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ABSTRACT. 

The economics of recombinant knowledge is a promising field of investigation. New 

technological systems emerge when strong cores of complementary knowledge 

consolidate and feed an array of coherent applications and implementations. However, 

diminishing returns to recombination eventually emerge, and the rates of growth of 

technological systems gradually decline. Empirical evidence based on analysis of the 

co-occurrence of technological classes within two or more patent applications, allows 

the identification and measurement of the dynamics of knowledge recombination. Our 

analysis focus on patent applications to the European Patent Office, in the period 1981-

2003, and provides empirical evidence on the emergence of the new technological 

system based  upon information and communication technologies (ICTs) and their wide 

scope of applications as the result of a process of knowledge recombination. The 

empirical investigation confirms that the recombination process has been more effective 

in countries characterized by higher levels of coherence and specialization of their 

knowledge space. Countries better able to master the recombinant generation of new 

technological knowledge have experienced higher rates of increase of national 

multifactor productivity growth. 
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1. Introduction 
 
Since the seminal contributions by Schumpeter (1942), the analysis of the relationships 

between knowledge and innovation on the one hand, and economic growth on the other 

hand, has more and more attracted economic scholars. Empirical contributions 

estimating the relationship between knowledge and productivity has then appeared 

thanks to the path-breaking works by Zvi Griliches (1979). Most of them consisted of 

industry- or firm-level analyses2, while much a lower number of studies provided cross-

country comparisons of the relationship between knowledge and productivity growth3. 

All these contributions shared an approach to technological knowledge as an unbundled 

stock. At the present time it is no longer sufficient to articulate the hypothesis that 

technological knowledge is a major factor in economic growth. More details and 

specifications are necessary to enquire the specific forms of the relationship between the 

characteristics of the generation of technological knowledge and actual increases in 

rates of economic growth.  

 

This paper explores some key aspects of the generation of the technological knowledge 

that lies at the heart of the emergence of the new technological system based upon of 

information and communication technologies (ICTs). To this purpose, we combine the 

recombinant growth approach and the analysis of the role of variety in the economics of 

knowledge. We adopt Pier Paolo Saviotti’s view of knowledge as a 

retrieval/interpretative and co-relational structure. This allows us to represent the 

knowledge base of the sector as a network whose nodes are constituted by technological 

classes, and to measure a number of properties of the knowledge base by means of co-

occurrence matrices (Saviotti, 2004, 2007). We explore and identify a number of key 

characteristics of the recombinant generation of new technological knowledge and 

demonstrate their relevance for understanding the dynamics of economic growth. 

 

                                                 
2 Without pretending to be exhaustive, out of the noteworthy contributions one may look at Nadiri (1980), 
Griliches (1984), Cuneo and Mairesse (1984), Patel and Soete (1988), Verspagen (1995) and Higón 
(2007). 
3 See Englander and Mittelstädt (1988), Lichtenberg (1992), Coe and Helpman (1995) and Ulku (2007). 
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We focus on the ICT sector knowledge base and its evolution through the 1980s and 

1990s, and on its relationship with productivity growth in a sample of 14 representative 

OECD countries. The evolution of the ICT sector from its origins in the 1950s, has been 

characterized by a process of continuous and rapid technological change, throughout 

which incremental innovation has been punctuated by major scientific breakthroughs 

(Bresnahan and Malerba, 1999). The development of ICTs can be represented as a 

typical Schumpeterian gale of innovation characterized by increasing convergence and 

the integration among a variety of localized innovations, generated within a wide range 

of industries and firms. Technological convergence has been driven by the introduction 

of a number of innovations such as Internet services, enhanced broadband fibre optics, 

Asynchronous Digital Subscriber Lines (ADSL), digital television and universal mobile 

telecommunications system, opening up the possibility of integrating a variety of 

content, services, technologies and applications (Fransman, 2002 and 2007). As a result 

ICT, and the related technological knowledge, are analyzed as a new technological 

system stemming from the recombination of a variety of knowledge modules that has 

fed an array of applications in many technologies favoring their rejuvenation (Quatraro, 

2009; Van den Ende and Dolfsma, 2005).  

 

The evolution of the new technological system, marked by the increasing convergence 

of telecommunications and electronics during the 1980s, led to a reallocation of 

technological effort focused mainly, in the second half of the 1990s and the early 2000s, 

on the provision of content for the Internet and on wireless communication. Alongside 

this changing technological focus, the ICT ecosystem underwent a thorough 

reorganization of the international division of labour, with respect to the different layers 

in which it is articulated (Fransman, 2007; Krafft, 2009; Krafft, 2004; Krafft and Salies, 

2008).  

 

The analysis of the generation and dissemination of ICTs in the last decades of the 20th 

century therefore provides clear evidence on the working of recombinant knowledge: 

knowledge recombination is at the centre of the dynamics and is characterized by a clear 

sequence based upon a highly selective process of exploration (Corrocher,  Malerba,  

Montobbio, 2007). 
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The contribution of this paper to the existing literature is threefold. Firstly, and most 

importantly, it provides a theoretical framework that implements and articulates the 

notion of recombinant knowledge for the analysis of the emergence of new 

technological systems. Secondly, it proposes a methodology based on the analysis of the 

co-occurrence of technological classes in one or more patents, to operationalize the 

empirical investigation of the recombination of different technologies. Thirdly, it 

provides further support for the idea that, in order to assess the relationship between the 

generation of new knowledge and economic growth, the focus on knowledge capital 

stock and traditional indicators of its quality such as patent citations and litigations, is 

not sufficient to capture the qualitative changes that affect the internal structure of 

knowledge bases at firm level and at more aggregate levels of analysis.  

 

The paper is organized as follows. Section 2 provides a synthesis of the relevant 

literature and proposes a set of hypotheses on knowledge recombination as a key feature 

in the emergence of new technological systems. Section 3 articulates the research 

strategy, by introducing the knowledge-related measures that we maintain are better 

suited to the analysis of recombinant knowledge, and qualifies our working hypotheses.  

Section 4 describes the datasets used in this study and Section 5 presents the empirical 

evidence concerning the evolution of the knowledge-related measures across the 

sampled countries in the ICT field, while Section 6 shows the results of the econometric 

analysis. Section 7 provides a discussion of the main findings and offers some 

conclusions. 
 

2. Theoretical framework 
 

For quite a long time, the generation of new knowledge was modelled as if it might be 

assimilated to the discovery of new oil fields. This approach has been superseded by 

more articulated methods and the so-called recombinant knowledge approach has 

provided a basis for the elaboration of new analytical framework. As Weitzman (1996: 

209) recalls: “when research is applied, new ideas arise out of existing ideas in some 
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kind of cumulative interactive process that intuitively has a different feel from 

prospecting for petroleum”. This insight led to the recombinant growth approach which 

views new ideas as being generated through the recombination of existing ideas, under 

the constraint of diminishing returns to scale in the performance of the research and 

development (R&D) activities necessary to apply new ideas to economic activities 

(Weitzman, 1998; Caminati, 2006).  

 

This notion of recombinant knowledge has attracted contributions from many different 

disciplines. A large literature on biological grafting has applied the so-called NK model 

to the economics of knowledge. According to Kauffman (1993), the success of a search 

process depends on the topography of a given knowledge landscape shaped by the 

complementary relations (K) among the different elements (N) of a given unit of 

knowledge. In the NK model, the features of the topological space within which the 

economic action that leads to the generation of new technological knowledge takes 

place, are not characterized from an economic viewpoint. Rather, the number of 

complementary relations and their distribution are given, as are the number of elements 

belonging to each unit of knowledge. As frequently occurs when biological metaphors 

are grafted onto economics, this is compounded by the fact that the number of 

components and their relations are exogenous and there is no economic analysis of their 

associated costs and revenues.  

 

As Fleming and Sorenson (2001:1035) note, while “in natural evolution, recombination 

occurs primarily through haphazard sex… inventors can purposely combine elements in 

technological evolution. Olsson (2000) injected some basic economics into the 

recombinant knowledge approach and introduced a preliminary metrics to account for 

its costs. Olsson and Frey (2002) identify the notion of technological space and suggest 

that the costs of knowledge recombination are a function of knowledge distance. They 

do not stretch their economic analysis to a consideration of the metrics related to the 

revenues associated with knowledge recombination. In their view, very much along the 

lines of the Weitzman’s combinatorial analysis, all recombinations are expected to yield 

the same revenue. 
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Fleming and Sorenson (2001) tested the hypothesis put forward by Kauffman according 

to which the likelihood of success depends upon the characteristics of the technological 

landscape into which the search process takes place. The technological landscape is 

defined in terms of interdependence among components. Too much interdependence 

among components engenders too high search costs. Too little interdependence reduces 

the chances of generating new technological knowledge. The empirical test of Fleming 

and Sorenson (2001) is based upon the analysis of the citations and the subclass 

references of patents. The former should capture the relevance of the new technology. 

The latter should capture the variety of components. The results suggest that an 

optimum can be found in between the two extremes of the non-monotonic relationship 

between the interdependence of the components of the technological landscape and the 

search. 

 

According to Saviotti, the essence of a knowledge base is its collective nature, which 

confers the basic properties of being a retrieval/interpretative and co-relational structure. 

These reflect the cumulative nature of knowledge and the key roles of similarity and 

complementarity in the activity of recombination. The higher the level of 

complementarity among different types of knowledge, the higher will be the probability 

that they can be combined. This representation also enables empirical analysis through 

the construction of an image of the knowledge base as a network in which the nodes are 

constituted by units of knowledge at a given level of aggregation. Several empirical 

investigations have been conducted based on information contained in patent documents 

(Saviotti, 2004, 2007; Grebel et al., 2006). 

