
l  
 
 
 

 
 

Via Po, 53 – 10124 Torino (Italy) 
Tel. (+39) 011 6704917  -  Fax (+39) 011 6703895 

URL: http//www.de.unito.it 
 
 
 

 
 

WORKING PAPER SERIES 

 
 

EVOLUTION OF THE KNOWLEDGE BASE IN KNOWLEDGE INTENSIVE SECTORS 
 

 
 

Jackie Krafft, Francesco Quatraro, Paolo Saviotti 

 
 
 

Dipartimento di Economia “S. Cognetti de Martiis” 
 

LEI & BRICK - Laboratorio di economia dell'innovazione "Franco Momigliano"  
Bureau of Research in Innovation, Complexity and Knowledge, Collegio Carlo Alberto 

 

 
 
 
 

Working paper No. 06/2009 

 
 
 

 
 

 

 
Università di Torino 



 1

Evolution of the Knowledge Base  
in Knowledge Intensive Sectors 

 
 

Jackie Krafft*, Francesco Quatraro**, Paolo Saviotti*** 
 
* University of Nice Sophia Antipolis, CNRS GREDEG 
** University of Nice Sophia Antipolis, CNRS GREDEG, and BRICK, Collegio Carlo 
Alberto 
*** INRA GAEL, and University of Nice Sophia Antipolis, CNRS GREDEG 
 
 
 
ABSTRACT. The paper develops an evolutionary framework to investigate and compare the 
dynamics of knowledge base across three knowledge intensive sectors, i.e. biotechnology, 
telecommunications and electronics. Knowledge is understood as collective good featured by 
a co-relational and a retrieval-interpretative structure. The internal structure of knowledge is 
described as a network the nodes of which are small units within traces of knowledge like 
patent documents, connected by links determined by their joint utilisation. We thus derived a 
number of properties like variety, coherence and cognitive distance, by using co-occurrence 
matrixes referring to the citation of technological classes within patent documents. Empirical 
results show the existence of interesting and meaningful differences across the sectors, which 
are linked to the different phases of lifecycles the industries have undergone in the period of 
observation. 
 
 
 
JEL Classification Codes: O33 
 
Keywords: Knowledge Base, Variety, Coherence, Industry lifecycles 



 2

1 Introduction1  
 
The economic systems of advanced capitalistic societies have been facing a gradual process 
of transition towards the so-called knowledge-based economy. In this context the creation and 
utilisation of knowledge become the key factors affecting the competitiveness of firms, 
regions and countries (Freeman and Soete, 1997).  
 
In view of this, the study of the mechanisms of knowledge production has received renewed 
attention in the last decade, and a considerable effort today is dedicated to characterise the 
knowledge base of different sectors in the economy and to detect its impact on firm 
performance and on industrial organization (Breschi, Lissoni, and Malerba, 2003; Nesta and 
Saviotti, 2005; Krafft, 2006; Corrocher et al., 2007; Antonelli, 2008). These studies provide 
useful evidence of how much pervasive the production of knowledge is in shaping the 
economic performances of firms within a specific sector (Piscitello, 2004; Nesta, 2008). Yet, 
only a few efforts are dedicated to investigate the specific evolution of knowledge bases in 
knowledge-intensive sectors (or KISs) and there are no empirical contributions adopting a 
sectoral comparative approach to the issue (Grebel, Krafft, Saviotti, 2006). 
 
This paper investigates and compares the dynamics of the knowledge bases of three key 
knowledge-intensive industries, i.e. biotechnology, telecommunications and electronics. Our 
objective is to establish the mechanisms by means of which knowledge is created and used in 
these knowledge intensive sectors, and characterize their pattern of evolution over time. In 
particular a number of properties are identified, namely (i) variety (related and unrelated), (ii) 
coherence, and (iii) cognitive distance, which can describe the evolution of the internal 
structure of the knowledge base in each sector. The analysis is carried out by adopting an 
evolutionary viewpoint, in which knowledge is understood as a collective good. 
 
According to evolutionary theory, technological knowledge and innovation are key factors 
triggering economic development. The introduction of technological innovations brings about 
new variety in the economic system, providing the bases for restless economic growth 
(Metcalfe, 2002). New knowledge stems from research efforts, start by exploring new regions 
of knowledge space, thus constructing the basic conceptual infrastructures which can later 
lead to the exploitation of the knowledge thus created.  Exploitation dynamics occurs within 
current technological trajectories, as long as they prove to be profitable. Although new 
trajectories are often initiated by radical innovations subsequent innovations are mainly 
incremental, and recombination is more likely to involve related technological fields. 
However, technological opportunities tend to exhaust over time, and market for products 
based on them are likely to get saturated as well. Radically new technologies then emerge out 
of a process of random screening across a wide body of technological domains, in search for 
new profitable recombinations. This phase is characterized by the recombination of loosely 

                                                 
1  This work is part of a research project funded by Agence Nationale de la Recherche (contract number: 
ANR JCJC06_141306, “Knowledge Intensive Sectors: Models and Evidence”). Preliminary versions have been 
discussed at the EAEPE conference “Labour, Institutions and Growth in a Global Knowledge Economy” held in 
Rome on 6-8 November 2008, the workshop “The Dynamics of Knowledge and Innovation in Knowledge-
Intensive Industries” oganized by the BRICK and the GREDEG at the Collegio Carlo Alberto on 18-19 
December 2008, and at the workshop “The role of inventors and patents: Analysis and methodological issues”, 
organized at the LEFI-ESDES in Lyon on 29th January 2009. The authors wish to thank Cristiano Antonelli, Ron 
Boschma, Aldo Geuna and Marco Valente for their comments, as well as the funding of Collegio Carlo Alberto 
through the BRICK research centre, as well as the support of CNRS through the GREDEG research centre. 
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related technologies, and marks a discontinuity in the evolution of the knowledge base 
(Saviotti, 1996). A discontinuity occurs when completely new concepts and theories are 
introduced into a given field of science or an industrial activity. Such new concepts may be 
borrowed from other disciplines or be created in the exploration of completely new regions of 
knowledge space. We expect discontinuities to exert a very powerful influence on the internal 
dynamics of knowledge and on its possible industrial applications.  
 
The collective nature of knowledge refers to its intrinsic cumulativeness and to the processes 
of recombination underlying its production. This allows us to understand knowledge as a 
retrieval-interpretative and a co-relational structure. In view of this, the properties 
characterizing the internal structure of knowledge bases, and their evolution, can be derived 
by using co-occurrence matrixes referring to the citation of technological classes within patent 
documents (Saviotti, 2004 and 2007; Grebel, Krafft, Saviotti, 2006). 
 
In this paper we use patent data to study the evolution of the KBs of biotechnology, 
telecommunications and electronics. According to OECD STI scoreboard (OECD, 2007), 
such sectors may be defined as “high technology and knowledge intensive sectors”, along 
with aerospace. Such classification draws upon a number of different indicators, like R&D 
intensity, the share of human capital employed in science and technology based activities, 
patent intensity, technology trade, and so on and so forth. The data we use in this paper indeed 
show that their rate of patent production is clearly higher than that of the average industrial 
sector. We may consider this evidence sufficient for our purposes and proceed to study how 
our sectors create and use knowledge.  
 
Empirical results show the existence of interesting and meaningful differences across the 
biotechnology, telecommunications and electronics sectors. This holds both with reference to 
the relative levels of related and unrelated variety, knowledge coherence and cognitive 
distance, and with respect to the evolution of the same indexes over time. Such differences are 
linked to the different phases of lifecycles the industries have undergone in the period of 
observation. In sum, this paper makes three contributions to the existing literature. First, it 
defines three properties of the knowledge base in knowledge intensive sectors. Second, it 
elaborates a link with the phases of exploration and exploitation that characterize an industry 
life cycle. Third, it provides a distinction between related and unrelated variety, which can be 
used to characterize whether KISs are still in an initial stage of development or progressively 
moving to a maturity stage.  
 
The rest of the paper is organized as follows. Section 2 outlines the theoretical framework 
underlying this study, and provides three working hypotheses. Section 3 describes the 
methodology we used in our study, and provides definitions of the variables that proxy the 
internal structure of knowledge base. Section 4 presents the data. In Section 5, we show our 
empirical evidence. Empirical evidence exhibits some commonalities in the three sectors. In 
each sector, it is possible to distinguish between the phase of random screening (exploration) 
and organized search (exploitation) by looking at the evolution of the distribution of co-
occurrences across technological classes. But empirical evidence also captures differences in 
the evolution of the knowledge bases of the different sectors that we interpret. Section 6 
discusses the results and concludes.  
 

