, y, ζ) = W (x, y, ζ)−W (x, y, 0) +W (x, y, 0)

≤ − |W (x, y, ζ)−W (x, y, 0)|+W (x, y, 0)

≤ βζ − 1

2
α1 ∥x− x∥2 − 1

2
α2 ∥y − y∥2 ,

which is the desired inequality.

We now deduce that the optimization of the recursive functional U∞ (x, ·) : D (x) →
R− ∪ {−∞} can be restricted to the Hilbert space ℓ2

(
β
)
, β ∈ (0, 1), of the sequences 1x =

(x1, . . . , xt, . . .) for which

∥1x∥2 =
∞∑
t=1

∥xt∥2 βt−1 <∞.

W.6 implies that at least one of the scalars α1 and α2 of Lemma 1 is strictly positive.
Therefore, at least one of the two following inequalities is true:

W (x, y, ζ) ≤ −1

2
α1 ∥x− x∥2 + βζ, α1 > 0 (13)

W (x, y, ζ) ≤ −1

2
α2 ∥y − y∥2 + βζ, α2 > 0. (14)

10



Proposition 5 For every feasible path (x0, 1x), from the initial state x0 ∈ X, we have

U∞ (x0, 1x) > −∞ =⇒ 1x ∈ l2
(
β
)
.

Proof. Suppose that the inequality (13) holds. Then

U∞ (0x) ≤ −1

2
α1 ∥x0 − x∥2 + βU∞ (1x) . (15)

By iterating (15) we get easily

U∞ (0x) ≤ −1

2
α1 ∥x0 − x∥2 −

βα1

2

n∑
t=1

∥xt − x∥2 βt−1 + βnU∞ (nx)

≤ −
βα1

2

n∑
t=1

∥xt − x∥2 βt−1,

namely,
βα1

2

n∑
t=1

∥xt − x∥2 βt−1 ≤ −U∞ (0x) < +∞

for every n. Hence,

∥1x−x∥2 =
∞∑
t=1

∥xt − x∥2 βt−1 <∞,

where x = (x, x, . . .). As x ∈ ℓ2
(
β
)
, it follows that 1x ∈ ℓ2

(
β
)
.

The case (14) is similar; in fact, in this case we have

U∞ (0x) ≤ −α2

2

n∑
t=1

∥xt − y∥2 βt−1

for every n.

The strong concavity of assumption W.6 is crucial to get the previous property. Consider,
for instance, the aggregator W (x, y, ζ) = − (1/2) (y −mx)2 + βζ of Example 1: W is concave
but it fails to be (α1, α2)-concave with α1+α2 > 0. We have U (0x) = 0 for the paths generated
by the policy y = mx, but the slope m is totally unrelated with the discount factor β.

Next lemma shows that our recursive functionals are coercive.6

Lemma 2 Under (13) it holds

U∞ (x0, 1x) ≤ −1

2
α1 ∥x0 − x∥2 − 1

2
βα1 ∥1x− x∥2 .

Likewise, under (14),

U∞ (x0, 1x) ≤ −1

2
α2 ∥1x− y∥2 .

6Recall that a function f : V → R ∪ {−∞} defined over a normed space V is called coercive if all its
non-empty upper levels (f ≥ λ) are norm bounded.

11



Proof. In the first case, consider the new aggregator function

W̃ (x, y, ζ) = −1

2
α1 ∥x− x∥2 + βζ.

According to (13) we haveW (x, y, ζ) ≤ W̃ (x, y, ζ). Denoting by Un and Ũn the solutions to (3)

starting from the initial condition U0 = Ũ0 = 0 for the two aggregators W and W̃ , respectively,
it is easy to check by induction that Un ≤ Ũn for all n. Actually let Un ≤ Ũn. Then

Un+1 (0x) = W (x0, x1, Un (1x)) ≤ W̃ (x0, x1, Un (1x))

≤ W̃
(
x0, x1, Ũn (1x)

)
= Ũn+1 (0x)

Taking limit we get U∞ ≤ Ũ∞. On the other hand,

U∞ (x0, 1x) ≤ Ũ∞ (x0, 1x) = −1

2
α1 ∥x0 − x∥2 − 1

2
βα1 ∥1x− x∥2

as desired. The other case is similar.

We can now establish the existence of optimal solutions.

Theorem 1 Under assumptions W.1–8, the problem

v (x) = sup
0x∈D(x)

U∞ (0x) (16)

has optimal solutions for every initial state x ∈ X for which v (x) > −∞.

After the proof below we discuss uniqueness of the optimal solutions as well.

Proof. Proposition 5 implies that we can maximize the upper semicontinuous functional
U∞ on the Hilbert space l2

(
β
)
; namely, consider the functional U∞ (x, ·) : l2

(
β
)
→ [−∞,∞).

Let us check, by induction, that the partial functionals Un (0x) are concave. Actually
U1 (x0, x1) = W (x0, x1, 0) is concave by W.6. Let Un (0x) be concave. From the relation
Un+1 (0x) = W (x0, x1, Un (1x)), we have

Un+1

(
ϑ0x+ϑ0x

′) = W
(
ϑx0 + ϑx′0, ϑx1 + ϑx′1, Un

(
ϑ1x+ϑ1x

′)) ,
where ϑ = 1− ϑ. By W.6,

Un+1

(
ϑ0x+ϑ0x

′) ≥ W
(
ϑx0 + ϑx′0, ϑx1 + ϑx′1, ϑUn (1x) + ϑUn (1x

′)
)

≥ ϑW (x0, x1, Un (1x)) + ϑW (x′0, x
′
1, Un (1x

′))

= ϑUn+1 (0x) + ϑUn+1 (0x
′) .

Hence, Un+1 is concave. Therefore, every Un is concave and, in turn, the limit U∞ is concave
as well.