 

The generation of new knowledge by means of the recombination of pre-existing 

knowledge items does not yield the same results in all possible directions. Some 

recombination processes are likely to be more fertile than others. Some knowledge 

items happen to be central in the generation of new knowledge  (Frenken 2004; Frenken 

and Nuvolari, 2004).  There is a large body of empirical work investigating the 

hypothesis that when a core body of new, radical knowledge emerges it promotes the 

generation of new knowledge in the rest of the economy (Bresnahan and Trajtenberg, 

1995). The empirical analysis of Hall and Trajtenberg (2008), based upon the citations 
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of ICT related patents confirms that a small number of central technologies has played a 

central role in feeding the advance in a variety of other fields.  

 

The application of system dynamics to the analysis of the new economics of knowledge 

suggests that the knowledge is a system that can be represented by means of a map 

where a variety of components or modules are linked by links of varying strength 

according to their cognitive distance. The map of the knowledge system shows that the 

knowledge space is rugged and is characterized by different levels of interdependence 

and interrelatedness among a variety of components. The relations among such 

components may be qualified in terms of fungibility, cumulability and compositeness 

according to the contribution that each body of knowledge is able to make in the 

recombinant generation of new technological knowledge. Radical technological change 

takes place when a variety of complementary bodies of knowledge come together to 

form a hub that provides knowledge externalities to the “peripheries”, which in their turn 

provide new inputs and help the pursuit of further recombination stretching its core 

(Antonelli, 1999 and 2008). 

 

Arthur (2009) makes an important contribution to understanding the generation of 

technological knowledge and eventually the introduction of new technologies with the 

analysis of the role of cumulativeness and variety on the costs and the efficiency of 

recombination processes. The work of Pier Paolo Saviotti provides basic guidance to 

explore these aspects of knowledge recombination processes. His work shows how new 

radical technologies are the result of the recombination of diverse knowledge items and 

at the same time activate a process of centred recombination based on flows of 

knowledge externalities. Active users of pre-existing technologies access the knowledge 

spilling over from a new radical technology and combine it with their core knowledge. 

This recombination then feeds back into the core technology (Saviotti, 1996; Saviotti et 

al., 2005).  

 

In this process core technologies act as hubs in the collective process of knowledge 

generation in which all the parties involved act intentionally, within a well-identified 

rent-seeking perspective. The outcome of these individual interactions is clearly 
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influenced by the population dynamics of the entries of more or less compatible agents 

with whom recombination can be practised. When such dynamics yield positive 

outcomes new gales emerge from a sequential process of selective aggregation in the 

knowledge space, of agents encompassing specific components with high levels of 

potential complementarity (Nesta and Saviotti, 2005, 2006; Krafft et al., 2009). 

 

A large empirical evidence at the firm level suggests that in the recombination process 

there are not unlimited opportunities, which are fertile at any time, and in any place. 

Knowledge recombination may occasionally yield positive returns in well-defined and 

circumscribed circumstances that take place in historic time, regional space and 

knowledge space, when a number of key conditions apply. In other cases, however, the 

returns from recombination may be less productive. Schumpeterian gales of innovation 

can be better understood as a historical process of emergence of new technological 

systems based upon a selective and sequential overlapping among complementary 

technologies that takes place in well defined circumstances (Leten, Belderbos, Van 

Looy, 2007). 

 

Knowledge recombination is intrinsically dynamic as it is characterized by clear 

sequences. The emergence of a core of complementary technologies is the first 

aggregating step based on highly selective exploration. This initial core of technologies 

is very productive and is characterized by low recombination costs and high revenues 

from the additional knowledge generated. This engenders a process of technological 

convergence. The emergence of new knowledge cores pushes firms already active in 

existing knowledge space to explore seemingly less complementary knowledge regions 

in an effort to take advantage of new, marginal opportunities for knowledge 

recombination. Eventually, the increasing variety of these recombinations will prove 

less and less effective and the diminishing returns to recombination will become 

apparent (Breschi, Lissoni, Malerba, 2003). 

 

The exploration of the map of knowledge activities in a system and the appreciation of 

their variety, coherence and heterogeneity provides key information to assess the quality 

of knowledge activities that take place in the system at each point in time, because it 



 9

enable to appreciate the efficiency of the recombination process that is at the origin of 

new knowledge (Fontana, Nuvolari,  Verspagen,  2009). 

 

The empirical evidence gathered along these lines of investigations enables to articulate 

our basic hypothesis as follows. Technological change is a major factor triggering 

productivity growth. This is even more evident in the case of ICT-related knowledge. 

The characteristics of the map of knowledge space affect the efficiency of the 

recombinant knowledge with clear effects upon the pace of technological change and 

therefore on productivity growth. More specifically we contend that: 

a) too much variety and heterogeneity of knowledge items increases the cognitive 

distance and hence reduces the yield of the recombination process;  

b) the lack of heterogeneity on the opposite reduces the opportunities for recombination 

and hence has also negative effects on the yield of the recombination process;  

c) the coherent variety of knowledge items, should help the recombination process and 

favour the generation of new knowledge. Coherent variety enables to foster 

recombination because it enables to use variety and yet to circumscribe it within limited 

domains. 

 

 

3. Research Strategy 
 

The argument elaborated so far leads us to maintain that new indicators of the quality of 

the knowledge portfolio of both firms and regions, industries or countries at more 

aggregate levels need to be elaborated, in order to gain a better assessment of the 

relationships between knowledge and productivity growth. Traditional indicators such as 

the knowledge capital stock or patent based measures of knowledge quality are not 

sufficient. Work on assessing the quality of knowledge stocks based on such indicators 

as patent citations, infringements and litigation (Jaffe and Trajtenberg, 2002; Harhoff 

and Reitzig, 2004; Harhoff et al., 2003) risks reflecting the effects of patent races and, 

hence, tends to dwell on the consequences of oligopolistic rivalry in product markets 

rather than the sheer quality of patents. Litigation and citations are much less relevant in 
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emerging technological fields where oligopolistic rivalry has not become the dominant 

market form (Hall and Ziedonis, 2001, 2007).  

 
On this basis we may therefore formulate a preliminary empirical specification to test 

the hypotheses spelled out in the previous section: 
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According to equation (1), At-1 is the rate of multi factor productivity (MFP) growth of 

country i and it is a function of n characteristics of the knowledge base of the ICT sector 

and m control variables, with u being the error term (see Appendix B for details on 

calculations of MFP growth rates). All the explanatory variables are lagged in order to 

reduce the risk of spurious correlations. Moreover, and as is usual in this type of 

empirical setting, we include in the structural equation the lagged level of productivity, 

1,ln −tiA , in order to capture the possibility of mean reversion. 

 

Our approach allows us to identify and measure a new qualification of technological 

knowledge. The exploration of the knowledge space enables to qualify the distribution 

of knowledge items and their relations so as to assess the extent to which the extent a 

new unit of technological knowledge feeds the generation of technological knowledge 

in other fields and the extent to which the generation of new technological knowledge in 

a field depends on the contributions of knowledge inputs from other fields.4  

 

The generation of knowledge is enhanced by the selective recombination of ideas 

centred upon a set of core technologies with high levels of fungibility, and feeds the 

generation of further innovations by stimulating their knowledge compositeness. 

Gradually diminishing returns to recombination will limit the growth of new 

technological systems: excess variety matters. The introduction and dissemination of 

new ICTs in the last two decades of the 20th century is characterized by this dynamics. 

                                                 
4 Hence knowledge fungibility and knowledge compositeness can be considered two aspects of 
knowledge recombination (Antonelli, 2008; Antonelli and Calderini, 2008; Antonelli et al., 2008).  
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Detailed analysis of the characteristics of the knowledge base, drawing on patent 

statistics, enables us to identify the actual dynamics of recombinant knowledge by 

exploiting the distribution of patents across technological classes. We assume that the 

distribution of co-occurrences of technological classes across the patent portfolios of 

agents and countries can be considered a reliable indicator of the extent to which 

recombination is involved and has contributed to economic growth in each context. 

 

The implementation of the indicators proxying the properties of the knowledge base is 

carried out by using patent statistics5. Note that, to introduce some rigidities into 

national technological portfolios and to compensate for the intrinsic volatility of 

patenting behaviour, each patent is assumed to be in force for five years. We calculated 

most of the relevant variables, like revealed technology advantage, technological variety 

and knowledge coherence, by relying on the technological classes assigned to each 

patent on the basis of the International Patent Classification (IPC)6. Let us turn now to 

describing the knowledge-related variables in more detail: 

 

1) First, the ICT knowledge stock is a proxy measure for the rate at which 

knowledge is produced within each country’s ICT sector, traditionally used to 

measure the output from knowledge generating activities. It is computed for 

each country, at each year, by applying the permanent inventory method to 

patent applications. We calculate it as the cumulated stock of patent applications 

in the ICT field using a rate of obsolescence of 15% per 
                                                 
5 The limitations of patent statistics as indicators of innovation activities are well known and include their 
sector-specificity, existence of non-patentable innovations and the fact that there are other protection 
tools. Moreover, the propensity to patent varies over time as a function of patenting cost, and is more 
likely to feature large firms (Pavitt, 1985; Levin et al., 1987; Griliches, 1990). Nevertheless, patents can 
be useful measures of new knowledge production especially in the context of analyses of aggregate 
innovation performance (Acs et al., 2002). There is also debate over patents being considered an output 
rather than an input of innovation activity and empirical analysis shows that patents and R&D are 
dominated by a contemporaneous relationship, further supporting use of patents as a proxy for innovation 
(Hall et al., 1986). Patent application is a time- and resource-consuming process, likely to produce ex-
ante selection of the innovations to be patented which enables identification of high-value innovations 
stemming from systematic and more formalized innovation efforts, which are the object of our analysis. 
6 Since Jaffe (1986 and 1989), technological fields have been used to calculate technology-related 
variables. Out of the former empirical studies using IPC codes assigned to European Patents it is worth 
recalling the one by Verspagen (1997). More recently IPC codes have been successfully employed in 
empirical analyses to calculate technological variety and relatedness (See Breschi et al., 2003; Nesta and 
Saviotti, 2005 and 2006; Nesta, 2008). 
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 is the flow of patent applications 

in sector s in country i, and δ is the rate of obsolescence7. This measure has 

some shortcomings, however, in that it is affected by cross-country size 

differences, which means we need an index able to discount for country size. To 

this end, it is useful to look at the ratio between ICT knowledge stock and total 

knowledge stock for each country at each year: 
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However, an index that is better suited to measuring the relative technological 

strengths (or weaknesses) of countries is represented by revealed technological 

advantage (RTA), developed by Soete (1987). This is defined as follows: 
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The RTA index varies around unity, such that values greater than 1 indicate that 

country i is relatively strong in technology s, compared to other countries and 

the same technological field, while values less than 1 indicate a relative 

weakness8. 