2 Theoretical Framework 
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In spite of the recognized importance of knowledge as a potential determinant of growth, 
economics has not yet developed an adequate representation of knowledge comparable to that 
of physical capital. Past attempts to measure and to model knowledge have included the use 
of patents and publications either as indicators of knowledge production or as inputs to a 
knowledge production function (Griliches, 1979 and 1990; Narin, 1994). While these attempts 
were important and they contributed to improve our understanding of the economics of 
knowledge, they relied on traces and not on actual measurements of knowledge itself. By 
traces of knowledge we mean here phenomena that we know are related to knowledge but 
according to mechanisms we do not fully understand. To proceed beyond this stage we need 
adequate conceptual definition and representation of knowledge itself. In the past such a task 
has been attempted by philosophers and epistemologists. The emergence of knowledge based 
society changes the boundaries of economic phenomena and forces economics to include 
fundamental considerations about knowledge. The representation of knowledge which is 
required in economics must allow us to treat in a comparative way the various types of 
knowledge which are created and used in different institutions, ranging from public research 
organizations to private firms. By establishing a continuity amongst these different types of 
knowledge economics would then pursue the opposite approach with respect to 
epistemologists attempting to find the demarcation between science and other forms of 
knowledge.  
 
The representation we require is not necessarily a complete one but it can be based on a 
number of properties of knowledge. Examples of these properties are the following (Saviotti, 
2004, 2007): 
 
(i) Knowledge is a co-relational structure 
(ii)  Knowledge is a retrieval or interpretative structure 
 
According to (i) knowledge establishes co-relations or connections between variables or 
concepts. According to (ii) knowledge allows us to recover types of knowledge similar to 
those we already knew endowing us with an absorptive capacity for them (Cohen and 
Levinthal, 1990). From these two properties we can deduce that knowledge can be 
represented as a network the nodes of which are variables, connected by links determined by 
the joint utilisation of different variables. We can also expect that the overall network of 
knowledge will never be fully connected since new variables are likely to be created in 
different regions of knowledge space, corresponding to different disciplines, before all the 
possible connections are established. In other words, the rates of creation of new nodes in the 
network of knowledge cannot be expected to coincide at all times with the rate of creation of 
links. As a consequence network density becomes a relevant variable to characterize the 
dynamics of knowledge.  
 
The possibility to represent knowledge as a network provides an adequate conceptual 
foundation for the study of processes of knowledge generation and utilization in firms and 
industries. To identify all the variables and the connections present in the knowledge base of a 
firm would be a prohibitively expensive task. An approximate version can then consist of 
identifying relatively 'small' units of knowledge and their connections. We identify these 
'small' units within the traces of knowledge which have been used so far, such as patents and 
publications. However, in principle we can use as source of information any text describing 
the type of knowledge which we intend to study. Possible 'small' units of knowledge are (i) 
the technological classes attached to each patent and (ii) the themes which can be identified in 
texts by means of linguistic engineering procedures. Technological classes are more easily 
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available and simpler to use. Themes are sentences describing the subjects of research of 
firms or of research organizations. They can be identified in any text, be more disaggregated 
and provide a subtler representation of knowledge but they are more laborious to identify. The 
two types of knowledge units are thus not exact substitutes but each of them has both 
advantages and disadvantages.  
 
At the level of the firm the knowledge base (KB) can be defined as the collective knowledge 
that firms can use to achieve their productive objectives. The collective character comes from 
the interactions between individuals, research units and departments of the same firm or 
research organization. Such interactions are specific to each organization and can be expected 
to lead to a different knowledge time path even in the case in which the initial competencies 
of all the persons employed were the same. When we want to study the knowledge base of an 
industrial sector or of a field of science such collective character of course includes inter 
organizational interactions.  
 
The KB of a firm can be mapped by identifying the units of knowledge composing it and by 
their connections or links. As previously explained units can be either technological classes or 
themes. Connections are determined by the joint utilization of the units in particular texts, be 
they patents, papers or something else. For example, if we use technological classes the 
connections are given by the co-occurrence of different classes in the patents used, and the 
frequency of co-occurrence can be interpreted as a measure of the strength of the link. In this 
way we can construct visual maps of the KB of a firm and follow the evolution of such KB in 
the course of time. These maps of the KB can be considered a representation of the brain of 
the firm.  
 
Even in a knowledge based economy firms are not predominantly knowledge producers but 
use knowledge in order to achieve new products and services with which they compete. We 
can find out whether knowledge production is determinant of firm performance by measuring 
a number of properties of their KB and by using these measures as independent variables in 
econometric studies in which some measure of firm performance is the dependent variable. 
Amongst these properties the most important ones are: the coherence (COH) of a KB, its 
differentiation (VAR), the similarity of two KBs and its converse, the cognitive distance (CD) 
between two KBs. We can expect coherence to fall as firms try to internalise the new type of 
knowledge constituting for them a discontinuity. However, COH can be expected to start 
growing again later as the firm increases the fraction of its KB constituted by the new 
knowledge and learns how to use and integrate the new concepts. In our paper the 
differentiation of the KB is measured by its variety. We distinguish two types of variety, 
related and unrelated, and measure them by the informational entropy function. Related 
variety measures the extent of differentiation at a lower level of aggregation, for example that 
of a group. Unrelated variety measures the extent of differentiation at a  higher level of 
aggregation at which different groups can be expected to differ considerably amongst 
themselves. As we will see later, this distinction is very useful in interpreting the evolution of 
the KBs of our KISs. Cognitive distance is an inverse measure of the similarity of the KBs of 
our sectors. Thus, we can measure the cognitive distance of the KB of one of out KISs at 
different times or the CD between the KB of two firms at a given time. In this paper we 
measure the CD between the KB of each of our sectors at different times. Thus we can map 
the evolution of the CD for each of our KISs in the period 1981-2005. CD can be considered 
an approximate measure of the extent of discontinuity in the knowledge used by firms or 
organisations. We expect cognitive distance to increase very rapidly at the emergence of a 
discontinuity and subsequently to grow at a lower rate or fall as firms and research 
organisations improve their understanding of the new type of knowledge. The time paths of 
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these three properties of the KB (COH, VAR, CD) are also likely to be related. Thus, when at 
a discontinuity a firm begins to use a new type of knowledge, radically different from the 
ones it previously used, we can expect: 
 

(i) the coherence of the KB to fall in the short run as CD grows since firms are likely to 
have difficulties in learning and integrating particularly unfamiliar concepts and to start 
recovering as the new knowledge becomes better connected to the old parts of the KB;  
(ii) the differentiation of the KB of the firm to grow as a new type of knowledge starts 
differentiating after its initial creation;  
(iii) the rate of fall of the coherence to be proportional to the rate of growth in the 
differentiation of the KB2. 

 
As we will see later, these expectations are still too course and the distinction between related 
and unrelated variety will provide greater subtlety.  
 
In this paper we map and measure the KB of sectors rather than of firms. As previously 
pointed out, in this case the KB we map depends on inter-individual and inter-organizational 
interactions both at the intra- and at the inter-firm level. In this case we can expect to find 
patterns of evolution reflecting the behaviour of the average or representative firm. Since the 
sector is a population of broadly comparable firms to have a complete representation of it we 
would need to measure the distribution of the properties of the KB within the population.  
 
On the basis of the previous considerations we can now formulate the following three 
propositions: 
 
P1: The emergence of a discontinuity in a type of knowledge suitable to become the future 

knowledge base of a KIS leads to the sequence of the two periods of random search first 
occurring in the exploration phase, and of organized search later in the exploitation 
phase.  

P2: During the random search period KB variety rises, KB coherence falls and the cognitive 
distance between the previous KB of a KIS and the new emerging knowledge rises. 
During the organized search period the rate of growth of variety falls, KB coherence rises 
and the cognitive distance between the previous KB of a KIS and the new emerging 
knowledge falls.   

P3: The higher the rate of increase over time in variety and in cognitive distance, and the 
higher the decrease over time in coherence in the knowledge base, the more persistent the 
period of random screening, i.e. the less established the organized search period.  

 
If these propositions hold true, then we should expect to observe the following implications in 
our data:  
- In our KISs, there should be a series of initial stages of industry life cycle where exploration 

of new possibilities takes place, materialized by the experimentation of new IPC classes. 
Then should follow more mature stages where the exploitation of old certainties 
predominates, namely with the recombination of existing IPC classes.  

                                                 
2  Studies of this type have shown that the coherence and the differentiation of the KB of pharmaceutical 
firms affect both their technological (Nesta, Saviotti, 2005) and their stock market performance (Nesta, Saviotti, 
2006). The role played by knowledge creation and utilization in firm performance varies according to sectors but 
it is not unique to any sector (Nesta, 2008). 
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- In the initial stages and the mature stages, variety and cognitive distance should evolve in 
the same direction, while coherence should evolve in the opposite direction.  

- The appropriate balance between exploration in the initial phases and exploitation in the 
mature phase may be difficult to find, and KISs may be confronted to different paths of 
evolution. 