Lemma 2 implies that the functional U∞ (x, 1x) is dominated by a quadratic functional
−k ∥1x− u∥2 with u ∈ l2

(
β
)
. This entails that U∞ (x, ·) is coercive. That is, all the nonempty

upper level sets U∞ (x, ·) ≥ λ are norm bounded (of course also closed, thanks to the upper
semicontinuity of the functional). Indeed, the relation

−k ∥1x− u∥2 ≥ U∞ (x, 1x) ≥ λ

12



yields ∥1x− u∥2 ≤ −λ/k.
Now the proof follows the one of the classical Tonelli Theorem (a cornerstone of infinite

dimensional optimization theory). Briefly: endow l2
(
β
)
with the weak topology. The upper

level sets U∞ (x, ·) ≥ λ are weakly closed by the Mazur Theorem. Consequently, U∞ (x, ·) turns
out to be weakly upper semicontinuous. Since the upper levels are norm bounded, by Alaouglu
Theorem the nonempty upper levels are weakly compact. As v (x) > −∞ some upper level is
not empty and Weierstrass Theorem concludes the proof.

Remark 3 The same proof leads to the existence of optimal paths for the finite-horizon prob-
lems

vn (x) = sup
0x∈D(x)

Un (0x) , n ≥ 1. (17)

In fact, these are a simpler problems because they do not require to employ weak topologies, nei-
ther resorting to the property of concavity of the functionals. Observe further that the concavity
of Un and U∞ imply that the value functions vn and v are concave.

Uniqueness of optimal solutions is not claimed in Theorem 1. In fact, more regularity con-
ditions on the functionals U∞ (x, ·) : l2

(
β
)
→ [−∞,∞) are required to establish uniqueness;

specifically, they must be strongly concave rather than only concave, the latter being the prop-
erty turning out to characterize them in the proof of the previous theorem under assumption
W.6. The following slightly stronger assumption, which replaces W.6, is enough to establish
uniqueness of optimal solutions.

W. 9 W (·, ·, ·) is (α1, α2, 0)-concave on D × R−, with α1, α2 ≥ 0 and α1 + α2 > 0.

Notice that in the additively time-separable case W.9 coincides with W.6.
Under W.9, through tedious algebra, it can be shown that the functionals U∞ (x, ·) :

l2
(
β
)
→ [−∞,∞) are

(
α2 + βα1

)
-concave over l2

(
β
)
for every x ∈ X, so that U∞ (x, ·) +

1
2

(
α2 + βα1

)
∥·∥2 turns out to be concave, where ∥·∥ is the norm of l2

(
β
)
. Hence, a direct

application of Theorem 4 in Appendix A.3 provides existence and uniqueness of the optimal
solution at once.

Example 4 The simplest examples of aggregators satisfying W.6 are those related to quadratic
functions.

For example, in the scalar case, the aggregators such that

W (x, y, 0) = −1

2
x2 + γxy − δ

2
y2 +mx+ ny

turn out to be (α1, α2)-concave (with α1 · α2 > 0), whenever γ2 < δ. To see this, it suffices to
pick a pair (α1, α2) so that γ2 < (δ − α2) (1− α1), 0 < α2 < δ and 0 < α1 < 1.

Likewise, the aggregators for which

W (x, y, 0) = −1

2
x2 +mx+ ny

are clearly (α1, 0)-concave with α1 > 0. But in this case n must vanish, otherwise W (x, y, 0)
is unbounded from above and so W.8 is violated.

The multidimensional case is more involved. Let Q be a 2n-order symmetric matrix, parti-
tioned as

Q =

[
A B
B′ C

]
13



where A,B,C n-order square matrices. We have

W (x, y, 0) = (x, y)′Q (x, y) +m′x+ n′y.

The aggregator W (x, y, 0) is (α1, α2)-concave, with α1 · α2 > 0 iff C is negative definite and
A−BC−1B′ is negative definite.

Otherwise, W (x, y, 0) is (α1, 0)-concave, with α1 > 0, iff C is negative semidefinite, A −
BC†B′ is negative definite and R (B′) ⊆ R (C). Here C† denotes the Moore-Penrose pseudoin-
verse of C and R (C) is the range of the matrix C.

The last example suggests a promising field of investigation in applications related to
economic-epidemiological models, as the social planner objective in such models often is to
minimize a quadratic social cost associated with the epidemic management (see, for example,
[6], and, for a stochastic setting, [7]). Through the transformation C (x, y, ζ) = −W (x, y,−ζ)
such (positive) cost minimization problems can be handled by means of the results discussed
in Sections 3 and 4. We thus believe that testing our methodology in applications of this kind
may open a research venue deserving further investigation.

4 Stochastic programming

We now turn our attention to a stochastic version of deterministic problems discussed in the
previous sections. It is best to start with the study of the Bellman equation

v (x, z) = sup
y∈D(x,z)

[W (x, y, z) ,M (z, v (y, ·))]

associated with the stochastic dynamic programming. The first step is that of identifying a
suitable space of functions on which let our operator act.

Here x ∈ X ⊆ Rn denotes the endogenous variable while z ∈ Z is the exogenous variable
(or shock). The multimapping D : X × Z ⇒ X is the feasible correspondence. Its graph is
defined as

GrD = {(x, z, y) ∈ X × Z ×X : y ∈ D (x, z)} . (18)

The function v : X × Z → R is the value function depending on the initial current state (x, z)
of the system. The function W is the dynamic aggregator, while M : Z × RZ → R denotes
the stochastic aggregator (or the certainty equivalent operator). Equivalently, one can assign a
separate mapping M : RZ → RZ which is related to M according to M (φ) (z) = M (z, φ) for
φ ∈ RZ .

Alongside the space X × Z, where X is a convex set of Rn and Z a topological space on
which the functions f (x, z) are defined, let us introduce the weighted space B (X × Z;w) where
the weight function is

w (x) = 1 + ∥x∥2 .