 

2) As argued in Section 2, traditional measures of innovation built on a purely 

quantitative account of knowledge capital stock or qualitative indices based on 

                                                 
7 This depreciation rate is very common in empirical analyses that derives the knowledge stock either 
from R&D investments (Griliches, 1990; Loos and Verspagen, 2000) or from patent applications (Nesta, 
2008). 
8 It is worth noting that the inclusion of the RTA index in econometric specifications may yield some 
biased estimates (Laursen, 1998). This is due to the fact that the index squeezes the values signalling non 
specialization between 0 and 1, while values signalling specialization are between 1 and infinity. This 
gives rise to a skewed distribution that in turn implies the violation the normality assumptions of the error 
term in the regression. For this reason it is recommended to use some transformation of the index that 
makes its distribution close to the normal one. In the following econometric estimations we have taken 
standardized values for the RTA, the distribution of which proximate very much normality.  
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patent citations and litigation do not capture the effects of variety, selective 

recombination and complementarity in the generation of technological 

knowledge. Thus, we use indices based on the co-occurrence of technological 

classes within patent applications. This means that the main focus of our 

analysis is on multi-technology patents, making it necessary to control for their 

time evolution by including the following variable in the regression: 

  
∑
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If q is the set of multi-technology patents, the index MTP in equation (4) defines 

the share of these patent in the whole technological portfolio of each country in 

the ICT sector. It should be noted that the distribution of this variable is highly 

skewed to the right, as the knowledge stock in all the sampled countries is 

dominated by multi-technology patents from the beginning of the time period of 

our analysis. 

 

3) We measure technological variety in each country’s ICT knowledge base using 

the information entropy index. Entropy measures the degree of disorder or 

randomness in the system, such that systems characterized by high entropy are 

also characterized by a high degree of uncertainty (Saviotti, 1988). The entropy 

index was proposed for application in economic analysis by Theil (1967). Its 

earlier applications were aimed at measuring diversity in an industry (or a 

sample of firms within an industry) against a uniform distribution of economic 

activities in all sectors, or firms (Attaran, 1985; Frenken et al., 2007).  

 

Unlike the more common measures of variety and concentration, information 

entropy has some interesting properties (Frenken, 2004), one being its 

multidimensional extension. Consider a pair of events (Xl, Yj), and the 

probability of their co-occurrence plj. A two dimensional total variety (TV) 

measure can be expressed as follows: 
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If we take plj to be the probability that two technological classes l and j co-occur 

within the same patent, then the measure of multidimensional entropy focuses on 

the variety of co-occurrences of technological classes within patent applications. 

Also, the total index can be decomposed in a “within” and a “between” part, at 

anytime that the events being investigated can be aggregated in a smaller 

number of subsets. Within-entropy measures the average degree of disorder or 

variety within subsets, while between-entropy focuses on the subsets, measuring 

the variety across them. Frenken et al. (2007) refer to between- and within-group 

entropy as respectively unrelated and related variety. 

 

We can show that the decomposition theorem holds for the multidimensional 

case. Hence, if l∈Sg and j∈Sz (g = 1,…,G; z = 1,…, Z), we can rewrite H(X,Y) as 

follows: 
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where the first term on the right-hand-side is between-entropy and the second 

term is the (weighted) within-entropy. In particular: 
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We can refer, therefore, to between- and within-entropy respectively as 

unrelated technological variety (UTV) and related technological variety (RTV). 

The distinction between related and unrelated variety is based on the assumption 

that any pair of entities included in the former generally are more closely related, 

or more similar to any pair of entities included in the latter. This assumption is 

reasonable when a given type of entity (patent, industrial sector, trade categories 

etc.) is organized according to a hierarchical classification. In this case each 

class at a given level of aggregation contains “smaller” classes, which, in turn 

contain yet “smaller” classes. Here, small refers to a low level of aggregation.  

 

We can reasonably expect then that the average pair of entities at a given level of 

aggregation will be more similar than the average pair of entities at a higher 

level of aggregation. Thus, what we call related variety is measured at a lower 

level of aggregation (4 digit class within a 1 digit macro-class) than unrelated 

variety (across 1 digit macro-classes). This distinction is important because we 

can expect unrelated (or inter-group) variety to negatively affect MFP growth, 

while related (or intra-group) variety is expected to be positively related to MFP 

growth. Moreover, the evolution of total variety is heavily influenced by the 

relative dynamics of related and unrelated variety, such that if unrelated variety 

is dominant the effects of total variety on MFP growth can be expected to be 

negative, while the opposite holds if related technological variety dominates the 

total index (Krafft et al., 2009). 

 

4) Finally, we need a proxy for technological distance that emphasizes the 

complementarities among technologies combined within patent applications. A 

useful index of distance might build on the measure for technological proximity. 

Such a measure was proposed by Jaffe (1986, 1989), who investigated the 

proximity of firms’ technological portfolios. Breschi et al. (2003) adapted 

Jaffe’s index to measure the technological proximity between two technologies. 
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This index can be considered the inverse of cognitive distance among different 

technologies. 

 

Cognitive distance, however, measures the degree of dissimilarity among 

technologies, and can be applied to an investigation of the possible emergence of 

economies of scope and the effects on economic performance. Based on the 

general purpose aspects of ICTs, we need to focus here on the degree to which 

different technologies are related each other in terms of a given piece of 

knowledge, say a patent, which could not exist without their co-occurrence. 

Such technologies are complementary, therefore, in that they combine to bring 

about the knowledge contained in the patent. We thus calculate the coherence 

(R) of the ICT knowledge base in each country, defined as the average 

relatedness of any technology randomly chosen from within the sector, with 

respect to any other technology (Nesta and Saviotti, 2005, 2006; Nesta, 2008).  

 

To calculate the knowledge coherence index requires a number of steps. In what 

follows we describe its calculation at country level. First, we calculate the 

weighted average relatedness WARl of technology l with respect to all other 

technologies present in the sector. This measure builds on the measure of 

technological relatedness τlj, which is introduced in Appendix. Following Teece 

et al. (1994), WARl is defined as the degree to which technology l is related to all 

other technologies j≠l within the country i, weighted by the patent count Pjit: 

 

∑
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        (9) 

 

Finally, the coherence of knowledge base within the sector is defined as the 

weighted average of the WARlit measure: 
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It should be noted that this index, implemented by analysing co-occurrences of 

technological classes within patent applications, measures the degree to which 

the services rendered by the co-occurring technologies complement one another. 

The relatedness measure τ lj (see the Appendix A) indicates that utilization of 

technology l implies utilization also of technology j in order to perform specific 

functions, which are not reducible to their independent use. The coherence index 

is thus appropriate for our purposes in this paper. 

 

We are now able to qualify our working hypotheses by giving them an operational 

translation. In this paper we hypothesize that the evolution of the knowledge base 

underlying ICTs is likely to trigger economic growth as long as it is articulated around a 

wide array of diverse, but highly complementary technologies, while the concentration 

of emergent variety within well defined boundaries is likely to yield negative effects on 

technological opportunities and, hence, on economic growth. 

 

More specifically we test the hypothesis that the amount of technological change 

introduced in an economic system, as measured by total factor productivity growth will 

be larger:  

a) the larger the technological specialization of the knowledge activities within the 

system;  

b) the larger the coherence of the knowledge activities that take place within an 

economic system;  

c) the lower the related and unrelated variety of knowledge activities. 

 

To test this hypothesis econometrically requires us to rewrite equation (1) so as to 

model the MFP growth rate as a function of the knowledge base characteristics: 
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The second part of Equation (11) comprises the control variables, where µi represents 

country fixed effects, µt captures time fixed effects, and MTPi,t-1 refers to the share of 

multi-technology patents in the ICT sector in each country. The first part of the equation 

represents the properties of the knowledge base, i.e. revealed technology advantage 

(RTA), knowledge coherence (R) and total variety index (TV). In order to appreciate the 

effects of related (RTV) and unrelated (UTV), we estimate Equation (11) alternating the 

three indexes for variety.  
 

4. The Data  
 
In order to test the working hypothesis proposed in Section 3, we combine a dataset 

containing information on the economic variables with a dataset of patent applications. 

The former is used to calculate the MFP index described above. For this purpose we 

exploit the data on gross domestic product (GDP), labour income, employment and 

gross fixed capital formation from the OECD Stan database; information on total hours 

worked is taken from the Groningen Growth and Development Centre (www.ggdc.net).  