 
The behaviour and performance of KISs is affected by the emergence of new types of 
knowledge qualitatively different from those firms in the given KIS were previously using. 
When such a discontinuity occurs the internalisation by firms in a KIS of a new type of 
external knowledge which has become a promising source of industrial applications has a 
number of important organizational implications. For example, such a process would involve 
the replacement of a very large number of researchers whose competencies lie in the old KB 
with researchers specialized in the new knowledge. This is a complex process likely to require 
considerable time and to be particularly difficult in the early phases of the new technology 
when the relevant competencies are still rare. Furthermore, the development of new type of 
knowledge is likely to follow a systematic pattern moving away from the early revolutionary 
period of a new paradigm and towards the more predictable phase of normal science.  
 

3 Measurement of the Knowledge Base 
 
The purpose of our analysis consists of the exploration of the evolution of the properties of 
the knowledge base, with particular emphasis on the issues of variety, complementarity and 
similarity. It must be stressed that to introduce some rigidities in the national technological 
portfolios, and to compensate for intrinsic volatility of patenting behaviour, each patent 
application is meant to last five years. Let us consider them in further detail: 
 

1) First, we decided to measure technological variety by using the information entropy 
index.  Entropy measures the degree of disorder or randomness of the system, so that 
systems characterized by high entropy will also be characterized by a high degree of 
uncertainty (Saviotti, 1988). 

 
Differently from common measures of variety and concentration, the information 
entropy has some interesting properties (Frenken and Nuvolari, 2004). An important 
feature of the entropy measure is its multidimensional extension. Consider a pair of 
events (Xl, Yj), and the probability of co-occurrence of both of them plj. A two 
dimensional total variety (TV) measure can be expressed as follows: 

 

∑∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=≡

l j lj
lj p

pYXHTV 1log),( 2       (2) 

 
If one considers plj to be the probability that two technological classes l and j co-occur 
within the same patent, then the measure of multidimensional entropy focuses on the 
variety of co-occurrences of technological classes within regional patents applications. 

 
Moreover, the total index can be decomposed in a “within” and a “between” part 
anytime the events to be investigated can be aggregated in a smaller numbers of 
subsets. Within-entropy measures the average degree of disorder or variety within the 
subsets, while between-entropy focuses on the subsets measuring the variety across 
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them. Frenken et al. (2007) refer to between- and within- group entropy respectively 
as unrelated and related variety. 

 
It can be easily shown that the decomposition theorem holds also for the 
multidimensional case. Hence if one allows l∈Sg and j∈Sz (g = 1,…,G; z = 1,…, Z), we 
can rewrite H(X,Y) as follows: 

 

∑∑
= =

+=
G

g

Z

z
gzgzQ HPHTV

1 1
      (3) 

 
Where the first term of the right-hand-side is the between-entropy and the second term 
is the (weighted) within-entropy. In particular: 
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We can therefore refer to between- and within-entropy respectively as unrelated 
technological variety (UTV) and related technological variety (RTV), while total 
information entropy is referred to as general technological variety.  

 
2) Secondly, we need a measure of cognitive distance able to express the dissimilarities 

amongst different types of knowledge. A useful index of distance can be derived from 
the measure of technological proximity. Originally proposed by Jaffe (1986 and 1989), 
who investigated the proximity of firms’ technological portfolios. Subsequently 
Breschi et al. (2003) adapted the index in order to measure the proximity, or 
relatedness, between two technologies. The idea is that each firm is characterized by a 
vector V of the k technologies that occur in its patents. Knowledge similarity can first 
be calculated for a pair of   technologies l and j  as the angular separation or uncentred 
correlation of the vectors Vlk and Vjk. The  similarity of  technologies l and j can  then 
be defined as follows: 

∑∑
∑

==

==
n

k jk
n
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2

1
       (6) 

 
The idea underlying the calculation of this index is that two technologies j and l are 
similar to the extent that they co-occur with a third technology k. The cognitive 
distance between j and l is the complement of their index of the similarity:  
 

ljlj Sd −=1          (7) 
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Once the index is calculated for all possible pairs, it needs to be aggregated at the 
industry level to obtain a synthetic index of technological distance. This can be done 
in two steps. First of all one can compute the weighted average distance of technology 
l, i.e. the average distance of l from all other technologies.  
 

∑
∑

≠

≠=
lj jit

lj jitlj
lt P

Pd
WAD         (8) 

 
Where Pj is the number of patents in which the technology j is observed. Now the 
average cognitive distance at time t is obtained as follows: 
 

∑ ∑
×=

l
l lit

lit
litt P

PWADCD        (9) 

 
3) Cognitive distance measures the degree of dissimilarity among technologies. We 

expect it to provide us with an indication of the difficulty, or cost a firm has to face to 
learn a new type of knowledge. Typically a firm needs to combine, or integrate, many 
different pieces of knowledge to produce a marketable output. Thus, in order to be 
competitive a firm not only needs to learn new 'external' knowledge but it needs to 
learn to combine it with other, new and old, pieces of knowledge. We can say that a 
knowledge base in which different pieces of knowledge are well combined, or 
integrated, is a coherent knowledge base.  Such technologies are  by definition 
complementary in that they are jointly required to obtain a given outcome For this 
reason, we turned to calculate the coherence (R) of the knowledge base, defined as the 
average relatedness of any technology randomly chosen within the sector with respect 
to any other technology (Nesta and Saviotti, 2005 and 2006; Nesta, 2008).  

 
To yield the knowledge coherence index, a number of steps are required. In what 
follows we will describe how to obtain the index at the sector level. First of all, one 
should calculate the weighted average relatedness WARl of technology l with respect 
to all other technologies present within the sector. Such a measure builds upon the 
measure of technological relatedness τlj (see Nesta and Saviotti, 2005, for details). 
Following Teece et al. (1994), WARl is defined as the degree to which technology l is 
related to all other technologies j≠l in the sector, weighted by patent count Pjt: 

 

∑
∑

≠

≠=
lj jt

lj jtlj
lt P

P
WAR

τ
        (10) 

 
Finally the coherence of knowledge base within the sector is defined as weighted 
average of the WARlt measure: 
 

∑ ∑≠

×=
jl l lt

lt
ltt P

PWARR        (11) 

 
It is worth stressing that such index implemented by analysing co-occurrences of 
technological classes within patent applications, measures the degree to which the 
services rendered by the co-occurring technologies are complementary one another. 
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The relatedness measure τ lj indicates indeed that the utilization of technology l implies 
that of technology j in order to perform specific functions that are not reducible to 
their independent use. This makes the coherence index appropriate for the purposes of 
this study. 

 

4 The Data 
 
The information concerning patent applications required to test the working hypotheses 
formulated in Section 2 has been obtained from the Espacenet data base provided by the 
European Patent Office3. The initial dataset consisted of 2,659,301 items, including both EU 
and Worldwide applications, over the period 1978 – 2005. The analysis thus focuses on three 
subsets of patent applications, identified by merging the classifications set up by the OECD 
and by the French Observatoire des Sciences et des Techniques. We adopted these 
classifications to establish some tentative boundaries for our KISs, although we will realize 
later in this paper that in some cases these classifications leave some important classes out.  
 
Our search strategy is based on queries reporting the IPC classes that define each KISs under 
study, namely biotechnology, telecommunications and electronics. Taking into account these 
elements, it resulted that the biotechnology sector includes 11 IPC classes, the 
telecommunications sector is made up of 16 IPC classes and the electronics sector consists of 
30 IPC classes (see Appendix 1)4.  
 
Table 1 reports the count of patent applications in each sector and the share in the whole 
dataset. Although the biotechnology sector is defined by the lowest number of classes, its 
share in the overall dataset is the highest (12.08%), while the sector gathering the highest 
number of classes, i.e. electronics, represents the lowest share (1.81%). The 
telecommunications sector occupies an intermediate position in both the number of classes 
and its share in the dataset. 
 

INSERT TABLE 1 ABOUT HERE 
 
One can reasonably assume that the dynamics of knowledge production in KISs is marked by 
important specificities. In this perspective, one immediate (and potentially obvious) 
specificity is that knowledge production in KISs is likely to be higher than in other sectors.  
 
Although at a first glance our KISs seem to share a common growth pattern, the behaviour of 
biotechnology is quite different from that of telecommunications and of electronics. The 
number of patents in biotechnology is about twice as large as in telecommunications and 
about three times as large as in electronics. Furthermore, the rate of growth of patents in 
biotechnology seems to be more evenly distributed during the period studied than in 
telecommunications. 
 

                                                 
3  We consider thus patent applications as the best indicator of firms knowledge bases, though the usual 
caveats mentioned in the literature may apply. We use these data to map the frequency of co-occurrences of 
technological classes within patents and to calculate a number of indexes, i.e. information entropy used to 
measure related and unrelated variety, knowledge coherence and cognitive distance. 
4  Though the use of IPC classes to define sectors’ boundaries may present some drawbacks, as they are 
function-oriented (Corrocher et al., 2007), the merging of two classifications allows our study to be much more 
inclusive than many other studies, and reduce the risk of neglecting important classes. 