A function f : X × Z → R lies in the space B (X × Z;w) if

∥f∥w = sup
(x,z)∈X×Z

|f (x, z)|
1 + ∥x∥2

<∞.

It is well known that B (X × Z;w) is a Banach space and the convergence in such a space
amounts to the uniform convergence on the compact subsets of the space X. Actually, the
weight w satisfies 0 < ε ≤ w (x)−1 < 1 over any assigned compact subset of X. Therefore,
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the norm ∥f∥w is equivalent to the supnorm over each compact subsets of X (see, for instance,
[10]).

By UC− (X × Z;w) we denote the cone of the negative functions φ ∈ B− (X × Z;w) that
are upper semicontinuous on X × Z.

As will become clearer later, the relevance of this weighted space is motivated by the fol-
lowing property.

Proposition 6 All the functions f : X × Z → R satisfying the condition

|f (x, z)| ≤ A+B ∥x− x̄∥2 ∀ (x, z) ∈ X × Z,

for some A,B ≥ 0 and x̄ ∈ X, are w-bounded, namely, f ∈ B (X × Z;w).

Proof. Let ∥x∥ ≥ 1, then

|f (x, z)|
1 + ∥x∥2

≤ A+B ∥x− x̄∥2

1 + ∥x∥2
=
A ∥x∥−2 +B

∥∥∥x∥−1 x− ∥x∥−1 x̄
∥∥2

1 + ∥x∥−2

≤ A+B (1 + ∥x̄∥)2 .

If instead ∥x∥ ≤ 1,

|f (x, z)|
1 + ∥x∥2

≤ A+B ∥x− x̄∥2

1 + ∥x∥2
≤ A+B ∥x− x̄∥2 ≤ A+B (1 + ∥x̄∥)2 .

Hence, f is w-bounded.

The assumptions we set on the aggregator W (x, y, z, ζ) are as follows.

B. 1 Constants m1,m2, α1, α2, with m1,m2, α1, α2 > 0, and x̄, y ∈ X exist such that

−m2 − n2

(
∥x∥2 + ∥y∥2

)
≤ W (x, y, z, 0) ≤ −m1 − α1 ∥x− x̄∥2 − α2 ∥y − y∥2 (19)

for all (x, y, z) ∈ GrD;

B. 2 W (·, ·, ·, ζ) is upper semicontinuous on GrD for every fixed ζ ≤ 0;

B. 3 W (x, y, z, ·) is nondecreasing and continuous over R− for each (x, y, z) ∈ GrD and
limζ→−∞W (x, y, z, ζ) = −∞;

B. 4 there is a scalar 0 ≤ β < 1 such that

|W (x, y, z, ζ1)−W (x, y, z, ζ2)| ≤ β |ζ1 − ζ2|

for all (x, y, z) ∈ GrD and ζ1, ζ2 ∈ R−;

B. 5 W (x, y, z, ·) is convex at 0, namely

W (x, y, z, αζ) ≤ αW (x, y, z, ζ) + (1− α)W (x, y, z, 0)

for all α ∈ [0, 1] and ζ ≤ 0;
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B. 6 GrD is closed and the correspondence D has a deterministic continuous bounded selection,
namely, a continuous map d : X → X and a number N exist for which d (x) ∈ D (x, z) for all
(x, z) ∈ X × Z and ∥d (x)∥2 ≤ N for all x ∈ X.

Regarding to the certain equivalent operator M : RZ
− → RZ

−, the assumptions are:7

B. 7 M (k) = k, for k ∈ R−, and M is monotone and subhomogeneous;8

B. 8 for every f ∈ UC− (X × Z;w), the function (z, y) 7−→ M (z, f (y, ·)) is upper semicon-
tinuous over Z ×X.

Next proposition is similar to Lemma 1, though with different assumptions on parameter β
and with opposite inequalities.

Proposition 7 Under B.1 and B.4

−m2 − n2

(
∥x∥2 + ∥y∥2

)
+ βζ ≤ W (x, y, z, ζ) ≤ −m1 − α1 ∥x− x̄∥2 − α2 ∥y − y∥2 (20)

it holds for (x, y, z) ∈ GrD and ζ ≤ 0.

Proof. If ζ ≤ 0 it holds

|W (x, y, z, 0)−W (x, y, z, ζ)| = W (x, y, z, 0)−W (x, y, z, ζ) .

In view of B.4 we can write

0 ≤ W (x, y, z, 0)−W (x, y, z, ζ) ≤ −βζ,

and using the inequalities (19) we get easily our result.

Proposition 8 All the pairs of positive functions f1, f2 ∈ B (X × Z;w) of the type

f1 = A+B ∥x− x̄∥2 , f2 = C +D ∥x− y∥2

with A,B,C,D > 0 and x̄, y ∈ X, are linked (see Definition 2 in Appendix A.5).

Proof. It suffices to show that each function f1 = A+B ∥x− x̄∥2 is linked to every function
of the type C +D ∥x∥2. That is, it must hold

µ
(
A+B ∥x∥2

)
≤ C +D ∥x− x̄∥2 ≤ λ

(
A+B ∥x∥2

)
for some λ, µ > 0. By studying the signs

C +D ∥x− x̄∥2 − µ
(
A+B ∥x∥2

)
≥ 0

λ
(
A+B ∥x∥2

)
− C −D ∥x− x̄∥2 ≥ 0

of this two quadratic functions, it is easy to check that they are true for all x, provided µ > 0
is small enough and λ > 0 is large enough.

The main properties of the Bellman operator

(Bf) (x, z) = sup
y∈D(x,z)

W (x, y, z,M (z, f (y, ·)))

acting on the function f ∈ B− (X × Z;w), is the subject of the next statements.