 

Data on patent applications are drawn from the European Patent Office (EPO)9 dataset 

(Espacenet). The identification of ICT-related patents is somewhat controversial, due to 

the criteria used to build the classifications. In particular, the use of the International 

Patent Classification (IPC) has been criticized for its inherently function-oriented nature 

(Corrocher et al., 2007). However, several empirical contributions use IPC to identify 

the borders of the ICT sector. We decided to merge the classification proposed by the 

OECD with those developed by the French Observatoire des Sciences et des Techniques 

(OST), in order to achieve a more inclusive representation. These classes are reported in 

Table 1. 

>>>INSERT TABLE 1 ABOUT HERE<<< 

                                                 
9 We are aware this may introduce a “home bias” in the analysis, which could be solved by considering 
triadic patents. Unfortunately, we are not able to extract the same set of information about triadic patents 
and thus are obliged to limit our analysis to European patents. 
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The initial EPO dataset consisted of 115,771 patent applications, which we assigned to 

countries based on the first two digits of their priority number.10 This allowed us to 

classify about 90% of the dataset. The time coverage of the dataset was from 1978 to 

2006: we focus on the period 1981-2003, and include only countries with observations 

for at least 22 years. The resulting sample includes 96,149 patent applications, 

distributed across 14 OECD countries.  

 

Table 2 presents the dataset showing that the distribution of patent applications in the 

ICT field is rather skewed, with 42% concentrated in the US. It should be noted that this 

is a considerable underestimation of the US weight; it would be reasonable to expect 

that US firms will tend to have more patents registered with the US Patent and 

Trademark Office (USPTO) than with the EPO. This also applies to Japanese patent 

applications, which in our case are 15% of the observed total. In sum, 80% of the 

patents in the telecommunication industry are concentrated in four countries, i.e. the 

US, Japan, Germany and France, with the UK ranked fifth with a share of about 7% of 

total patent applications. 

>>>INSERT TABLE 2 ABOUT HERE<<< 

A look at the evolution of patenting in the ICT sector across countries confirms this 

preliminary evidence. Table 3 and Figure 1 report the breakdown of patent applications 

by country, cumulated over four years, to allow for the high degree of volatility of 

patent applications.  

>>>INSERT TABLE 3 ABOUT HERE<<< 

>>>INSERT FIGURE 1 ABOUT HERE<<< 

We can see that the gap between the US and the other countries analysed began to 

widen in the early 1990s (in Figure 1 US data are on the right y-axis). Japan’s patent 

applications are initially below German and French applications: Japan overtakes 

France in 1994 and Germany in 2000. Note also that in the earliest years France is 

ranked higher than Germany and the UK, but was overtaken by Germany in 1995 and 

                                                 
10 The most common means of assigning patents to territorial units is by inventor’s address. Following 
this procedure is much important when analysing the effects of knowledge spillovers on innovation 
performance. Although our dataset is quite detailed, we do not have information on inventors’ addresses. 
However, we analyse the effects of changes to the internal structure of the knowledge base on 
productivity growth and, therefore, on the use of technological knowledge. Thus, we do not expect that 
this problem significantly affects our estimates. 
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by the UK in 2000. We now turn to a detailed analysis of the dynamics of the properties 

of the ICT knowledge base in the sampled countries, in the context of the stylized facts 

on the evolution of the ICT sector. 

 

Figure 2 depicts the aggregate dynamics of the core technological classes over time. In 

the first decade of our analysis there are two groups, based on frequency of 

technological classes. Most classes are cited in less than a hundred patents in the period 

1981-1986, and patent applications appear to be concentrated in a four classes, i.e. 

H03K (pulse technique), H04B (transmission), H04L (transmission of digital 

information) and H04Q (selecting). It is interesting that the first two classes, which are 

related to the communication aspect of ICTs, are the most frequent while the latter two, 

which are related more to the transmission of data in digital formats, although important 

are less developed.  

INSERT FIGURE 2 ABOUT HERE 

From a dynamic viewpoint, the H04B class gained momentum in the early 1990s and 

continued sustained growth to 2003. The H04Q class followed roughly the same path, 

although it remained at lower levels in absolute terms. The dynamics of H04L and H04J 

are also interesting. The former starts to increase at a fairly rapid rate after 1995, and 

from 1999 onwards is the class most frequently cited in patent applications. This is in 

line with anecdotal evidence that the convergence of computing and 

telecommunications technology became central in the 1990s, and 1995 corresponds 

roughly to the period of massive Internet diffusion and demonstration of its potential 

(van den Ende and Dolfsma, 2005; Fransman, 2007). The H04J class (multiplex 

communication) shows a marked increase in the late 1990s, corresponding with the 

surge in the technologies allowing for fast communication through the asynchronous 

transmission of digital signals on the existing infrastructures (such as ADSL). 
 

5. Cross-country dynamics of ICT knowledge base: The 

empirical evidence 
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The evolution of ICTs and their diffusion within the economic system have had 

significant effects on economic performance, renewing productivity gaps between the 

US and the other advanced countries. A large body of empirical literature documents 

this phenomenon, ascribing the success of the US economy up to the second half of the 

1990s to the ability to trigger demand for ICTs, and the simultaneous rise of the services 

sector (Jorgenson, 2001). 

 

The continuing US leadership in the ICT sector suggests the existence of a path of 

continuing exploitation of the technological opportunities uncovered by research in the 

field. This is the case at least until the early 1990s. The change in technological focus 

from the component to the content/application layer coincides with a marked 

discontinuity in technological competences. The parallel developments of the other 

advanced countries suggests that those with a relatively strong commitment to research 

in the ICT sectors, have been able, through imitation, to follow the US along this 

technological path. At the same time, countries with a weaker research focus have 

experienced a somewhat less favourable dynamics. 

 

It is important, therefore, to explore the evolution of the relative intensity of research in 

the sampled countries. Table 4 reports the dynamics of RTA, calculated according to 

Equation (2). The results of our calculations show that our sample of OECD countries 

falls roughly into three groups, according to the actual levels of RTA and its dynamics:  

 

i) first, there is a large number of older competitors or the incumbents 

(including the US, the UK, France, Germany and Australia), which are 

characterized by relatively high levels of RTA already in the 1980s. Most are 

characterized by increasing RTA in the 1980s followed by a decrease in the 

1990s. The US is an exception in that its RTA in ICT increases continuously 

during the 1980s and the 1990s, and at an even rate; 

ii) second, there is the group of late-leading countries, which includes a few 

Northern European countries, mainly Finland, Norway and Sweden. These 

countries are characterized by low levels of RTA in the 1980s (especially in 
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Finland and Norway) and a steep increase in RTA in the 1990s, allowing 

them to overcome the group of incumbents; 

iii) third, there is the group of laggards, such as Canada, Japan, Italy, etc. These 

countries exhibit quite low levels of RTA, and it is difficult to identify any 

pattern of evolution. For example, the RTA index is continuously increasing 

in the case of Japan, while it is stable for Canada and constantly decreasing 

for Italy. 

 

 

>>> INSERT TABLE 4 ABOUT HERE <<< 

This grouping has some interesting implications in terms of variety indexes. Table 5 

reports the breakdown by country of the evolution of general variety, calculated 

following Equation (4). It is evident that the incumbent countries (the first group) are 

characterized by the highest levels of the variety index. The dynamics are generally 

quite stable over time, with the exception of Australia, whose variety index rapidly 

increased in the 1980s, reaching the same levels as the other countries in the group. Out 

of the late-leaders, the technological variety index for Sweden increases smoothly 

during the 1980s, remaining stable in the 1990s at levels very similar to the incumbent 

countries. The dynamics for Finland and Norway are characterized by a marked 

increase in the 1980s, and a table pattern along the 1990s at levels lower than for 

Sweden. Finally, the index of variety for the group of lagging countries shows no clear-

cut pattern. Japan’s is similar to the incumbent countries, while Austria and Canada are 

characterized by low levels in the 1980s which increase rapidly in the 1990s.  

>>> INSERT TABLE 5 ABOUT HERE <<< 

The general variety index can be decomposed into related (Table 6) and unrelated 

(Table 7) variety, both tables showing that the incumbent group of countries is 

characterized by high levels of related variety, mostly stable over time, with unrelated 

variety generally at lower levels across the time span. Late-leading countries generally 

have high and increasing levels of related variety (though generally below the values for 

incumbents), and especially in the 1990s, and comparatively low levels of unrelated 

variety although in the case of Norway and Finland in the 1980s, unrelated variety has a 

higher weight than related variety. In the laggard group, the dynamics for Japan are 
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similar to that of the incumbents, while for Canada, Austria and Italy, unrelated variety 

has a comparatively higher weight in the 1980s, and lower weight in the 1990s. 

>>> INSERT TABLES 6 AND 7 ABOUT HERE <<< 

The evidence on RTA and variety is reflected in the dynamics of knowledge coherence 

(Table 8). US values for knowledge coherence are positive in the first half of the 1980s 

when research in the ICT sector was focused on the component level, and was 

exploiting the technological potentials established in the 1960s and 1970s. The 

emergence of the technical conditions leading to Internet diffusion, and the related shift 

in technological efforts towards the development of content applications introduced a 

discontinuity that is reflected in the falling coherence index along the 1990s.  

>>> INSERT TABLE 8 ABOUT HERE <<< 

Within the group of incumbents, France shows increasing coherence along the 1980s 

with a positive index in 1984, when then dropped to below zero in the 1990s. The 

values for Germany during the 1980s fluctuate around zero, being negative until 1983 

and then positive up to 1992, and negative for the remainder of the 1990s. The countries 

in the other two groups are also characterized by dramatic falls in knowledge coherence 

during the observed period. The evidence for Canada is noteworthy in that in the early 

1980s the index is quite high, but decreases over time and in 2003 is lower than any 

other sampled country. 