 11

Figure 1 shows the dynamics of technological classes in each sector. Since the dynamics of 
technological differentiation in the three KISs is influenced by the dynamics of the patent 
stock, we show the 5-years moving average of classes counts. 
 

INSERT FIGURE 1 ABOUT HERE 
 
The number of classes can be interpreted as an approximate measure of the differentiation, or 
scope, of each sector’s knowledge base. It is interesting to note that within the same sector the 
differentiation of the knowledge base rises with the stock of patents. However, the influence 
of the stock on the differentiation of the knowledge base differs for the three sectors.  For 
example, the electronics sector is characterized by a higher number of technological classes 
than either biotechnology or telecommunications, although its yearly number of patent 
applications is considerably lower.  
 
 

5 Empirical results 

5.1 Random search versus organized search 
 
The first aspect that we investigated in the results of our calculations was the presence in our 
three KIS of a transition from random to the organised search. To test the existence of this 
transition we constructed a co-occurrence matrix of the technologies. used in the patents 
awarded to the three KIS in our data base. Each patent is classified according to a primary and 
to a number of secondary classes. Such matrices are constructed by assigning frequencies to 
the couples of IPC classes occurring together within If the transition from random to 
organised search occurs we expect a declining fraction of the off diagonal cells to contain a 
growing share of the overall frequency of co-occurring technologies. In other words, the 
transition from random to organised search involves a process of concentration of the 
technological choices made in the patents. In a graphic representation of the co-occurrence 
matrix (Figs A1-A4 Appendix) this phenomenon would be revealed by a growing share of 
few and higher peaks amongst those representing all the possible technological combinations. 
We tried to document the existence of the transition from random to organised search by 
calculating the Gini coefficient for technological co-occurrences5, starting from the matrix of 
relative frequency of co-occurrence of technological classes, according to equation (1). The 
results of these calculations are reported in Figure 2. 
 

INSERT FIGURE 2 ABOUT HERE 
 
There we can see that the Gini coefficient of biotechnology is substantially higher than that of 
telecommunications and of electronics and hardly changes during the period of observation; 
the coefficients of telecommunications are higher than those of electronics; the coefficients of 
both telecommunications and electronics grow during at least a part of the period of 
observation. The higher relative value of its Gini coefficient indicates that biotechnology had 
reached a substantially higher level of concentration of technological combinations than 

                                                 
5  We have calculated the relative Gini concentration index according to the formula 
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telecommunications and of electronics at the beginning of the period of observation but that 
this level of concentration hardly changed afterwards. On the other hand, the level of 
technological concentration of telecommunications and electronics increases starting from 
1987 for telecommunications and from 1990 for electronics. To what extent these results 
confirm or disproof the existence of the transition from random to organised search is not 
clear without making reference to the measures of variety, coherence and cognitive distance 
to be shown next. For the time being we can only point to a problem which will affect all our 
interpretations, namely the duration of our period of observation. In order to be able to test the 
presence of a transition we would need to cover a period of time starting before the transition 
and ending after it. We know that the first industrial applications of biotechnology started in 
the early to mid 1970s but our observations begin in 1981. Thus, we cannot decide whether in 
1981 the transition had already occurred for biotechnology or whether biotechnology 
underwent no such transition and it always had such a high level of technological 
concentration. Based on their Gini coefficients telecommunications and electronics could 
have undergone the transition from random to organised search. In the end, whether or not we 
find evidence in favour of the transition, it is quite clear that the three KIS behave differently. 
Whatever the interpretation we attach to these findings we can consider the Gini coefficient 
an index of technological concentration and we can treat it as a relevant property of the 
knowledge base of technologies or industrial sectors.  
 

5.2 The Evolution of KBs in KISs 
 
The measures of variety, coherence and cognitive distance are here applied to investigate the 
patterns of evolution of knowledge bases in three broad sectors: biotechnology, 
telecommunication and electronics.  

5.2.1 Biotechnology 
 
Figure 3 shows the evolution of variety (a), coherence (b) and cognitive distance (c) for the 
biotechnology sector. Moreover, the rate of growth of variety falls for most of the period of 
observation until it becomes constant from the early 1990s, with the possible exception of the 
mid 1980s. In 1985 the rate of growth of variety starts rising in correspondence with the 
overtaking of unrelated variety by related variety. The distinction between unrelated and 
related variety was introduced by Frenken et al. (2007) to measure the output variety of 
different regions of the Netherlands. In our case while in the early 1980s the unrelated variety 
was higher than the related, the situation was reversed starting from 1985. This would suggest 
that, while in the very early phases of the emergence of modern biotechnology most of the 
new knowledge was coming from outside the knowledge base previously used, starting from 
1985 internal (to the sector) sources of knowledge differentiation became more prominent. 
However, it must be observed that starting from the mid 1990s a trend began to the 
convergence of related and unrelated variety. This trend is likely to be caused by the 
emergence of a second generation of biotechnology linked to bioinformatics, a new type of 
competence coming from a discipline different from biology. Further evidence about the 
relationship among the variables can be found in Table 2a, where the Spearman’s correlation 
coefficient enables to appreciate both the sign and the strength of relations. 
 

INSERT TABLE 2 ABOUT HERE 
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The distinction between related and unrelated variety is based on the assumption that any pair 
of entities included in the former are in general more closely related, or more similar, than any 
pair of entities included in the latter. This assumption is reasonable when a given type of 
entity (patents, industrial sectors, trade categories etc.) is organised according to a hierarchical 
classification. In this case each class at a given level of aggregation contains 'smaller' classes, 
which in turn contain even 'smaller' classes. The term small here corresponds to a low level of 
aggregation. We can then reasonably expect that the average pair of entities at a given level of 
aggregation will be more similar than the average pair of entities at a higher level of 
aggregation. Thus, what we call related variety is measured at a lower level of aggregation 
than unrelated variety. This distinction is important because in view of the previous 
discussion we can expect the dominance of unrelated (or inter-group) variety to lead to a 
greater extent of discontinuity in knowledge than the dominance of related (or intra-group) 
variety.  
 

INSERT FIGURE 3 ABOUT HERE 
 
Figure 3 b) shows the dynamics of knowledge coherence for the biotechnology sector. In this 
case as well as in all the other measures of properties of the knowledge base we can 
distinguish within the overall changes a trend and superimposed deviations. The deviations 
are probably due to combination of real events affecting the dynamics of knowledge and of 
noise due to the quality of the data. Thus, we cannot expect all the deviations to be easily 
interpretable. Both variety and coherence show an overall positive trend accompanied by 
superimposed deviations. In particular, there are two periods of fast rise in knowledge 
coherence, beginning in 1982 and in 1995 respectively. The first of these deviations from the 
trend seems to be closely related to the ratio of related to unrelated variety. When unrelated 
variety is greater than the related one, in the period 1981-1982, the coherence index falls. It 
then begins to increase in 1983 when related variety overtakes unrelated variety. The 
subsequent rise in 1997 cannot be explained in the same way. However, it can be observed 
that the two rises in knowledge coherence seem to coincide with the onset of the absorption of 
two different generations of biotechnology, based on recombinant DNA and on genomics 
respectively, by incumbent firms (Saviotti, Catherine, 2008). The transition between the two 
generations led to a discontinuity in the pattern of inter-firm alliances: within each generation 
the number of alliances followed a lifecycle, increasing first, reaching a maximum and then 
declining. The competencies required in the two generations differed as bioinformatics 
acquired a in the sequencing of genomes.  
 
Taking this into account we can interpret the overall rising trend in knowledge coherence as 
due to the growing relative similarity, or low cognitive distance, of the new types of 
knowledge which incumbent firms needed to learn. The deviations with respect to the trend 
could be explained by the emergence of new generations of biotechnology and/or by the ratio 
of intra to inter group variety. As a new generation of biotechnology emerges the overall trend 
is not reversed but deviations can occur due to the however limited cognitive distance that the 
new generation introduces. This line of explanation is not incompatible with the one based on 
the ratio of related to unrelated variety. We can assume changes in related variety to involve a 
more limited change in coherence than those in unrelated variety because the former can be 
obtained by recombination and differentiation of the same concepts while the latter are more 
likely to involve the introduction of completely new concepts. In other words, a rise in related 
variety is likely to involve a lower extent of knowledge discontinuity than an equivalent rise 
in unrelated variety and to lead to lower fall in coherence. Conversely we can expect changes 
of generation within one technology (e.g. biotechnology) to raise the ratio related/unrelated 
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while the emergence of a completely new technology can be expected to lower the same ratio. 
However, in some cases the situation can be more complex. In this context the transition 
between the two generations of biotechnology involved two contrasting trends: the second 
generation shared the same basic biological concepts with the first generation but required the 
use of competencies and concepts in bioinformatics which were new to biologists and which 
came from another discipline. We can expect the first trend to raise both related variety and 
coherence and the second to reduce both of them. What we observe is then the result of a 
trade-off between the two trends described above. This interpretation is compatible with (i) 
the tendency to the convergence of related and unrelated variety beginning in the mid 1990s 
and (ii) the slow down in the rate of growth of coherence between 1988 and 1996 followed by 
a rise in coherence beginning in 1997, which could be due to the maturation of the second 
generation of biotechnology.    
 