7Constant (deterministic) functions φ (z) = k for all z ∈ Z are usually denoted by k.
8Namely, M (αf) ≤ αM (f) for all α ∈ [0, 1] and f ∈ B− (Z).
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Lemma 3 Let f ∈ UC− (X × Z;w), then Bf ∈ UC− (X × Z;w).

Proof. By B.7 the operator B is monotone and so B (f) ≤ B (0). But, by (19) in B.1,

B (0) (x, z) = sup
y∈D(x,z)

W (x, y, z, 0) ≤ sup
y∈D(x,z)

[
−m1 − α1 ∥x− x̄∥2 − α2 ∥y − y∥2

]
≤ 0 (21)

and so B (f) ≤ 0. Given a function f ∈ UC− (X × Z;w), let us show that

ρ (x, z, y) = W (x, y, z,M (z, f (y, ·)))

is upper semicontinuous over GrD. Fix a point (x, y, z) ∈ GrD and consider any feasible
sequence (xn, zn, yn) → (x, y, z). Let λ > M (z, f (y, ·)). The upper semicontinuity assumed in
B.8 implies that λ >M (zn, f (yn, ·)) for n large enough. Therefore

W (xn, yn, zn,M (zn, f (yn, ·))) ≤ W (xn, yn, zn, λ) ,

so that

lim sup
n→∞

W (xn, yn, zn,M (zn, f (yn, ·))) ≤ lim sup
n→∞

W (xn, yn, zn, λ)

≤ W (x, y, z, λ) .

B.3 implies that

lim sup
n→∞

W (xn, yn, zn,M (zn, f (yn, ·))) ≤ W (x, y, z,M (z, f (y, ·))) ,

and thus ρ (x, z, y) is upper semicontinuous at (x, y, z).
Moreover, by (19), we have

ρ (x, z, y) = W (x, y, z,M (z, f (y, ·))) ≤ W (x, y, z, 0)

≤ −m1 − α1 ∥x− x̄∥2 − α2 ∥y − y∥2 ≤ −α2 ∥y − y∥2

with α2 > 0. This implies that ρ is coercive with respect y (see Appendix A.4). By invoking
Proposition 14, we can infer that (Bf) (x, z) = supy∈D(x,z) ρ (x, z, y) is upper semicontinuous.

In the following we shall use the notation Jf, gK to denote the interval of functions between
f and g (see Appendix A.5).

Proposition 9

i) The operator B : B− (X × Z;w) → B− (X × Z;w) maps every interval

q
−k − n2 ∥·∥2 , 0

y

of B− (X × Z;w) into the interval
q
−k − n2 ∥·∥2 ,−m1 − α1 ∥· − x̄∥2

y
, provided that

k ≥
(
1− β

)−1 (
m2 + n2N

(
1 + β

))
; (22)

ii) for every f ∈ B− (X × Z;w), B (f) ∈
q
−k′ − n2 ∥·∥2 , 0

y
for k′ > 0 large enough;

iii) B is monotone on B− (X × Z;w);
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iv) B is convex at 0, i.e.,
B (αf) ≤ αB (f) + αB (0)

for all f ∈ B− (X × Z;w) and α ∈ [0, 1].

Proof. (i) From (19) in B.1 we have

B (0) (x, z) = sup
y∈D(x,z)

W (x, y, z, 0) ≤ −m1 − α1 ∥x− x̄∥2 . (23)

As B (f) ≤ B (0), it follows B (f) ≤ −m1 − α1 ∥· − x̄∥2 and this proves a part of (i).
Take the function φ (x, z) = −k − n2 ∥x∥2 where k satisfies (22). Clearly

B (φ) (x, z) = sup
y∈D(x,z)

W (x, y, z,M (z, φ (y, ·)))

≥ W (x, d (x) , z,M (z, φ (d (x) , ·))) ,

where d is the selection of the multimappingD, whose existence is guaranteed by B.6. Moreover,
in view of (20) we have

B (φ) (x, z) ≥ −m2 − n2

(
∥x∥2 + ∥d (x)∥2

)
+ βM (z, φ (d (x) , ·))

≥ −m2 − n2 ∥x∥2 − n2N + βM (z, φ (d (x) , ·)) .

On the other hand, φ (d (x) , ·) = −k − n2 ∥d (x)∥2 ≥ −k − n2N . Therefore,

B (φ) (x, z) ≥ −m2 − n2 ∥x∥2 − n2N − βk − n2Nβ

≥ −m2 − n2 ∥x∥2 − n2N − n2Nβ − k +m2 + n2N
(
1 + β

)
= −k − n2 ∥x∥2 = φ (x, z)

where in the second line we are using the inequality −βk ≥ −k +m2 + n2N
(
1 + β

)
, which is

equivalent to (22).
Hence, if f ≥ φ, then B (f) ≥ B (φ) ≥ φ and this concludes the proof of point (i).
(ii) Let f ∈ B− (X × Z;w). Then f (x, z) ≥ −γ − γ ∥x∥2 for γ ≥ 0 large enough. Hence,

B (f) (x, z) ≥ W (x, d (x) , z,M (z, f (d (x) , ·)))
≥ −m2 − n2 ∥x∥2 − n2N + βM (z, f (d (x) , ·))
≥ −m2 − n2 ∥x∥2 − n2N − βγ (1 +N) ,

which proves (ii)
(iii) is easily checked.
(iv) Let f ∈ B− (X × Z;w) and α ∈ [0, 1]. Thanks to B.5 and B.7,

B (αf) = sup
y
W (x, y, z,M (z, αf (y, ·))) ≤ sup

y
W (x, y, z, αM (z, f (y, ·)))

≤ sup
y

[αW (x, y, z,M (z, f (y, ·))) + αW (x, y, z, 0)]

≤ α sup
y
W (x, y, z,M (z, f (y, ·))) + α sup

y
W (x, y, z, 0)

= αB (f) + αB (0) ,

as was to be shown.
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In order to apply Theorem 6 in Appendix A.5 to establish the existence of a fixed-point,
it is convenient to transform the Bellman operator B into an equivalent operator B̂ acting on
the positive cone B+ (X × Z;w). To this purpose, it suffices to define its conjugate operator B̂
given by

B̂ (f) = −B (−f) .
Next theorem uses Thompson’s metric (see Appendix A.5).