 

 

6. Econometric results 
In order to assess the effects of the properties of the knowledge base on MFP, we 

carried out panel data fixed-effects estimations of Equation (11). The results are 

reported in Tables 9 and 10. The estimations differ in that in the former we proxied the 

relative weight of ICTs in each country by the ratio between ICT knowledge stock and 

total knowledge stock, following Equation (1). In the latter (Table 10) we use the RTA 

index, which gives us information on the relative technological specialization of each 

country in the ICT sector. 

 

Table 9 column (1) reports the estimation by considering total variety. The coefficient 

of the share of knowledge stock produced in the ICT sectors has a positive and 
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significant sign. As expected, productivity growth is likely to grow as the share of ICT-

related knowledge increases. The coefficient of knowledge coherence is also positive 

and significant. Again, consistent with our working hypotheses, the clustering of 

knowledge generating activities around a distinctive core of technologies is likely to 

enhance the innovation process and trigger productivity growth. The higher is the 

degree of internal coherence of the knowledge base, the better the economic 

performance.  
 

The negative and significant sign for variety is also in line with our theoretical 

framework and does not contradict existing firm and regional level evidence (Nesta, 

2008; Quatraro, 2008). Our results do contrast with the findings of recent empirical 

studies on the effects of technological diversity on firms’ innovative performance, 

which show positive and significant coefficients (Nesta and Saviotti, 2005; Leten et al., 

2007; Garcia-Vega, 2006; D’Este, 2005). However, we cannot compare the findings 

from these studies with the present analysis for a number of reasons. First, most of these 

studies focus on the effects of technological diversification on innovation performance, 

using patent numbers as a dependent variable. It would be expected that an increase in 

patents will be accompanied by an increase in technological diversity (and vice versa). 

However, this does not necessarily apply to productivity, which measures the extent to 

which profitable innovations have been successfully adopted by economic agents. 

Moreover, technological diversity is proxied either by the inverse Herfindahl index or 

by a measure of technological scope, which is different from measuring technological 

variety based on information entropy. We should also add that all the studies referred to 

above consider the occurrence of a single technological class, and not combinations of 

technological classes whereas our study investigates the effects on productivity growth 

of technological variety captured by the overlapping of technological classes as 

measured by the co-occurrence of technological classes within the same patent. The use 

of multidimensional information entropy allows us to quantify the extent to which 

growth in technological activity is characterized by an increase in the observed 

combinations of technological classes (Saviotti, 1988).  
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Our results confirm that search processes directed towards new technological fields, 

leading to previously untried knowledge recombination, characterize the changes in the 

technological environment. During the early phases of this process, information entropy 

is likely to increase. Once the technological system is established, the technological 

environment becomes relatively stable. Establishment of the technological system is 

characterized by the likely introduction of incremental innovations within well defined 

technological boundaries. 

 

During the mature stage of the technology lifecycle innovation activities are likely to be 

directed towards the search for new applications of the knowledge base, featuring the 

particular technological system. These applications may well be outside the original 

technological boundaries, but may still be profitable, as in the case of the application of 

ICTs to the manufacture of medical devices, which is the same as our measure of 

unrelated variety. However, the increase in unrelated variety leads to an increased 

probability of less fertile combinations being explored. For this reason, at the aggregate 

level we would expect unrelated variety to have a negative effect on productivity 

growth. The opposite argument holds in the case of related variety, which is likely to 

characterize the establishment of the technological system and the phase of exploitation 

of its technological opportunities.  

 

At a general level it is difficult, therefore, to predict the sign of the economic effects of 

technological variety, as they are largely influenced by the relative stage of 

development of the technological system under scrutiny, and by the associated 

dominance of related and unrelated variety. Diminishing returns to variety are likely to 

emerge in the mature stage when technological activities are featured by random 

screening across brand new combinations. As a consequence, when unrelated (related) 

variety shapes the evolution of technological variety, this latter is likely to have a 

negative (positive) effect on economic performance (Krafft et al., 2009). 

>>>INSERT TABLE 9 ABOUT HERE<<< 

We need to understand which of these two factors is likely to drive total variety. In 

columns (2) and (3) of Table 9 the index is articulated respectively as unrelated and 

related variety. Nevertheless, the results seem consistent with our argument of 
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diminishing returns to recombination. The econometric findings show that the effect of 

related variety on productivity growth is not statistically significant, while the 

coefficient of unrelated variety is negative and significant. This means that the observed 

negative effect of technological variety is driven by its “unrelated” component. This 

result is consistent with the evidence on knowledge coherence, which again has a 

positive and significant coefficient. The increase in knowledge coherence is likely to be 

associated with increasing productivity growth rates. When knowledge coherence 

increases, then unrelated variety will fall or related variety will increase, or both. Our 

results shows that the patterns of productivity growth are characterized by a decrease in 

unrelated variety and non-significant changes in related variety.    

 

Table 10 presents the results for the estimations including the RTA instead of ICTK. The 

coefficient of the RTA is positive and significant (Column (1)). This amounts to saying 

that the degree of relative technological specialization of countries in ICT has a positive 

effect on productivity growth. Productivity gaps, therefore, may be ascribed in part to 

the different technological focus of countries. Knowledge coherence has a positive and 

significant sign, in line with the previous estimation and the general theoretical 

framework underpinning the analysis. Total variety index, again, is negatively related to 

MFP growth and in this case calls for a deeper understanding of the relative impact of 

related and unrelated variety.  

>>> INSERT TABLE 10 ABOUT HERE <<< 

Columns (2) and (3) respectively present the effects of unrelated and related variety. 

Overall, the results are very similar to the previous estimations. The positive and 

significant sign of knowledge coherence is persistent across models and estimations, 

confirming the robustness of this result, and the coefficients of related and unrelated 

variety are in line with the previous estimation. The negative effects of technological 

variety seem to be driven by unrelated variety: the coefficient is negative and 

significant. Related variety does not seem to have an appreciable effect on cross-country 

differential growth rates. 

 

The results of our estimations provide support for the hypothesis that the generation of 

knowledge in the ICT sector is likely to trigger productivity growth due to the inherent 
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general purpose character of the technology. ICTs emerged from the recombination of a 

number of distinct bits of knowledge, from different technological fields, but with high 

degrees of complementarity. Failure to bring together complementary knowledge is 

likely to result in reduced knowledge coherence and an increase in unrelated variety, 

both of which are detrimental to productivity growth. 
 

7. Conclusions 

 
The dynamics of knowledge generation is a challenging area of investigation. 

According to a growing literature on the system dynamics of technological change, new 

knowledge emerges from the recombination of existing knowledge. The characteristics 

of the map into which the recombination process takes place are most important. 

Knowledge recombination is more effective and fertile when and where the different 

knowledge items available are characterized by lower levels of variety and higher levels 

of specialization and coherence. In these circumstances recombination takes place more 

effectively and it can lead to the introduction of a new technological system. Knowledge 

recombination in this case is a process whose onset is characterized by the convergence 

of a core of complementary technologies. The steps that follow are fuelled by the 

gradual spread of the core to a growing number of other knowledge fields. Eventually, 

diminishing returns to knowledge recombination emerge.  

 

Analysis of the co-occurrences of technologies within patent stocks allows us to study 

empirically the dynamics of knowledge recombination. Co-occurences can be 

considered a reliable indicator of the overlapping of a new knowledge across existing 

technological classes. Frequency is relevant: only a few patents fall within just one 

technological class. The distribution of these co-occurrences and their dynamics can 

reveal key information about the emergence of new core technologies and their eventual 

growth into technological systems. Representing the knowledge base as a network, with 

an emphasis on its dynamic aspects, enables the identification of the changing structure 

of technological knowledge. 
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In this paper we applied this theoretical framework and related empirical methodology, 

to the ICT sector, for the period 1983 to 2003. ICTs have been a major source of new 

technological knowledge and technological innovations, and became the engine of 

economic growth in the advanced countries in the last two decades of the 20th century 

and the first years of the 21st century.  

 

The rich empirical evidence on the dynamics of technological knowledge derived from 

analysis of the co-occurrence of technological classes within patents issued by the EPO 

in the period 1981-2003, across the different classes, has enabled the identification of a 

clear sequence in the development of technological knowledge. Following a period of 

concentrated technological advance in a few patent classes, we identified a phase of 

sustained recombinant growth.  

 

Systematic exploration of the knowledge base using measures such as related and 

unrelated variety, coherence and cognitive distance, confirm that the grafting of 

recombinant ICT knowledge onto an increasing array of other patent classes has 

characterized the growth of technological knowledge since the 1980s. The structure of 

the knowledge base varies across countries and over time. Based on our evidence, 

countries can be categorized in three groups. The first consists of the older incumbents 

and includes the US, the UK, France, Germany and Australia, which, already in the 

1980s, were characterized by relatively high levels of knowledge stock. The second is a 

group of fast-leading countries including Finland, Norway and Sweden, which are 

characterized by a low level knowledge base in the 1980s but show a steep increase in 

the 1990s. The third group gathers together laggards such as Canada, Italy, etc..  

 

Our dynamic network analysis of the evolution of knowledge co-occurrence in two or 

more patenting classes has identified a clear pattern of evolution of the knowledge base. 

The incumbent group was the first to undergo a process of branching out of ICT 

knowledge, and a sustained phase of recombinant growth of the knowledge base. 

Digital knowledge promoted the emergence of new technological knowledge in a wide 

variety of other technological fields. Other fast moving countries have proved able to 
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catch-up to an extent but the laggards have been excluded from the benefits of 

recombinant growth. 