The evolution of cognitive distance is reported in the bottom part (c) of Fig 3. Even in this 
case we can distinguish an overall trend from the deviations with respect to it. The evidence 
for the biotechnology sector is very consistent with the measures of variety and knowledge 
coherence. The distance index indeed decreases dramatically in the early years of the period 
we observed. Although with some cyclical fluctuations, it keeps falling until the first half of 
the 1990s. Then it remains almost constant with the possibility of a very limited rise. 
 
In summary, in the biotechnology sector there has been a growing knowledge differentiation, 
represented by the growth in variety, accompanied by a trend towards increasing knowledge 
coherence and towards falling cognitive distance. The rate of growth of variety and of 
coherence as well as the rate of fall of cognitive distance decrease in the course of time. These 
broad trends have been combined with a changing ratio of related to unrelated variety and 
with fluctuations with respect to the trend of both knowledge coherence and of cognitive 
distance. If we take into account the deviations from the trend in coherence we can see that 
coherence was falling at the beginning of the period of observation and that it started to grow 
when related variety overcame unrelated variety. We can interpret these events as follows:  

- A drastic fall in the coherence of the knowledge base of biotechnology using firms, 
which we expect to have started in the early 1970s before the beginning of our period 
of observation, and continuing until 1983. This was due to the incorporation of 
completely new elements of knowledge in the KB of biotechnology using  firms and 
organisations 

- A subsequent recovery of coherence due to the growing ratio of related to unrelated 
variety and to the learning effects that occurred in the biotechnology using firms and 
organizations allowing them to improve their ability to integrate the new knowledge in 
their KB.  

- Subsequent variations of coherence superimposed on a growing trend were due to the 
emergence of a second generation of biotechnology involving the addition of new 
types of new types of knowledge (bioinformatics) to the basic biological concepts 
introduced during the first generation.  

 
It seems clear that the inverse correlation between variety growth and cognitive distance 
which we could have expected ex-ante does not always occur. In particular, it is clear that 
related and unrelated variety do not have the same impact on cognitive distance. Since related 
variety can grow by differentiation in the vicinity of the previous knowledge of firms or 
organisations, it does not necessarily lead to a rise in cognitive distance. In fact, a rise in 
related variety combined with the learning effects of firms which allow them to integrate 
different pieces of knowledge can even be compatible with a fall in cognitive distance. The 
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distinction between related and unrelated variety turns out to be as fruitful in the study of 
structural change in knowledge as it is in the study of structural change in economic systems 
(see Frenken et al, 2007; Saviotti, Frenken 2008).  
 
Our findings so far are thus not incompatible with propositions P1-P3. Although the expected 
fall in knowledge coherence when the new type of knowledge emerged did not occur, the 
deviations with respect to the trend bear a close relationship to both the emergence of new  
generations of biotechnology and to the changing ratio of related to unrelated variety. 
Propositions P1-P3 were initially formulated without taking into account the distinction 
between related and unrelated variety and will need to be modified accordingly.  
 

5.2.2 Telecommunications 
 
The evidence about Telecommunications is considerably different from biotechnology 
(Figure 4 a, b, c).  Except for the very early years (1981-1982) during which all types of 
variety rise very rapidly, unrelated variety remains virtually constant and the growth in total 
variety is almost exclusively determined by related variety. Interestingly between 1991 and 
1995 related variety seems to be undergoing a transition which increases substantially its rate 
of growth. Following the previous reasoning this behaviour could be explained if radically 
new concepts had been introduced into telecommunications before the beginning of our 
period of observation and if all the following rise in variety had taken place by 'local' 
differentiation, obtained for example by recombination of already known concepts or 
eventually by new forms of exploitation, for example new types of industrial applications. 
This can be explained looking back into the history of the sector (Fransman, 2002, 2004, 
2006, 2007). Since the early 1980s – and even before – the national telecoms operators (at 
that time monopolists) were leaders in researching and designing the equipment and other 
technologies, thanks to their research laboratories. These laboratories (France Telecom’s 
CNET, Telecom Italia’s CSELT, BT’s Martlesham Laboratories in Europe, or AT&T’s Bell 
Laboratories or NTT’s Electrical Communications Laboratories overseas) regrouped 
researchers that won lots of Nobel prizes and were at the origins of the Internet and mobile 
technological development. At a time of liberalization, these laboratories played a key role 
when newcomers entered. Because of their existence, most of the new specialist providers 
(Nokia, Ericsson, Cisco, etc.) could progressively supply the latest technologies to all new 
companies who could pay for it, since they found commercial opportunities to the knowledge 
incorporated in the patents that research laboratories have registered 10 or 15 years before. In 
this perspective, the specialist suppliers can be considered as the innovators, while the 
research laboratories are inventors and repositories of knowledge. 
 
Coherence falls slowly between 1981 and 1991 and then begins to rise when the rate of 
growth of related variety starts to increase. Even in this case we see that a rise in related 
variety is not incompatible with a rise in coherence. Slightly more difficult to explain is the 
slow fall in coherence in the period 1981-1991. This can basically be related to the shift in 
technological paradigms, from the old one related to the circuit-switched technologies 
providing basic services like telephony and fax to the new one termed as packet-switched 
technologies and providing advanced services like the Internet, Video-conferencing, Video on 
Demand, Voice on IP, etc. (Fransman and Krafft, 2002; Krafft, 2004, 2007; Krafft and Salies, 
2008). The important point to notice here is that a rise in related variety does not necessarily 
lead to a fall in coherence but is compatible with both a rise or a limited fall.  
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For telecommunications cognitive distance is almost constant or at most falls very gently, 
with very pronounced deviations from the trend. Even in this case a rise in related variety 
does not necessarily involve a rise in cognitive distance. In Table 2b the Spearman’s 
correlation coefficient among variables provides an overall synthesis of the relationships 
linking coherence, variety and cognitive distance.  
 
Together these results can be interpreted by saying that the impact of a knowledge 
discontinuity giving rise to modern telecommunications, namely the convergence with IT and 
the transition from analogic-electromechanical to digital-electronic technology, is likely to 
have started long before the beginning of our period of observation. One could then expect 
rises in cognitive distance and falls in coherence to have occurred during this early period. We 
could then expect of the developments occurring during our period of observation to have 
been, incremental improvements of the knowledge base aimed at creating new industrial 
applications based on the based on concepts which had already become part of the knowledge 
base of telecommunications firms.  

 
INSERT FIGURE 4 ABOUT HERE 

 
Compared to biotechnology, telecommunications shows a less smooth trend towards growing 
knowledge variety and a larger departure of intra- from inter-group knowledge variety. This 
indicates that during the period studied new forms of knowledge being used in 
telecommunications were increasingly similar to those already present within the sector. This 
interpretation is confirmed by the almost constant value of cognitive distance. Furthermore, 
the relative rise in intra-group knowledge variety seems to indicate a progressive focusing of 
new forms of knowledge inside the technology. These trends could be interpreted as a 
growing weight of exploitation relative to exploration in the research activities in 
telecommunications.  

5.2.3 Electronics 
 
With respect to the two previous cases electronics shows another and altogether considerably 
different development pattern. Unrelated and related variety keep growing all the time while 
unrelated variety is constantly higher than related variety. Coherence falls all the time while 
cognitive distance shows a decreasing trend, but at a definitely slower rate than in the other 
two sectors. This development pattern can be interpreted as characterized by a persistent 
emergence of considerably new concepts during the whole period of observation. Thus, in this 
case the duration of the period in which the emergence of completely new concepts occurred 
seem to have lasted considerably longer than for both biotechnology and telecommunications. 
The likely origin of this difference is the much wider range of applications of electronics with 
respect to both biotechnology and telecommunications. This trend could be interpreted as a 
continued parallel development of exploration and exploitation related research activities. We 
could also say that electronics is a more general purpose technology than either 
telecommunications or biotechnology. Moreover, it must be noted that the origins of the 
electronics sector are much more remote than for biotechnology and telecommunications, as 
they can be dated back to the invention of the electric light. A closer look at the IPC classes 
that are included in this sector (see the Appendix) indeed reveals that a considerable number 
point to light- or energy-related technologies. Only a few technological classes are related to 
the most recent evolution of the electronics sectors, like H05K (printed circuits) and H04M 
(telephonic communication). Post-war technological developments have indeed been induced 
by the need to create and improve devices for long distance telephone communications. Thus, 
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the electronic revolution started with the invention of the transistor in the late 1940s. The 
evolution of this technology then led to the invention of the integrated circuit in the late 1950s 
and eventually to that of the microprocessor by Intel in 1971. This last technology has brought 
profound changes in both the electronics sector itself, and in many other user sectors, as it was 
a powerful and general purpose solution to many diverse applications. The conditions for the 
creation and the massive diffusion of minicomputers were therefore set. Computing 
technology began to be applied to an unprecedented number and diversity of uses, such as 
telecommunications, banking, car production, etc. This generated an increasing recombination 
of electronics knowledge with technologies developed in other sectors, even if loosely related, 
which could have been dramatically improved by the application of computing power 
(Mowery and Rosenberg, 1998; Mowery and Nelson, 1999; Bresnahan and Malerba, 1999). 
The increasing convergence with telecommunications, which led to the creation of 
information and communication technologies (ICTs), is reflected in the evidence of the first 
half of the 1990s, when knowledge coherence appears to rise while cognitive distance is 
stable. However, the second half of the 1990s provides evidence of a slightly fall in  
coherence and of an increase in cognitive distance, which may be ascribed to the emergence 
of an exploitation pattern related to the Internet revolution. 
 