Theorem 2 Under B.1–8 the Bellman operator B has one and only one fixed point v∗ in the
negative cone CU− (X × Z;w). The sequence of iterates vn+1 = Bvn converges to v∗ uniformly
over the compact sets of X for every initial function v0 ∈ CU− (X × Z;w).

Proof. In view of point (i) of Proposition 9, operator B̂ sends the interval
q
0, k + n2 ∥·∥2

y

into itself for any k ≥
(
1− β

)−1 (
m2 + n2N

(
1 + β

))
. Moreover, in view of (23), B̂ (0) ≥

m1+α1 ∥· − x̄∥2 which is linked to k+α1 ∥·∥2 by Proposition 8. Clearly, the cone B+ (X × Z;w)

is normal. By (ii) and (iii) of Proposition 9 B̂ is monotone and concave at 0. The existence
of a unique attracting fixed point v∗ follows from Theorem 6 in Appendix A.5. Note that by
(ii) of Proposition 9 this fixed point v∗ is unique in the negative cone B− (X × Z;w). The last
statement follows from Lemma 3. Notice further that

−
(
1− β

)−1 (
m2 + n2N

(
1 + β

))
− n2 ∥x∥2 ≤ v∗ (x, z) ≤ −m1 − α1 ∥x− x̄∥2

holds.

Under slight additional assumptions the fixed-point v∗ of Theorem 2 is just the value function
of the stochastic recursive optimization problem. This requires some more elaboration regarding
the sequential description of such a problem.

Let us first consider the finite horizon problems generated recursively by the relation

Un+1

(
x, z, {πt}t≥0

)
= W

(
x, z, π0,M

(
z, Un

(
π0, z

′, {πt}t≥1

)))
(24)

with U0 ≡ 0. Here {πt}t≥0 is a stream of feasible contingent plans.9 More specifically, π0 ∈
D (x, z) and xt+1 = πt (z

t) = πt (z1, z2, . . . , zt) for every t ≥ 1, along with the feasibility
condition πt (z

t) ∈ D (πt−1 (z
t−1) , zt).

10 Like in the deterministic case, the associated value
functions are defined as

vn (x, z) = sup
{
Un

(
x, z, {πt}t≥0

)
: {πt}t≥0 is feasible from (x, z)

}
. (25)

Recall that a sequence of contingent plans is called stationary or Markov if it is generated by
a policy h : X × Z → X; that is, πt (z1, z2, . . . , zt) = h (πt−1 (z1, z2, . . . , zt−1) , zt).

Observe that the plan {πt}t≥0 generated by the map d : X → X of B.6 gives rise to the
constant plan πt = d (x) for all t. Therefore,

vn (x, z) ≥ Un

(
x, z, {πt}t≥0

)
holds for every n. Then, through the inequality (20) it is not difficult to prove the following
lemma, for which we omit a detailed proof.

9We must remark that we do not add any assumption of regularity for the mapping πt : Z
t → X.

10Notice that in the right-hand side of (24) one should, more correctly, write M
(
z, Un

(
π0, z

′, {σπt}t≥1

))
,

where σπt = πt (z
′, ·) is the continuation of πt after the current shock z′. We maintain the original notation for

sake of simplicity.
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Lemma 4 It holds
vn (x, z) ≥ −An − n2 ∥x∥2 , (26)

where An+1 = βAn + K with K = m2 +
(
1 + β

)
n2N and A1 = m2 + n2N . Moreover, An ↑(

1− β
)−1

K.

Clearly (26) implies that the value functions vn belong to the negative cone B− (X × Z;w).
To prove the next result we add a further assumption on the certain equivalent operator M.

B. 9 M (z, ·) is constant subadditive, i.e., M (f − k) ≥ M (f) − k for every constant k ≥ 0
and f ∈ RZ

−.

Proposition 10 Under B.1–9 the value functions of the finite horizon problems (25) satisfy
the functional equations:

vn+1 (x, z) = sup
y∈D(x,z)

W (x, z, y,M (z, vn (y, ·))) .

From the last Proposition and Lemma 4 we deduce that the value functions vn are the
functions generated by the Bellman operator B of Theorem 2. That is, vn = Bn (0).

Proof. Fix (x, z) ∈ X × Z and the integer n. By definition, for every ε > 0, there exists a
sequence of feasible plans {πt}t≥0 such that vn+1 (x, z) ≤ Un+1

(
x, z, {πt}t≥0

)
+ ε. We can thus

write

vn+1 (x, z) ≤ Un+1

(
x, z, {πt}t≥0

)
+ ε

= W
(
x, z, π0,M

(
z, Un

(
π0, z

′, {πt}t≥1

)))
+ ε

≤ W (x, z, π0,M (z, vn (π0, z
′))) + ε

≤ sup
y∈D(x,z)

W (x, z, y,M (z, vn (y, z
′))) + ε,

and, by letting ε ↓ 0, we get

vn+1 (x, z) ≤ sup
y∈D(x,z)

W (x, z, y,M (z, vn (y, z
′))) . (27)

Note that vn+1 (x, z) ≥ Un+1

(
x, z, {πt}t≥0

)
holds for every feasible sequence of plans {πt}t≥0.

Hence,

vn+1 (x, z) ≥ Un+1

(
x, z, {πt}t≥0

)
= W

(
x, z, π0,M

(
z, Un

(
π0, z

′, {πt}t≥1

)))
.