 

Our empirical results support the basic hypothesis that the evolution of the knowledge 

base underlying ICTs in the form of recombinant knowledge, has favoured economic 

growth through the application of new a core of highly complementary technologies. 

Attempts to extend knowledge recombination efforts beyond well defined boundaries of 

strong complementarity, show a decline in technological opportunities with negative 

effects on the rates of increase of MFP and, hence, economic growth. Countries best 

able to master recombinant dynamics have proven able to achieve more rapid increase 

of their MFP growth. 
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Appendix A – The Calculation of technological relatedness 
To calculate our knowledge coherence index, we define the parameter τ, i.e. 

technological relatedness, in equation (12) following Nesta (2008). We first calculate 

the relatedness matrix. The technological universe consists of k patent applications. Let 

Plk = 1 if patent k is assigned to technology l [l = 1, …, n], and 0 otherwise. The total 

number of patents assigned to technology l is ∑= k lkl PO . Similarly, the total number 

of patents assigned to technology j is ∑= k jkj PO . Since two technologies may occur 

within the same patent, ≠∩ jl OO ∅, the observed the number of observed co-

occurrences of technologies l and j will be ∑= k jklklj PPJ . Applying this relationship to 

all possible pairs yields a square matrix Ω (n × n) whose generic cell is the observed 

number of co-occurrences:  
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We assume that the number ilj of patents assigned to both technologies, l and j, is a 

hypergeometric random variable of mean and variance: 
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If the observed number of co-occurrences Jlj is larger than the expected number of 

random co-occurrences µlj, then the two technologies are closely related: the fact the 

two technologies occur together in the number of patents xlj is not random. The measure 

of relatedness, then, is given by the difference between the observed number and the 

expected number of co-occurrences, weighted by their standard deviation: 
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Note that this relatedness measure has no lower and upper bounds: ] [+∞∞−∈ ;ljτ . 

Moreover, the index shows a distribution similar to a t-student, so that if 

] [96.1;96.1 +−∈ljτ , we can safely accept the null hypothesis of non-relatedness of the 

two technologies l and j. The technological relatedness matrix Ω’ can then be 

considered a weighting scheme to evaluate the degree to which the internal structure of 

technological knowledge in the ICT sector is integrated. 
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Appendix B - Multifactor productivity calculations 
 

In order to investigate the effects of the characteristics of ICT knowledge base on 

productivity growth, we first calculate an index of multi factor productivity (MFP) 

following the standard growth accounting approach (Solow, 1957; Jorgenson, 1995; 

OECD, 2001). We start by assuming that the national economy can be represented by a 

general Cobb-Douglas production function with constant returns to scale: 

 
itit

itititit LCAY βα=          (B1) 

 

where Lit is the total hours worked in country i at time t, Cit is the level of the capital 

stock in country i at time t, and Ait is the level of MFP in country i at time t. 

 

Following Euler’s theorem, output elasticities are calculated (not estimated) using 

accounting data, assuming constant returns to scale and perfect competition in both 

product and factor markets11. The output elasticity of labour therefore is computed as 

the factor share in total income: 

 

titititi YLw ,,,, /)(=β          (B2) 

titi ,, 1 βα −=           (B3) 

 

where w is the average wage rate in country i at time t. Thus, we obtain elasticities that 

vary both over time and across countries. 

 

The discrete approximation of the annual growth rate of MFP can be calculated in the 

usual way: 

 

                                                 
11 We acknowledge that these may turn out to be very strong assumptions. Nonetheless such approach, 
fairly common in the literature about the determinants of productivty growth, has the advantage of 
allowing for the calculation of different inputs’ elasticities for each country at each time. It therefore 
accounts for cross-sectional and time variation. 
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Figure 1 – Patent applications in the ICT sector, 4 years cumulative count 
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Figure 2 - Dynamics of patent applications in the core ICT technological classes 
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Table 1 - IPC classes used to define the ICT sector 
 

G08C transmission systems for measured values, control or similar signals 

H01P waveguides; resonators, lines or other devices of the waveguide type 

H01Q aerials 

H03B generation of oscillations, directly or by frequency changing, by circuits 
employing active elements which operate in a non-switching manner; 
generation of noise by such circuits 

H03C modulation 

H03D demodulation or transference of modulation from one carrier to another 

H03H impedance networks, e.g. resonant circuits; resonators 

H03K pulse technique 

H03L automatic control, starting, synchronization, or stabilization of 
generators of electronic oscillations or pulses 

H03M coding, decoding or code conversion, in general 

H04B transmission 

H04H broadcast communication 

H04J multiplex communication 

H04K secret communication; jamming of communication 

H04L transmission of digital information, e.g. telegraphic communication 

H04Q selecting 
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Table 2 - Cross country distribution of patent applications 
 

country Freq. Percent Cum. 
US 41,963 43.64 43.64 
JP 14,539 15.12 58.76 
DE 10,867 11.3 70.06 
FR 8,606 8.95 79.01 
GB 7,420 7.72 86.73 
SE 4,024 4.19 90.92 
FI 3,806 3.96 94.88 
NL 1,030 1.07 95.95 
AU 974 1.01 96.96 
IT 820 0.85 97.81 
CH 667 0.69 98.5 
CA 453 0.47 98.97 
AT 339 0.35 99.32 
NO 283 0.29 99.61 
DK 266 0.28 99.89 
BE 92 0.1 100 
Total 96,149 100  

 



 44 

Table 3 - Country breakdown of patent applications (4 years cumulated), by year. 
 

 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 

AT 3 4 5 7 11 10 10 10 16 23 37 53 59 70 93 110 128 136 119 94 75 66 63 61 47 

AU 22 27 30 35 40 51 63 79 92 105 102 99 115 112 133 137 122 134 181 265 314 366 365 323 269 

CA 6 11 13 16 13 10 10 9 10 21 28 35 35 35 44 51 62 85 100 121 163 174 204 199 164 

DE 530 625 590 517 437 484 564 625 677 684 672 749 949 1138 1352 1471 1650 2115 2644 3420 3785 3736 3826 3476 2839 

DK 5 5 4 5 5 5 7 6 6 12 17 23 27 29 26 35 70 77 91 97 80 84 97 90 73 

FR 386 521 576 544 540 545 578 629 750 832 909 1031 1063 1164 1226 1243 1338 1542 1809 2131 2458 2626 2713 2563 2071 

GB 121 149 166 186 236 319 374 448 479 511 616 661 753 844 964 1213 1349 1461 1656 1982 2449 2769 2887 2626 2033 

IT 33 39 34 27 22 31 39 46 48 61 75 97 135 141 149 152 142 145 151 153 177 236 295 306 263 

JP 168 235 288 288 319 318 295 316 326 418 567 782 993 1231 1389 1504 1678 1959 2564 3469 4615 5645 6816 7290 6440 

NL 35 55 79 95 119 140 170 185 203 211 210 195 162 165 171 207 235 240 240 235 215 185 144 92 61 

NO 2 4 4 2 4 6 8 12 18 18 18 19 15 13 13 11 16 25 31 61 93 142 167 168 135 

SE 43 52 82 95 107 118 97 98 119 163 219 243 376 420 496 713 836 1050 1161 1399 1635 1708 1750 1407 908 

US 606 843 1093 1225 1302 1382 1332 1361 1440 1732 2110 2762 3426 4249 5230 6420 7995 9725 12043 14437 14615 15782 16138 13997 12579 

Source: elaborations on EPO data.  
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Table 4 – Revealed technology advantage in the ICT sector 
 
 AT AU BE CA DE DK FR GB IT JP NL NO SE US 

1981 0.139 1.529 0.122 0.284 1.071 0.381 1.582 0.714 0.494 0.687 0.539 0.190 0.801 1.089 

1982 0.158 1.391 0.135 0.351 0.967 0.276 1.684 0.678 0.481 0.688 0.682 0.611 0.803 1.138 

1983 0.150 1.236 0.257 0.353 0.859 0.274 1.671 0.678 0.368 0.695 0.790 0.485 1.108 1.216 

1984 0.154 1.381 0.301 0.314 0.805 0.339 1.715 0.741 0.292 0.623 0.906 0.336 1.163 1.292 

1985 0.209 1.580 0.339 0.275 0.764 0.324 1.724 0.880 0.269 0.638 1.126 0.500 1.137 1.298 

1986 0.175 1.708 0.297 0.239 0.758 0.253 1.753 1.054 0.323 0.583 1.213 0.840 1.161 1.321 

1987 0.161 1.888 0.445 0.226 0.780 0.369 1.808 1.138 0.330 0.532 1.403 0.801 1.228 1.303 

1988 0.172 2.350 0.498 0.258 0.781 0.286 1.858 1.277 0.320 0.505 1.390 0.823 1.329 1.304 

1989 0.384 3.101 0.391 0.263 0.771 0.272 1.975 1.356 0.308 0.457 1.509 1.081 1.553 1.277 

1990 0.389 3.210 0.347 0.411 0.730 0.408 1.967 1.427 0.375 0.466 1.501 1.236 1.840 1.313 

1991 0.469 2.726 0.283 0.468 0.683 0.591 1.878 1.569 0.374 0.508 1.476 1.009 2.068 1.325 

1992 0.543 2.560 0.234 0.484 0.649 0.543 1.796 1.492 0.377 0.561 1.205 0.882 1.871 1.367 

1993 0.558 2.675 0.181 0.368 0.655 0.533 1.628 1.412 0.408 0.555 0.975 0.811 2.496 1.344 

1994 0.539 2.255 0.337 0.371 0.616 0.524 1.516 1.365 0.374 0.588 0.869 0.634 2.264 1.395 

1995 0.650 2.151 0.260 0.372 0.600 0.419 1.401 1.404 0.346 0.588 0.818 0.479 2.228 1.438 