In electronics general variety keeps increasing until 1998, when it basically stabilizes (Figure 
8). However, interestingly, in this case total knowledge variety is led by unrelated variety, 
which always has a higher weight than the related one. This can be interpreted if we consider 
that electronics is at the interface of different applications developed in several industries. 
Gradually over time, very different pieces of knowledge have to be reassembled, due to the 
demand of client sectors (including telecommunications, automobile, banks, computers, 
medical instrumentation, etc.). Thus, electronics really appears as a general purpose 
technology the pervasiveness of which is more and more prominent over time.  
 

INSERT FIGURE 5 ABOUT HERE 
 
Not surprisingly, the trend of knowledge coherence falls all the times. The fluctuations show 
falls beginning in 1981 and in 1989 and rises beginning in 1985 and in 1993, presumably 
because of the increasing number of applications of electronics. In this case the overall trend 
with respect to biotechnology and to telecommunications can be explained by the higher 
relative value of inter-group knowledge variety. This implies a higher cognitive distance, as 
confirmed by the bottom diagram. On the whole, the evidence about the electronics sector 
appears to be fairly different from that of biotechnologies and telecommunications. Such 
differences may be further appreciated by looking at the last group of correlation coefficients 
provided in Table 2c. 
 
 
5.2.4. Summing up 
 
The Table below (Table 3) is intended to sum up the results we obtained so far. It regroups 
the propositions we made in Section 2, their major expected implications, and what observed 
in our three KISs 
 

INSERT TABLE 3 ABOUT HERE 
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6 Discussion and conclusions 
 
In this paper we studied the dynamics of knowledge generation in three knowledge intensive 
sectors (KIS), biotechnology, telecommunications and electronics. We mapped the knowledge 
base of these three KISs by means of the patents awarded in them by the European Patent 
Office (EPO) during the period 1981-2002. We did not distinguish the different types of 
economic actors to which the patents were given but considered each sector as a whole. For 
each sector we measured four properties of the knowledge base: technological concentration, 
variety, coherence and cognitive distance. Within variety, a variable which measures the 
extent of differentiation of the knowledge base of each sector, we distinguished related from 
unrelated variety. The former is the variety which we can measure within a group of entities 
at a lower level of aggregation, the latter variety which can be measured at a higher level of 
aggregation. The two measures have a different meaning in that we can expect the average 
pair of entities constituting a group at the lower level of aggregation to have a higher degree 
of similarity than the average pair of entities in two different groups, or at a higher level of 
aggregation. This distinction is interesting because we can expect an increase in unrelated 
variety to correspond to a more radical change in knowledge, and thus to a greater extent of 
knowledge discontinuity, than an equivalent increase in related variety. From our results, and 
considering the ratio related/unrelated variety, it appears that biotechnology and 
telecommunications progressively enter into a more mature phase of development. It appears 
that biotechnology and telecommunications have already entered, although at different times,a 
more mature phase in which exploitation related activities tend to to grow with respect to  
exploration related ones. As we previously pointed out, the concepts of exploration and 
exploitation are very useful although not analytically accurate. The properties of the 
knowledge base that we measure in our paper provide a means to make these concepts more 
analytical. Thus we can expect certain regular relationships to exist amongst the properties we 
measure and between these properties and exploration and exploitation. For example, we can 
expect exploration to be associated with growing technological concentration, with growing 
overall variety, with a high or growing ratio RTV/UTV, with low or falling coherence, with 
high or growing cognitive distance. A complete representation of these expected relationships 
is given in Table 4. 
 

INSERT TABLE 4 ABOUT HERE 
 
As we can see in table 4, the correspondence between the properties of the KB allows 
multiple patterns to occur. For example, a high ratio RTV/UTV which we expect to find in the 
exploitation phase is compatible with both a high, constant or growing coherence. Thus, the 
relationships shown in Table 4 only exclude particular patterns of correspondences but allow 
more than one pattern to correspond to each of the two phases. This means that the 
exploration/exploitation dichotomy is a simple and useful one but that our representation of 
the knowledge base in terms of more objective and measurable properties is a more accurate 
one. In spite of the lack of complete correspondence between the phases of exploration and 
exploitation and the expected values of our properties the availability of such properties  
clarifies the meaning of exploration and exploitation and greatly helps in giving the two 
phases an operational use.  
 
The technological concentration of a knowledge base measures the extent to which a small 
number of technological combinations accounts for a large share of the technological choices 
made in the research activities constructing the knowledge base of the KIS we are studying. It 
must be observed that the meaning of technological concentration used here is very similar to 
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that of industrial concentration or of the distribution of income. In all these cases an index of 
concentration measures the extent to which the distribution of a property within a population 
becomes skewed or asymmetrical. Furthermore, technological concentration here seems to 
increase spontaneously in the course of time similarly to the spontaneous evolution towards 
oligopolies occurring in many industrial sectors. The coherence of a knowledge base 
measures the extent to which a given firm or research organization can combine, or integrate, 
the different pieces of knowledge which are required to produce a given product or service. 
The cognitive distance measures the dissimilarity of two knowledge bases. It can be used to 
compare the knowledge bases of two different firms at a given time or to calculate the 
changes in the knowledge base of the same firm in the course of time. These three properties 
can be expected to undergo systematic variations when a firm or research organization needs 
to learn a new and unfamiliar type of knowledge.  The above properties of the knowledge 
base are not independent. At the beginning of our study we expected an increase in variety 
due to the emergence of a completely new type of knowledge to lead to a fall in coherence 
and to a rise in cognitive distance. In a previous and less detailed study (Grebel, Krafft, 
Saviotti, 2006) we had found evidence of a common trend in knowledge generation which we 
described as the transition from 'random search' to 'organised search'. In the early phases of 
the emergence of a knowledge discontinuity, during the random search period, firms and 
research organisations start exploring a new region of knowledge space without knowing 
precisely what trajectories to follow.  
 
The transition to the organised search period occurs as some particularly fruitful research 
trajectories emerge, which are then followed by the majority of participants. In the present 
paper we found evidence for this transition in the three sectors, but, by carrying out a more 
detailed study, we also found evidence of differences amongst the sectors. Thus, for the three 
sectors variety increased most of the time during our period of observation. However, for both 
biotechnology and telecommunications, and even more so for the latter, growth in variety was 
dominated most of the time by related variety while for electronics variety growth was always 
dominated by unrelated variety. This means that the growth of knowledge in electronics 
during the period of observation was due to more radical changes in knowledge while in 
biotechnology and telecommunications the growth of knowledge was mostly due to 
incremental changes. It is to be observed that in the very early years of our period of 
observation in biotechnology unrelated variety was greater than related variety and that the 
dominance of related variety only began in 1983. Unfortunately our patent time series do not 
cover the whole period which would be required to observe completely the emergence and 
maturation of a new type of knowledge.  
 
Thus, in biotechnology the research leading to the creation of a new discipline (molecular 
biology) began in the 1930s and the critical events which catalysed the first industrial 
applications only occurred in the early to mid 1970s (1972 recombinant DNA, 1975 
monoclonal antibodies). In order to adequately study the evolution of knowledge in 
biotechnology our data would have needed to cover most of the 1970s. Given the limitations 
of our data for the time being we have to infer what is likely to have happened before the 
beginning of our period of observation. In the case of biotechnology, based on the very low 
initial value of both variety and coherence and on the fact that coherence was still falling at 
the beginning of the period of observation, we expect unrelated variety to have been greater 
than related variety during all of the 1970s and until 1983. Thus, the 1970s would have been 
the period when the discontinuity in biotechnological knowledge constituted by the adoption 
of molecular biology would have first manifested itself and the 1980s the period during which 
the new knowledge started to be adequately integrated into the knowledge base of 
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biotechnology using firms. We can interpret this transition as being related to the one from 
exploration to exploitation.  
 