Let us now consider plans {πt}t≥1 such that Un

(
π0, z

′, {πt}t≥1

)
≥ vn (π0, z

′)− ε. By B.9,

vn+1 (x, z) ≥ W (x, z, π0,M (z, vn (π0, z
′)− ε))

≥ W (x, z, π0,M (z, vn (π0, z
′))− ε) .

The continuity hypothesis B.3 implies that

vn+1 (x, z) ≥ W (x, z, π0,M (z, vn (π0, z
′))) .

But this is true for any π0 ∈ D (x, z), so that

vn+1 (x, z) ≥ sup
y∈D(x,z)

W (x, z, y,M (z, vn (y, z
′))) ,
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which, together with (27), provides the desired result.

Like in the deterministic case (see Proposition 1), the total return function U∞ is defined
as the pointwise limit of the partial returns. Also here it holds

Un

(
x, z, {πt}t≥0

)
↓ U∞

(
x, z, {πt}t≥0

)
.

Unfortunately, it is not straightforward to isolate conditions for the stochastic aggregator M
under which the stochastic functional U∞ turns out to be recursive, i.e., satisfying

U∞
(
x, z, {πt}t≥0

)
= W

(
x, z, π0,M

(
z, U∞

(
π0, z

′, {πt}t≥1

)))
. (28)

However, properties weaker than (28) are still true, as established in the following lemma.

Lemma 5 It holds

U∞
(
x, z, {πt}t≥0

)
≥ W

(
x, z, π0,M

(
z, U∞

(
π0, z

′, {πt}t≥1

)))
(29)

and
U∞
(
x, z, {πt}t≥0

)
≤ W

(
x, z, π0,Mz

(
Un

(
π0, z

′, {πt}t≥1

)))
(30)

for all n.

Proof. By (24) and B.3,

Un+1

(
x, z, {πt}t≥0

)
= W

(
x, z, π0,M

(
z, Un

(
π0, z

′, {πt}t≥1

)))
≥ W

(
x, z, π0,M

(
z, U∞

(
π0, z

′, {πt}t≥1

)))
.

As n→ ∞, we obtain inequality (29). On the other hand,

U∞
(
x, z, {πt}t≥0

)
≤ Un+1

(
x, z, {πt}t≥0

)
= W

(
x, z, π0,M

(
z, Un

(
π0, z

′, {πt}t≥1

)))
for every n, and so (30) is true.

Set
v∞ (x, z) = sup

{
U∞
(
x, z, {πt}t≥0

)
: {πt}t≥0 is feasible from (x, z)

}
. (31)

Theorem 3 Under B.1–9, the value function v∞ satisfies the Bellman equation. I.e.,

v∞ (x, z) = sup
y∈D(x,z)

W (x, z, y,M (z, v∞ (y, ·)))

and it coincides with the fixed point v∗ = Bv∗ of Theorem 2.

Proof. By (29),

v∞ (x, z) ≥ U∞
(
x, z, {πt}t≥0

)
≥ W

(
x, z, π0,M

(
z, U∞

(
π0, z

′, {πt}t≥1

)))
(32)

for every feasible plan {πt}t≥0.
Pick a plan {πt}t≥1 such that

U∞
(
π0, z

′, {πt}t≥1

)
≥ v∞ (π0, z

′)− ε.
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In view of (32) we can write

v∞ (x, z) ≥ W (x, z, π0,M (z, v∞ (π0, z
′)− ε))

By B.9 we have
v∞ (x, z) ≥ W (x, z, π0,M (z, v∞ (π0, z

′))− ε)

Letting ε ↓ 0 we get

v∞ (x, z) ≥ sup
y∈D(x,z)

W (x, z, y,M (z, v∞ (y, ·))) . (33)

By (30) we have

U∞
(
x, z, {πt}t≥0

)
≤ W

(
x, z, π0,M

(
z, Un

(
π0, z

′, {πt}t≥1

)))
≤ W (x, z, π0,M (z, vn (π0, ·)))

for every n. Hence,

U∞
(
x, z, {πt}t≥0

)
≤ W

(
x, z, π0, inf

n
M (z, vn (π0, ·))

)
and thus

v∞ (x, z) ≤ sup
y∈D(x,z)

W
(
x, z, y, inf

n
M (z, vn (y, ·))

)
. (34)

Let us show that

inf
n
M (z, vn (y, ·)) ≤ M

(
z, inf

n
vn (y, ·)

)
= M (z, v∗ (y, ·)) .

In fact, from Theorem 2 it follows that vn (y, ·) ↓ v∗ (y, ·) uniformly over the space Z. Therefore,
given an ε > 0, we can find a vn such that vn (y, ·) ≤ v∗ (y, ·) + ε. In view of B.9,

M (z, vn (y, ·))− ε ≤ M (z, vn (y, ·)− ε) ≤ M (z, v∗ (y, ·)) ,

that gives
M (z, vn (y, ·)) ≤ M (z, v∗ (y, ·)) ,

which, in turn, implies infn M (z, vn (y, ·)) ≤ M (z, infn vn (y, ·)); this, by (34), provides the
inequality

v∞ (x, z) ≤ sup
y∈D(x,z)

W (x, z, y,M (z, v∗ (y, ·))) . (35)

Equations (33) and (35) yield

sup
y∈D(x,z)

W (x, z, y,M (z, v∞ (y, ·))) ≤ v∞ (x, z)

≤ sup
y∈D(x,z)

W (x, z, y,M (z, v∗ (y, ·))) ,

which, by using the operator B, become

Bv∞ ≤ v∞ ≤ Bv∗ = v∗.

From inequality (26) it is straightforward to infer that

v∞ (x, z) ≥ U∞
(
x, z, {πt}t≥0

)
≥ − K

1− β
− n2 ∥x∥2 ,

namely, v∞ ∈ B− (X × Z;w). Therefore, Theorem 2 establishes that Bnv∞ ↓ v∗ and thus
v∗ ≤ Bv∞ ≤ v∞ ≤ v∗, yielding the desired result.
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A Appendix

A.1 Blackwell Theorem and unbounded functions

Let R = R ∪ {−∞} and RY
be the space of all extended valued functions g : Y → [−∞,∞).