1996 0.700 1.965 0.215 0.350 0.543 0.399 1.287 1.451 0.303 0.563 0.744 0.388 2.380 1.520 

1997 0.649 1.743 0.152 0.296 0.533 0.688 1.182 1.362 0.269 0.563 0.639 0.454 2.399 1.562 

1998 0.583 1.540 0.120 0.320 0.553 0.593 1.150 1.266 0.232 0.591 0.564 0.496 2.324 1.587 

1999 0.476 1.548 0.083 0.282 0.547 0.521 1.084 1.228 0.207 0.635 0.477 0.399 2.054 1.624 

2000 0.364 1.602 0.077 0.268 0.544 0.437 1.026 1.233 0.175 0.698 0.376 0.619 2.195 1.617 

2001 0.307 1.528 0.060 0.285 0.525 0.402 1.034 1.337 0.170 0.797 0.297 0.858 2.375 1.502 

2002 0.267 1.463 0.047 0.284 0.492 0.381 1.011 1.314 0.186 0.857 0.242 1.090 2.370 1.516 

2003 0.239 1.420 0.038 0.313 0.494 0.406 0.972 1.293 0.195 0.933 0.200 1.133 2.238 1.508 

Source: elaborations on EPO data. 
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Table 5 - Variety (information entropy) 
 

 AT AU BE CA DE DK FR GB IT JP NL NO SE US 
1981 1.585 4.265 0.000 1.000 7.025 0.918 6.887 6.520 3.785 6.677 3.546  4.999 7.333 

1982 2.000 4.472 0.000 0.918 7.237 0.918 7.077 6.529 4.415 6.976 4.537 1.500 5.238 7.486 

1983 2.000 4.963 1.500 0.722 7.325 0.918 7.171 6.702 4.415 7.084 5.044 1.500 5.319 7.541 

1984 2.000 5.127 2.522 0.811 7.212 2.750 7.250 6.551 4.252 6.900 5.502 1.500 4.793 7.591 

1985 2.585 5.330 2.752 0.811 7.238 2.750 7.290 6.257 4.022 6.905 5.846 1.918 4.681 7.603 

1986 2.322 5.250 2.689 0.000 7.242 2.585 7.412 6.377 4.133 6.770 6.009 2.752 4.742 7.700 

1987 2.322 5.446 3.071 0.000 7.130 2.750 7.462 6.494 3.759 6.760 6.092 2.000 5.122 7.697 

1988 1.922 5.503 3.201 1.585 7.175 2.750 7.597 6.464 4.101 6.884 6.035 2.000 5.209 7.742 

1989 3.476 6.246 3.190 2.250 7.096 0.000 7.558 6.508 4.324 6.876 6.179 2.522 5.519 7.657 

1990 3.372 6.290 3.182 3.093 7.258 2.948 7.681 6.498 4.751 6.998 6.265 3.932 5.688 7.701 

1991 3.877 6.342 2.664 3.484 7.278 3.922 7.637 6.617 5.202 7.029 6.334 3.807 5.763 7.667 

1992 4.564 6.599 2.252 3.546 7.393 4.005 7.576 6.777 5.511 7.151 6.377 3.875 5.766 7.786 

1993 4.750 6.778 1.500 3.427 7.368 4.670 7.470 6.864 5.639 7.139 6.313 4.022 6.052 7.829 

1994 4.887 6.355 4.004 3.793 7.608 4.960 7.429 6.989 5.589 7.196 6.170 3.932 5.978 7.890 

1995 5.099 6.496 3.924 3.446 7.647 4.626 7.189 7.069 5.505 7.089 5.949 2.250 6.137 7.963 

1996 5.294 6.459 4.180 3.805 7.578 4.317 7.153 7.024 5.342 7.139 5.666 2.250 6.228 7.998 

1997 5.124 6.436 4.180 3.792 7.605 5.226 7.190 6.855 5.086 7.524 5.698 2.896 6.200 7.927 

1998 5.266 6.282 4.378 3.954 7.507 5.217 7.112 6.717 4.788 7.604 5.955 2.583 6.044 7.777 

1999 5.214 6.553 2.918 3.638 7.381 5.282 7.018 6.741 5.052 7.454 5.793 2.422 6.247 7.658 

2000 5.441 6.684 3.250 4.063 7.272 5.348 7.057 6.670 4.918 7.509 5.828 3.274 6.222 7.571 

2001 5.138 6.843 2.722 3.867 7.364 5.362 6.997 6.609 4.972 7.419 5.714 3.515 6.253 7.571 

2002 5.083 6.852 2.722 4.196 7.383 5.288 6.954 6.642 5.357 7.375 5.311 3.572 6.435 7.522 

2003 4.536 7.019 1.585 4.859 7.581 5.589 6.945 6.607 5.575 7.443 4.881 4.218 6.264 7.461 

Source: elaborations on EPO data. 
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Table 6 - Related variety (within-group information entropy) 
 

 AT AU BE CA DE DK FR GB IT JP NL NO SE US 
1981 -0.750 0.222 -0.783 -0.549 0.047 -0.438 0.238 -0.173 -0.327 -0.173 -0.287 -0.673 -0.098 0.056 

1982 -0.720 0.178 -0.763 -0.469 -0.002 -0.558 0.268 -0.199 -0.338 -0.171 -0.175 -0.228 -0.095 0.079 

1983 -0.733 0.120 -0.592 -0.467 -0.062 -0.560 0.264 -0.200 -0.451 -0.166 -0.104 -0.334 0.065 0.112 

1984 -0.729 0.170 -0.539 -0.515 -0.098 -0.485 0.273 -0.159 -0.540 -0.222 -0.039 -0.489 0.086 0.138 

1985 -0.652 0.229 -0.495 -0.566 -0.130 -0.508 0.270 -0.073 -0.573 -0.217 0.063 -0.330 0.068 0.134 

1986 -0.704 0.258 -0.543 -0.617 -0.142 -0.599 0.270 0.017 -0.514 -0.267 0.092 -0.091 0.071 0.134 

1987 -0.727 0.300 -0.386 -0.636 -0.131 -0.467 0.281 0.056 -0.509 -0.312 0.160 -0.118 0.095 0.124 

1988 -0.713 0.391 -0.337 -0.599 -0.136 -0.564 0.288 0.112 -0.525 -0.341 0.150 -0.111 0.128 0.119 

1989 -0.458 0.500 -0.440 -0.595 -0.146 -0.584 0.313 0.143 -0.541 -0.387 0.187 0.022 0.201 0.105 

1990 -0.455 0.511 -0.487 -0.433 -0.175 -0.437 0.309 0.173 -0.470 -0.380 0.182 0.086 0.278 0.117 

1991 -0.383 0.444 -0.561 -0.383 -0.212 -0.279 0.283 0.219 -0.475 -0.348 0.169 -0.020 0.327 0.116 

1992 -0.315 0.421 -0.623 -0.366 -0.233 -0.316 0.265 0.194 -0.469 -0.301 0.072 -0.084 0.284 0.135 

1993 -0.300 0.441 -0.696 -0.476 -0.226 -0.321 0.222 0.167 -0.435 -0.303 -0.030 -0.122 0.413 0.129 

1994 -0.315 0.371 -0.499 -0.472 -0.253 -0.327 0.189 0.150 -0.469 -0.275 -0.087 -0.240 0.373 0.149 

1995 -0.229 0.350 -0.590 -0.471 -0.266 -0.425 0.150 0.164 -0.500 -0.276 -0.118 -0.368 0.365 0.162 

1996 -0.195 0.308 -0.649 -0.497 -0.313 -0.446 0.106 0.180 -0.549 -0.297 -0.165 -0.456 0.392 0.188 

1997 -0.228 0.256 -0.738 -0.554 -0.320 -0.201 0.067 0.149 -0.587 -0.295 -0.236 -0.389 0.398 0.204 

1998 -0.276 0.200 -0.788 -0.525 -0.300 -0.268 0.056 0.112 -0.632 -0.270 -0.291 -0.349 0.387 0.214 

1999 -0.366 0.203 -0.849 -0.568 -0.304 -0.326 0.028 0.097 -0.665 -0.236 -0.365 -0.439 0.334 0.226 

2000 -0.477 0.219 -0.859 -0.586 -0.307 -0.402 0.000 0.099 -0.708 -0.191 -0.464 -0.247 0.363 0.224 

2001 -0.541 0.194 -0.888 -0.567 -0.325 -0.439 0.001 0.129 -0.718 -0.129 -0.553 -0.092 0.394 0.185 

2002 -0.589 0.174 -0.912 -0.568 -0.353 -0.460 -0.009 0.119 -0.694 -0.092 -0.620 0.028 0.394 0.191 

2003 -0.622 0.160 -0.928 -0.533 -0.351 -0.434 -0.028 0.111 -0.681 -0.049 -0.674 0.048 0.370 0.189 

Source: elaborations on EPO data. 
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Table 7 - Unrelated variety (between-group information entropy) 
 

 AT AU BE CA DE DK FR GB IT JP NL NO SE US 
1981 1.585 1.412 0.000 1.000 1.537 0.918 1.920 2.362 1.166 1.674 1.578  1.950 1.966 

1982 2.000 1.487 0.000 0.918 1.755 0.918 1.916 2.268 1.109 1.698 1.457 1.000 1.821 1.908 

1983 1.500 1.406 0.811 0.722 1.815 0.918 1.893 2.107 1.136 1.862 1.417 1.000 1.745 1.884 

1984 1.500 1.427 0.881 0.811 1.765 1.906 1.931 1.989 1.175 1.786 1.321 1.000 1.467 1.851 