In the case of telecommunications the emergence of a discontinuity is likely to have occurred 
even earlier than in biotechnology and thus the dominance of related variety is likely to have 
started before the beginning of our period of observation. Also, it is to be noticed that 
telecommunications is a sector highly oriented towards applications and that its knowledge 
base overlaps that of electronics. In fact, the most important recent development in 
telecommunications is the convergence with information technology (IT) giving rise to ICT 
and to the so-called new info-communications industry. The critical events underlying the 
emergence of IT first and of ICT later, the invention of the transistor etc, occurred in the 
1950s. Thus, not only these critical events occurred earlier than in biotechnology, but 
telecommunications received most of its knowledge from another sector and precisely from 
electronics. Yet, the new info-communications industry is grounded on former knowledge (IP 
and mobile technologies) which did not find for a long time innovative applications. Only in 
the 1990s the emergence of packet-switched technologies on which the Internet is based, 
generated a new set of commercial applications,. While the research laboratories tended to 
open up new avenues in terms of inventions, the knowledge base of the telecommunications 
operators was essentially related to the applications of circuit-switched technology, and 
required a drastic change in competencies to adapt to the new industrial challenges. New 
technology based firms (IP based, like the new equipment providers) emerged with 
liberalisation and contributed to the gradual change in the knowledge base, evolving towards 
a greater coherence of former technological knowledge with more recent market premises. 
Summarising, knowledge production in telecommunications during our period of observation 
was largely due to knowledge imported from electronics and IT and highly application 
oriented. Furthermore, the critical events leading to industrial applications are likely to have 
occurred before the beginning of our period of observation.  
 
Electronics was considerably different with respect to both biotechnology and 
telecommunications. In this case unrelated variety always dominated related variety, 
coherence fell and cognitive distance increased all the time. These patterns can be interpreted 
as due to the more radical character of the changes in knowledge which keep occurring in 
electronics as compared to biotechnology and telecommunications. In general we can expect 
cognitive distance to be a measure of the extent of knowledge discontinuity occurring within a 
given field. The higher the cognitive distance between the knowledge base of any 
organisation between two time periods the more difficult it is for the organisation to integrate 
different pieces of the old and of the new knowledge it needs to use. Thus, a growing 
cognitive distance is likely to be accompanied by a falling coherence.  
 
A better appreciation of the differences and similarities occurring among the three sectors 
with respect to the knowledge related variables can be reached by looking at Table 5. Here 
one can find pairwise mean comparison tests for each variable.  
 

INSERT TABLE 5 ABOUT HERE 
 
The important role of the distinction between related and unrelated variety can be understood 
here. Since related variety is linked to more incremental types of change and unrelated variety 
to more radical ones, we can expect coherence to fall and cognitive distance to rise all the 
times when unrelated variety increases while this does not necessarily occur for a rise in 
related variety. In this case a process of growing knowledge differentiation can occur based 
on the set of concepts which were introduced at the very emergence of the discontinuity. 
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Thus, we have seen that a growth in related variety is compatible with a rise in coherence and 
with fall in cognitive distance.  
 
Based on the these results we can hypothesize that any new type of knowledge will follow a 
life cycle beginning with the emergence of a knowledge discontinuity and dependent on the 
initial value of cognitive distance. The early phases of the life cycle would correspond to (i) 
low technological concentration (ii) a growth in total variety, (iii) the dominance of unrelated 
over related variety, (iv) falling coherence, (v) growing cognitive distance. The maturation of 
the new type of knowledge would entail (i) a rise in technological concentration (ii) a 
continuation of the growth of total variety, (iii) a shifting dominance of related over unrelated 
variety, (iv) a slowly falling and later growing coherence, (v) a falling cognitive distance.  
 
The emergence and the maturation of a KIS would here correspond closely to the exploration 
and exploitation phases. In fact, the properties of the KB which we use in this paper allow us 
to provide a more analytically accurate representation of the concepts of exploration and 
exploitation. We have previously seen that there is not a one to one correspondence between 
values of our KB properties and the phases of exploration and exploitation. Multiple patterns 
and combinations of these properties can occur within each of the two phases. The use of the 
four properties of the KB makes the analysis of the KIS richer and more accurate and 
improves the operational use of the concepts of exploration and exploitation. Furthermore, we 
have seen that the transition from random to organised search does not occur in a standardised 
way for all KIS when a knowledge discontinuity emerges. On the contrary, by using our four 
properties we can measure the extent of such knowledge discontinuity, follow its evolution 
and see how it affects and is affected by the other properties. Unsurprisingly, we then find that 
the evolution of each KIS, while being broadly compatible with the transition from random to 
organised search, presents some significant sectoral specificities. For example, we have seen 
that the timing of the transition from the initial to the mature phases, the ratio of unrelated to 
related variety, the overall extent of cognitive distance can vary considerably amongst the 
sectors studied. Thus, if a knowledge life cycle effectively exists its description must include 
the factors which can determine the existence, duration and the internal dynamics of the life 
cycle.  
 
With this paper we have attempted a first exploration of the dynamics of knowledge in KIS. 
Research of this type is very important as we move towards a knowledge based economy and 
society since it can create the tools required to represent and measure knowledge. We find the 
results fascinating but, as it befits the initial exploration of a new field, our results are hardly 
complete or definitive. The central aspect of our research is the mechanisms whereby new 
knowledge can be learned by knowledge producing and using organizations. In this paper we 
provided map of the evolution of knowledge in three KIS. Our findings suggest some general 
conclusions which will need to be tested and better articulated.  
 
Amongst the problems which arise from this paper and which require additional work there 
are: (i) the further exploration of the fine structure of knowledge dynamics in each of the KIS 
studied here, for instance by relying more extensively to monographs or business history 
analyses, (ii) the comparison with other sectors of different knowledge intensity, for example 
in view of quantifying more generally the relationships between our three properties, (iii) the 
impact of these processes of knowledge generation on industrial organization, especially by 
including in our analysis aspects of entry and exit but also by relating problems of knowledge 
creation with geographical concerns. We intend to explore all these topics in our future 
research agenda.  
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Table 1 – Overall distribution of patent applications across the three sectors 
 # % 
Biotechnology 321449 12.08 
Telecommunications 115735 4.35 
Electronics 47955 1.81 
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Table 2 – Spearman rank correlation coefficients across variables, by Sector 

BIOTECHNOLOGY 

 Coherence Gini index 
Cognitive 
distance RTV/UTV 

Coherence 1  
Gini index 0.4455** 1  
Cognitive distance -0.9390*** -0.4740** 1  
RTV/UTV 0.4675** -0.1078 -0.5325*** 1 

a) 
 

TELECOMMUNICATIONS 

 Coherence Gini index 
Cognitive 
distance RTV/UTV 

Coherence 1  
Gini index 0.4403** 1  
Cognitive distance -0.303* -0.8364*** 1  
RTV/UTV 0.4221** 0.8961*** -0.8338*** 1 

b) 
 

ELECTRONICS 

 Coherence Gini index 
Cognitive 
distance RTV/UTV 

Coherence 1  
Gini index -0.2740 1  
Cognitive distance 0.5974*** -0.5727*** 1  
RTV/UTV -0.64629*** 0.5117*** -0.9338*** 1 

c) 
 
Note: ***: p<0.01; **: p<0.05; *: p<0.1. 
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Table 3 - Synthesis of empirical results 
Propositions Implications  Empirical Results 
P1: Emergence of a discontinuity in 
knowledge: period of random search 
in the exploration phase versus period 
of organized search in the 
exploitation phase 

KISs should evolve from initial 
stages to more mature stages of 
industry life cycles 

Proposition holds for Biotechnology 
and Telecommunications. Electronics 
however persistently in a phase of 
random search 

P2: The random search period is 
characterized by raising variety and 
cognitive distance and by falling 
coherence. The organized search 
period is characterized by falling 
variety and cognitive distance and by 
raising coherence 

In the initial stages of development of 
an industry life cycle, variety and 
cognitive distance rise, while 
coherence falls. In the more mature 
phases of development of an industry 
life cycle, variety and cognitive 
distance decline, while coherence 
increases 

Proposition appears not to be robust, 
since the distinction between related 
and unrelated variety is important and 
introduces some complexities. 
Biotechnology and 
Telecommunications which over time 
are characterized by an increasing 
ratio related/unrelated variety are able 
to maintain increasing coherence and 
declining cognitive distance. On the 
contrary, Electronics where unrelated 
variety is persistently high is more 
conform to the proposition and the 
possible implication  is that it has not 
reached yet a mature phase of 
development in the industry life cycle 

P3: The higher the rate of of increase 
over time in variety and cognitive 
distance, the higher the decrease over 
time in coherence, the more 
persistent the period of random 
screening and the less established the 
organized screening period 