Here dom (g) = {y ∈ Y : g (y) > −∞} denotes the effective domain of a function g ∈ RY
. The

collection of the bounded functions on the set Y is denoted by B (Y ).

Proposition 11 Let T : RY → RY
be a monotone operator satisfying the “discounting” prop-

erty:
T (g + c) ≤ Tg + βc (36)

for all g ∈ RY
and c > 0 and for some 0 ≤ β < 1. If g is a fixed point of T , then, g is the

unique fixed point of T in the affine space g + B (Y ) and it is globally attracting there.

Proof. Let Tg = g ∈ RY
. Consider the affine subspace g + B (Y ) ⊂ RY

. Clearly,
dom (g) = dom (g) for every g ∈ g + B (Y ). Let us show that T : g + B (Y ) → g + B (Y ).
Actually, g ∈ g + B (Y ) means g = g + φ with φ ∈ B (Y ). Hence,

g − ∥φ∥∞ ≤ g = g + φ ≤ g + ∥φ∥∞ .

Thanks to the monotonicity and discounting assumptions made on the operator T , it follows
that

g − β ∥φ∥∞ ≤ Tg ≤ g + β ∥φ∥∞ .

Therefore, dom (Tg) = dom (g) is true for all g ∈ g + B (Y ). Moreover, Tg − g is bounded
on the domain dom (g), so that Tg ∈ g + B (Y ). Consequently, T : g + B (Y ) → g + B (Y ).
Consider now the conjugate operator Q : B (Y ) → B (Y ) given by

Q (φ) = [T (g + φ)− g]|dom(g) .

Q is clearly monotone, satisfies the discounting property (36) and has the fixed point φ =
0. According to Blackwell theorem, Q is a contraction and so φ = 0 is the unique globally
attracting point of Q. Passing to the conjugate operator T , we get the desired result.

Next corollary is a straightforward consequence.

Corollary 1 Under the assumptions of Proposition 11, if g1 and g2 are two distinct fixed points
of T , then either dom (g1) ̸= dom (g2) or, if dom (g1) = dom (g2), then

sup
y∈dom(g1)

|g1 (y)− g2 (y)| = +∞.

Note that, under condition (5), the operator

(TF ) (0x) = W (x0, x1, F (1x)) (37)

mapping the space RD into itself, satisfies the Lipschitz condition

|(TF1) (0x)− (TF2) (0x)| ≤ β |F1 (1x)− F2 (1x)| ,

and thus T : RD → RD satisfies the conditions postulated in Proposition 11.
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A.2 A negative weighted contraction theorem

We establish here a slight modification of the classical Boyd’s result [2] in order to take into
account the fact that the functions are constrained to stay into the negative cone. Let ϕ : X →
R++ be a strictly positive function on a set X. Let B (X;ϕ) be the Banach space of all the
ϕ-bounded functions. Namely,

B (X;ϕ) =

{
f ∈ RX : sup

x∈X

|f (x)|
ϕ (x)

<∞
}

The ϕ-norm is ∥f∥ϕ = supx∈X ϕ
−1 (x) |f (x)|. Denote by B− (X;ϕ) the negative cone of B (X;ϕ).

Proposition 12 Let T : B− (X;ϕ) → RX satisfy the conditions:

i) T is monotone,

ii) there is a scalar β ∈ [0, 1) such that

T (f − kϕ) ≥ T f − βkϕ, ∀f ∈ B− (X;ϕ) and k ≥ 0,

iii) T 0 ∈ B− (X;ϕ).

Then
T : B− (X;ϕ) → B− (X;ϕ) ,

and
∥T f − T g∥ϕ ≤ β ∥f − g∥ϕ , ∀f, g ∈ B− (X;ϕ) . (38)

Proof. By definition,

|f (x)− g (x)| ≤ ϕ (x) ∥f − g∥ϕ , ∀x ∈ X.

It follows that
f (x)− g (x) ≥ − |f (x)− g (x)| ≥ −∥f − g∥ϕ ϕ (x) .

Hence, if f, g ∈ B− (X;ϕ),
f ≥ g − ∥f − g∥ϕ ϕ,

so that (i) and (ii) imply
T f ≥ T g − β ∥f − g∥ϕ ϕ,

which easily leads to (38).
If f ∈ B− (X;ϕ) then T f ≤ T 0 ∈ B− (X;ϕ). Note that 0 ∈ B− (X;ϕ) and T 0 ∈ B− (X;ϕ)

by assumption (iii). Hence,

∥T f∥ϕ ≤ ∥T f − T 0∥ϕ + ∥T 0∥ϕ ≤ β ∥f − 0∥ϕ + ∥T 0∥ϕ ,

and thus T (B− (X;ϕ)) ⊆ B− (X;ϕ).
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A.3 Strong concavity

Hilbert spaces are the natural framework for the concept of strong concavity. Let H be a
pre-Hilbert space. A function f : H → [−∞,∞) is called strongly concave (or α-concave) if
some α > 0 exists such that

f
(
λx+ λ̄y

)
≥ λf (x) + λ̄f (y) +

1

2
αλλ̄ ∥x− y∥2

for all x, y ∈ dom f and all λ ∈ [0, 1] (here λ̄ = 1− λ).
Clearly f is α-concave if and only if the function f + (1/2)α ∥·∥2 is concave.
When dealing with functions f (x, y) depending on two groups of variables, next definition

extends the previous one.

Definition 1 A function f : H1×H2 → [−∞,∞), where H1 and H2 are two pre-Hilbert spaces,
is said to be (α1, α2)-concave, with α1, α2 ≥ 0, if

f (x, y) +
1

2
α1 ∥x∥21 +

1

2
α2 ∥y∥22

is concave over H1 ×H2.