1985 1.459 1.535 0.918 0.811 1.980 1.906 2.018 1.754 0.971 1.782 1.292 1.585 1.316 1.787 

1986 0.971 1.807 0.837 0.000 2.136 1.918 1.834 1.920 0.983 1.799 1.435 2.585 1.294 1.871 

1987 0.971 1.786 0.722 0.000 2.029 2.250 1.936 1.876 1.091 1.832 1.389 2.000 1.593 1.834 

1988 0.971 1.790 0.454 0.000 2.033 2.250 1.950 1.961 1.867 1.639 1.302 2.000 1.891 1.883 

1989 0.753 2.115 0.567 0.811 1.915 0.000 2.031 1.856 1.972 1.662 1.554 2.522 1.875 1.781 

1990 0.391 2.024 1.089 0.863 1.933 0.000 2.001 1.773 1.849 1.628 1.407 2.082 1.829 1.709 

1991 0.523 1.987 1.278 0.934 1.943 1.406 2.061 1.601 1.808 1.690 1.370 1.000 1.679 1.691 

1992 1.170 2.134 1.792 0.734 1.876 1.352 1.968 1.646 1.794 1.505 1.419 0.989 1.469 1.700 

1993 1.014 2.246 1.500 0.784 1.969 1.861 1.925 1.636 1.483 1.450 1.495 0.993 1.822 1.633 

1994 1.241 2.125 2.374 1.152 2.146 1.691 1.804 1.722 1.311 1.392 1.359 0.998 1.865 1.695 

1995 1.197 2.251 2.115 1.015 2.151 1.800 1.637 1.689 1.615 1.415 1.572 1.000 2.006 1.653 

1996 1.693 2.346 2.470 1.695 2.087 1.870 1.503 1.709 1.608 1.359 1.517 0.954 1.911 1.712 

1997 1.556 2.250 2.470 1.907 2.247 1.824 1.477 1.607 1.618 2.092 1.415 0.940 1.862 1.682 

1998 1.624 2.115 2.628 1.967 2.103 1.879 1.459 1.493 1.625 2.032 1.509 0.918 1.520 1.634 

1999 1.514 1.886 2.117 1.705 1.994 1.942 1.399 1.516 1.451 1.969 1.455 0.881 1.599 1.588 

2000 1.992 2.075 2.358 1.859 1.897 1.823 1.500 1.695 1.039 1.881 1.618 1.253 1.327 1.630 

2001 1.725 2.092 1.571 1.020 1.973 1.715 1.594 1.697 1.133 1.860 1.842 1.213 1.369 1.653 

2002 1.957 2.087 1.571 0.960 1.978 1.683 1.660 1.736 1.366 1.759 2.090 1.166 1.490 1.666 

2003 2.107 2.179 0.918 1.201 2.120 1.283 1.692 1.759 1.582 1.795 2.162 1.385 1.522 1.673 

Source: elaborations on EPO data. 

 



 49 

Table 8 - Knowledge coherence 
 

 AT AU BE CA DE DK FR GB IT JP NL NO SE US 
1981 -0.438 -1.822 -1.578 5.447 -0.125 -0.909 -0.135 -0.218 -1.726 0.502 -1.468  -0.860 0.367 

1982 -2.219 -1.910 -3.201 3.881 -0.185 -0.686 -0.158 -0.363 -0.931 0.252 -0.846 -2.315 -1.470 0.361 

1983 -1.828 -1.192 -6.432 1.743 -0.153 -1.993 -0.064 -0.435 -1.576 0.573 -0.940 11.333 -1.555 0.261 

1984 -2.643 -1.690 -4.307 2.239 0.174 -1.481 0.133 -0.305 -1.141 0.457 -0.868 -0.242 -1.097 0.412 

1985 -2.086 -1.195 -3.983 0.605 0.103 0.128 0.342 -0.040 -1.495 0.447 -0.598 5.888 -1.094 0.377 

1986 -2.501 -0.930 0.208 0.811 0.067 0.427 0.443 0.007 -0.834 0.116 -0.462 6.956 -1.407 0.351 

1987 -2.049 -0.664 -1.403 0.074 0.010 -1.800 0.239 -0.012 -1.108 0.170 -0.408 -0.760 -0.784 0.198 

1988 -3.005 -1.145 -0.863 0.809 -0.071 -2.350 0.255 -0.074 -1.358 0.318 -0.519 0.949 -1.247 0.502 

1989 -1.953 -0.787 0.204 -0.079 0.114 -4.207 0.453 -0.123 -1.202 0.075 -0.176 2.149 -0.967 0.297 

1990 -1.011 -1.147 -0.540 -2.412 0.092 -0.031 0.305 -0.259 -1.900 -0.156 -0.246 0.188 -1.252 0.075 

1991 -0.818 -1.675 -1.514 -1.254 0.134 -0.661 0.227 -0.407 -1.753 -0.300 -0.491 -0.028 -1.241 -0.025 

1992 -1.011 -1.860 -1.828 -3.364 0.064 -1.372 -0.036 -0.456 -1.309 -0.223 -0.430 -0.922 -1.683 -0.125 

1993 -2.568 -1.671 -3.072 -2.469 -0.079 -2.071 -0.169 -0.714 -1.704 -0.369 -0.987 -1.693 -1.903 -0.410 

1994 -2.909 -1.924 -3.557 -2.479 -0.414 -3.733 -0.613 -1.031 -1.904 -0.569 -1.634 -1.566 -2.304 -0.605 

1995 -2.224 -1.870 -2.885 -2.955 -0.455 -3.601 -0.819 -1.297 -2.395 -0.597 -1.893 -1.882 -2.331 -0.784 

1996 -2.907 -1.446 -2.900 -4.499 -0.677 -2.231 -1.073 -1.727 -2.567 -0.738 -2.500 -2.020 -2.560 -0.879 

1997 -3.611 -2.706 -3.280 -4.375 -0.964 -2.968 -1.303 -1.959 -2.453 -0.827 -2.686 -3.175 -2.706 -1.060 

1998 -3.980 -2.301 -3.370 -6.027 -1.425 -1.167 -1.547 -2.464 -2.564 -0.979 -2.932 -6.298 -2.889 -1.375 

1999 -4.770 -3.041 -3.984 -6.630 -1.713 -3.602 -1.882 -2.750 -3.060 -1.241 -3.463 -6.720 -3.066 -1.646 

2000 -4.990 -3.402 -4.473 -6.819 -1.952 -3.784 -2.292 -3.007 -3.268 -1.650 -3.540 -6.540 -3.564 -1.907 

2001 -5.063 -3.656 -4.107 -7.978 -2.212 -4.313 -2.681 -3.482 -3.875 -1.944 -3.968 -7.987 -3.288 -2.096 

2002 -4.527 -3.518 -4.426 -7.789 -2.329 -5.351 -2.887 -3.238 -4.750 -1.987 -4.240 -6.963 -3.379 -2.172 

2003 -5.764 -3.563 -2.292 -8.622 -2.602 -5.629 -3.050 -3.494 -5.209 -2.163 -4.121 -5.712 -3.556 -2.287 

Source: elaborations on EPO data. 

 
 
 



 50

 
Table 9 – Econometric estimation of Equation (15) 

 
 (1) (2) (3) (4) 
Constant 0.0221*** 0.0221*** 0.0206*** 0.0238*** 
 (0.00507) (0.00495) (0.00503) (0.00506) 
lagA 0.00768 0.00650 0.00837 0.00713 
 (0.00615) (0.00613) (0.00620) (0.00612) 
Coherence 0.00365** 0.00352** 0.00322* 0.00394** 
 (0.00191) (0.00178) (0.00191) (0.00189) 
Technological variety -0.00254*    
 (0.00153)    
Unrelated technological variety  -0.00229***  -0.00287*** 
  (0.000853)  (0.000931) 
Related technological variety   -0.000473 -0.00255 
   (0.00155) (0.00167) 
Share of multi tech patents 0.000360 0.000624 7.14e-06 0.00109 
 (0.00109) (0.00108) (0.00108) (0.00112) 
ICTK 0.00180* 0.000524 0.00133 0.00146 
 (0.00118) (0.00113) (0.00130) (0.00128) 
     
Time dummies Yes Yes Yes Yes 
Country dummies Yes Yes Yes Yes 
     
Observations 315 315 315 315 
Number of countries 14 14 14 14 
R-squared 0.371 0.381 0.365 0.386 
Dependent variable: dlogA/dt 
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 10 - Econometric estimation of Equation (15) 

 
 (1) (2) (3) (4) 
Constant 0.0240*** 0.0226*** 0.0218*** 0.0251*** 
 (0.00510) (0.00486) (0.00508) (0.00512) 
lagA 0.00896 0.00706 0.00916 0.00806 
 (0.00624) (0.00623) (0.00634) (0.00625) 
Coherence 0.00361** 0.00350** 0.00316* 0.00387** 
 (0.00191) (0.00176) (0.00190) (0.00189) 
Tech variety -0.00265*    
 (0.00155)    
Unrelated tech variety  -0.00229***  -0.00289*** 
  (0.000845)  (0.000931) 
Related tech variety   -0.000316 -0.00242 
   (0.00147) (0.00160) 
RTA 0.00159* 0.000597 0.00107 0.00122 
 (0.000991) (0.000926) (0.00102) (0.00101) 
Share of multi tech patents 0.000342 0.000584 -2.81e-05 0.00105 
 (0.00109) (0.00108) (0.00108) (0.00112) 
     
Time dummies Yes Yes Yes Yes 
Country dummies Yes Yes Yes Yes 
     
Observations 315 315 315 315 
Number of countries 14 14 14 14 
R-squared 0.371 0.381 0.365 0.386 
Dependent variable: dlogA/dt 
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 