The appropriate balance between 
exploration in the initial phases and 
exploitation in the mature phases is 
likely to be difficult to find, and KISs 
may be confronted to different paths 
of evolution 

Again, proposition appears not to be 
robust, since the distinction between 
related and unrelated variety is 
important and introduces some 
complexities. When the ratio 
related/unrelated variety remains low 
over time (Electronics), proposition 
holds. When the ratio 
related/unrelated is higher 
(Biotechnology and 
Telecommunications), increasing 
coherence may be achieved, as well as 
decreasing or stagnating cognitive 
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Table 4 - Expected relationships of the properties of the knowledge base during the exploration and exploitation 
phases 

  TC VAR RV/UV COH CD 
Exploration  Low High Low Low High 
Exploitation  High Falling or  High High, constant 

or growing 
Low or falling 

 
Note: TC = technological concentration; VAR = overall variety; RV = related variety; UV = 
unrelated variety; COH = coherence; CD = cognitive distance  
 
 
  
Table 5 - Pairwise T-test for equality of means 
Biotechnology vs Telecommunications 
Varables 
 Obs t Sig. (2-tailed) Mean 

difference 
Std. Err. 
Difference 

Std. Dev. 
Difference 

95% Conf. Interval of 
difference 

    Lower Upper 
Knowledge 
Coeherence 21 27.258 0.000 0.085 0.003 0.014 0.078 0.091
Cognitive distance 21 10.462 0.000 0.002 0.000 0.001 0.001 0.002
Gini index 21 15.176 0.000 0.213 0.014 0.064 0.184 0.243
RTV 21 2.573 0.018 0.450 0.175 0.802 0.085 0.815
UTV 21 38.307 0.000 1.056 0.028 0.126 0.998 1.113
TV 21 8.716 0.000 1.506 0.173 0.792 1.146 1.866
         
         
Biotechnology vs Electronics 

Variables Obs t Sig. (2-tailed) Mean 
difference 

Std. Err. 
Difference 

Std. Dev. 
Difference 

95% Conf. Interval of 
difference 

    Lower Upper 
Knowledge 
Coeherence 21 27.726 0.000 0.098 0.004 0.016 0.091 0.106
Cognitive distance 21 12.636 0.000 0.002 0.000 0.001 0.002 0.002
Gini index 21 62.894 0.000 0.310 0.005 0.023 0.299 0.320
RTV 21 14.256 0.000 0.717 0.050 0.231 0.612 0.822
UTV 21 -23.139 0.000 -0.507 0.022 0.100 -0.552 -0.461
TV 21 3.614 0.017 0.210 0.058 0.267 0.089 0.332
         
         
Electronics vs Telecommunications 

Variables Obs t Sig. (2-tailed) Mean 
difference 

Std. Err. 
Difference 

Std. Dev. 
Difference 

95% Conf. Interval of 
difference 

    Lower Upper 
Knowledge 
Coeherence 21 -19.645 0.000 -0.014 0.001 0.003 -0.015 -0.012
Cognitive distance 21 -22.484 0.000 0.000 0.000 0.000 -0.001 0.000
Gini index 21 -9.162 0.000 -0.096 0.011 0.048 -0.118 -0.074
RTV 21 -1.873 0.075 -0.267 0.142 0.653 -0.564 0.030
UTV 21 37.109 0.000 1.562 0.042 0.193 1.474 1.650
TV 21 10.04 0.000 1.296 0.129 0.591 1.026 1.565
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Figure 1 – Count of technological classes (5-years moving average), by sector 
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Figure 2 – Evolution of Gini concentration index for co-occurrences of technological classes 
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Figure 3 - Properties of Knowledge Base, Biotechnology 

0

1

2

3

4

5

6

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

Related Variety Unrelated Variety Variety
 

a) Variety 

0,07

0,08

0,09

0,1

0,11

0,12

0,13

0,14

0,15

198
1

1982
198

3
1984

198
5

1986
1987

198
8

1989
199

0
1991

1992
199

3
1994

199
5

1996
1997

199
8

1999
200

0
2001

200
2

 
b) Coherence 

0

0.2

0.4

0.6

0.8

1

1.2

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

 
c) Cognitive Distance 



 31

Figure 4 - Properties of Knowledge Base, Telecoms 
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Figure 5 - Properties of Knowledge Base, Electronics 
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Appendix 
 
Table A1 - Definition of sectors using IPC classes 

BIOTECHNOLOGY 
A01H new plants or processes for obtaining them; plant reproduction by tissue culture 

techniques 
A61K preparations for medical, dental, or toilet purposes 
C02F treatment of water, waste water, sewage, or sludge 
C07G compounds of unknown constitution 
C07K peptides 
C12M apparatus for enzymology or microbiology 
C12N micro-organisms or enzymes; compositions thereof 

C12P fermentation or enzyme-using processes to synthesise a desired chemical 
compound or composition or to separate optical isomers from a racemic mixture 

C12Q 
measuring or testing processes involving enzymes or micro-organisms; 
compositions or test papers thererof; processes of preparing such compositions; 
condition-responsive control in microbiological or enzymological processes 

C12S 
processes using enzymes or micro-organisms to liberate, separate or purify a pre-
existing compound or; processes using enzymes or micro-organisms to treat 
textiles or to clean solid surfaces of materials 

G01N investigating or analysing materials by determining their chemical or physical 
properties 

TELECOMMUNICATIONS 
G08C transmission systems for measured values, control or similar signals 
H01P waveguides; resonators, lines, or other devices of the waveguide type 
H01Q aerials 
H03B generation of oscillations, directly or by frequency-changing, by circuits 

employing active elements which operate in a non-switching manner; generation of 
noise by such circuits 

H03C modulation 
H03D demodulation or transference of modulation from one carrier to another 
H03H impedance networks, e.g. resonant circuits; resonators 
H03K pulse technique 
H03L automatic control, starting, synchronisation, or stabilisation of generators of 

electronic oscillations or pulses 
H03M coding, decoding or code conversion, in general 
H04B transmission 
H04H broadcast communication 
H04J multiplex communication 
H04K secret communication; jamming of communication 
H04L transmission of digital information, e.g. telegraphic communication 
H04Q selecting 

ELECTRONICS 
F21H incandescent mantles; other incandescent bodies heated by combustion 
F21K light sources not otherwise provided for 

F21L 
lighting devices or systems thereof, being portable or specially adapted for 
transportation 

F21M transferred to F21s and F21V 
F21P transferred to F21s and F21V 
F21Q transferred to F21s and F21V 
F21S non-portable lighting devices or systems thereof 

F21V 
functional features or details of lighting devices or systems thereof; structural 
combinations of lighting devices with other articles, not otherwise provided for 
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G05F systems for regulating electric or magnetic variables 

H01B 
cables; conductors; insulators; selection of materials for their conductive, 
insulating, or dielectric properties 

H01C resistors 

H01F 
magnets; inductances; transformers; selection of materials for their magnetic 
properties 

H01H electric switches; relays; selectors; emergency protective devices 
H01J electric discharge tubes or discharge lamps 
H01K electric incandescent lamps 

H01M 
processes or means, e.g. batteries, for the direct conversion of chemical energy into 
electrical energy 

H01R 

electrically-conductive connections; structural associations of a plurality of 
mutually-insulated electrical connecting elements; coupling devices; current 
collectors 

H01T 
spark gaps; overvoltage arresters using spark gaps; sparking plugs; corona devices; 
generating ions to be introduced into non-enclosed gases 

H02B 
boards, substations, or switching arrangements for the supply or distribution of 
electric power 

H02G 
installation of electric cables or lines, or of combined optical and electric cables or 
lines 

H02H emergency protective circuit arrangements 

H02J 
circuit arrangements or systems for supplying or distributing electric power; 
systems for storing electric energy 

H02K dynamo-electric machines 

H02M 

apparatus for conversion between ac and ac, between ac and dc, or between dc and 
dc, and for use with mains or similar power supply systems; conversion of dc or ac 
input power into surge output power; control or regulation thereof 

H02P 
control or regulation of electric motors, generators, or dynamo-electric converters; 
controlling transformers, reactors or choke coils 

H04M telephonic communication 
H05B electric heating; electric lighting not otherwise provided for 

H05C 
electric circuits or apparatus specially designed for use in equipment for killing, 
stunning, enclosing or guiding living beings 

H05F static electricity; naturally-occurring electricity 

H05K 
printed circuits; casings or constructional details of electric apparatus; manufacture 
of assemblages of electrical components 

Source: World Intellectual Property Organization. 
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Figure A1 - Matrix of co-occurrences, Biotechnology, 1981-2001 
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Figure A2 - Matrix of co-occurrences, Telecoms, 1981-2001 
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Figure A3 - Matrix of co-occurrences, Electronics, 1981-2001 
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