Of course the condition α1 · α2 > 0 is equivalent to the property that f is strongly concave
on the pre-Hilbert space H1 ×H2. The weaker assumption α1 + α2 > 0 is often an acceptable
condition for certain purposes.

The following property is also well-known.

Proposition 13 Let f : H → [−∞,∞) be α-concave. If x∗ ∈ argmaxH f , then

f (x∗) ≥ f (x) +
1

2
α ∥x− x∗∥2 ∀x ∈ H

Its extension to (α1, α2)-concave functions of the above property is straightforward.
The next remarkable property of existence of optimal solutions for strongly concave func-

tionals requires the completeness of the space. We omit proofs.

Theorem 4 Let f : H → [−∞,∞) be a function having non-empty effective domain in an
Hilbert space H. If f is upper semicontinuous and strongly concave, then:

i) there exists a unique point x∗ ∈ H such that f (x∗) ≥ f (x) for all x ∈ H;

ii) every maximizing sequence11 {xn} converges to x∗.

A.4 The max-function

Let D : X×Z ⇒ X be a correspondence, where X ⊆ Rn and Z is a topological space. Assume
that its graph,

GrD = {(x, z, y) ∈ X × Z ×X : y ∈ D (x, z)} ,

is closed in Rn × Z × Rn.

11A maximizing sequence is any sequence {xn} enjoying the property that limn→∞ f (xn) = supx∈H f (x) .
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Proposition 14 Let f : GrD → (−∞,∞) be upper semicontinuous and coercive with respect
to the variable y.12 The max-function

m (x, z) = sup
y∈D(x,z)

f (x, z, y)

is upper semicontinuous and the sup is attained for every (x, z). Moreover, the correspondence

H (x, z) = arg max
y∈D(x,z)

f (x, z, y)

is compact-valued and closed.

Proof. Fix the point (x̄, z) ∈ X × Z, and consider any sequence (xn, zn) → (x̄, z) such
that m (xn, zn) is convergent. Say m (xn, zn) → λ. As D (xn, zn) is closed and f (xn, zn, ·) is
upper semicontinuous and coercive, the sup m (xn, zn) is attained. Hence, for every n a point
yn ∈ D (xn, zn) exists so that f (xn, zn, yn) = m (xn, zn). Therefore, limn→∞ f (xn, zn, yn) = λ
and, for every ε, eventually f (xn, zn, yn) ≥ λ−ε. By assumption, the sequence {yn} is bounded.
This implies the existence of a convergent subsequence (xnk

, znk
, ynk

) → (x̄, z, y). As GrD is
closed, ȳ ∈ D (x̄, z). Hence,

m (x̄, z) ≥ f (x̄, z, ȳ) ≥ lim sup
k→∞

f (xnk
, znk

, ynk
) = lim

k→∞
m (xnk

, znk
) = λ.

It follows that lim supn→∞m (xn, zn) ≤ m (x̄, z) for all the sequences (xn, zn) → (x̄, z) By
definition m is upper semicontinuous at (x̄, z).

The last claim is a trivial consequence of the latter property.

A.5 Thompson metric and contractions

We recall a few results based on the metric introduced by Thompson [15] as a variant of Hilbert’s
projective metric. More details can be found in [10] and [11].

Consider a normed space V , equipped with a closed pointed13 and convex coneK. It induces
in V the continuous partial order v ≤ w if and only if w − v ∈ K.

The cone K is called normal if there is some scalar γ > 0 such that ∥x∥ ≤ γ ∥y∥ for all
0 ≤ x ≤ y.

Definition 2 Two elements x, y ∈ K are linked (or comparable) if there are strictly positive
scalars α, β > 0 such that αx ≤ y ≤ βx.

Being linked is an equivalence relation that splits K into disjoint components Q.

Definition 3 The Thompson metric dτ for two linked elements 0 ̸= x, y ∈ K is

dτ (x, y) = logmax {M (x | y) ,M (y | x)}

where M (x | y) = inf {α > 0 : x ≤ αy}.

In fact, it is not difficult to check that dτ is a metric on each component Q of the cone K.
Most importantly, the following result holds.

12This means that, for any c such that the set f (x, z, y) ≥ c is nonempty, there is some N such ∥y∥ ≤ N
holds for every element of that set.

13A pointed cone K is a cone that satisfies the property x,−x ∈ K implies x = 0.
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Theorem 5 (Thompson) If K is a normal and closed cone in a Banach space V , then
Thompson’s metric dτ is complete on every component Q of K. Moreover, if in the set Q
a sequence dτ -converges to an element v, then it also norm-converges to v.

Thanks to this result we can study the existence of fixed point of self-operators T : V → V
by means of such a metric. Next result is a particularly useful isolation of the theorem (see
[10] for a proof). Recall that a pointed cone K in a vector space V induces the order x ≤ y if
y − x ∈ K. Therefore the cone K is the set of positive elements of V and the notation V+ is
also used. The interval Ja, bK is the collection a ≤ x ≤ b.

Theorem 6 Let V be a Banach space and K ≡ V+ be closed and normal. Suppose that the
operator T : J0, bK → J0, bK satisfies the three following conditions:

i) T is monotone;

ii) T is concave at 0, namely,

T (αx) ≥ αT (x) + (1− α)T (0)

for all x ∈ J0, bK and all α ∈ [0, 1];

iii) T (0) = a is linked to b.

Then,
dτ (T (x) , T (y)) ≤ ζdτ (x, y) ∀x, y ∈ [a, b]

where ζ = 1 − µ−1 < 1 and µ = M (b | a). The contraction T has a unique and globally
attracting fixed point x in the interval J0, bK, i.e.,

lim
n→∞

∥T n (x)− x∥ = 0 ∀x ∈ J0, bK .
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